Cell therapy processes utilizing acoustophoresis

Information

  • Patent Grant
  • 11377651
  • Patent Number
    11,377,651
  • Date Filed
    Thursday, March 8, 2018
    6 years ago
  • Date Issued
    Tuesday, July 5, 2022
    2 years ago
Abstract
A closed and modular fluidic system composed of one or more acoustic elements and cell processing reagents. The system employs a cellular manufacturing process for producing cell and gene therapy therapeutics.
Description
BACKGROUND

Cell therapy is an immunology based therapy for treating a patient using cellular material. Current processes for implementing cell therapy treatments are associated with very high costs, on the order of $500,000-$1.5 million. A number of processes are used to produce the therapeutic product, with each process tending to be independent, open or nonsterile, and implemented by a highly skilled person or persons that often hold PhDs.


BRIEF SUMMARY

Cell therapy is a therapy that uses cellular material to treat a patient. Such a therapy sometimes involves obtaining cells, which may be provided by the patient, modifying the cells for therapeutic purposes, and introducing the cells into the patient. The production process for obtaining a final product that is introduced to the patient involves a number of steps or processes for handling and/or manipulating the cellular material. The present disclosure discusses a number of such processes that are implemented using acoustics to separate and/or retain and/or filter materials.


In some examples, a system is provided that is a closed and modular fluidic system composed of acoustic elements and cell processing reagents for a cellular manufacturing process on the scale of 30 to 150 billion cells and 750 mL to 5 L.


In some examples, the process steps include mononuclear cell (MNC) isolation from apheresis products, isolation of T-cells (CD3+, CD3+CD4+ and CD3+CD8+) from apheresis products, removal of T-cell receptor positive cells (TCR+ cells) post cell expansion, as well as several wash and volume change steps.


Implementations may include scale-dependent and/or scale-independent applications, or combinations thereof. Example implementations may control the cellular manufacturing process starting and final cell population and/or automate these process steps.


The various example processes may include one or more of the following, which may be independent or integrated or combined in various combinations or sequences. It should be understood that any types of cellular material may be processed with the disclosed acoustic cellular processing systems and methods. The following examples include processes for T-cells, and one or more of the processes may be applied, independently or in various combinations, to other types of cells.


An apheresis product is obtained, which may include a number of particles or components including T-cells, red blood cells (RBCs), platelets and/or granulocytes. The various components are separated, for example, with an acoustic process that differentiates the particles based on size, density, compressibility and/or acoustic contrast factor. In another example, T-cells are separated from the apheresis product using an affinity selection process. The affinity selection process may implement selection based on markers, including CD3+, CD3+CD4+, CD3+CD8+, for example. Another separation example provides label-free selection of mononucleated cells (MNC) from the apheresis product.


An example process provides for activation of the T-cells using a nanobead process in which acoustics are used to retain or pass the activated T-cells. The activated T-cells may be genetically modified with a lentiviral transduction operation, which may be implemented with an acoustic process that traps and/or co-locates the T-cells and lentivirus. The T-cells may be washed and/or concentrated and/or washed, in any desired order or to produce any desired results for concentrate/wash operations, using one or more acoustic devices that can retain the T cells and concentrate them into a reduced volume. The T-cells may be subjected to electroporation. The T-cells population may be expanded, such as by culturing, using an acoustic device that maintains or recycles the T cells in a culture in which the culture media is exchanged. The expanded T-cell population may be washed and/or concentrated and/or washed using one or more acoustic devices that can retain the T cells and concentrate them into a reduced volume. The T-cell culture may be separated to remove TCR+ cells, which may be achieved through negative selection using an affinity process that retains the TCR+ cells using acoustics. The resulting TCR−-CAR+ cells can be recovered using an acoustic process that separates those cells from the host fluid. A fill and finish process can be implemented on the recovered T cells to prepare a dose representing the final product.


In some example systems, a cell volume of about 30 billion cells or less can be processed in a one liter process. In some example systems, a cell volume of about 150 billion cells or less can be processed in a five liter process. In these example systems, the affinity selection of CD3+ T cells from apheresis products is Ficoll-free. In addition, or alternatively, the affinity selection of CD3+, CD3+CD4+ and/or CD3+CD8+, or any other type of marker selection desired, is Ficoll-free.


In some example systems, a concentrate-wash process and affinity selection process is integrated in a single device. The device can be configured to be used in a one or five liter process, or in any process scale desired.


In some example systems, the acoustic separation process for separating the apheresis components is implemented using an acoustic angled wave device. The acoustic angled wave device permits fractionation of different sized particles at different angles with an acoustic wave applied at an angle to a flow direction.


Concentrating therapeutic cells and transferring them from one solution into another (usually referred to as washing) is discussed herein. In particular, therapeutic cells may originally be suspended in a growth serum or in preservative materials like dimethyl sulfoxide (DMSO). Separating the cells from these fluids so the cells can be further processed is important in the overall therapeutic process of using such cellular materials. In one example, the cells are typically recovered from a bioreactor, concentrated, and transferred from culture media into an electroporation buffer prior to transduction, such as in manufacturing CAR-T cells. After expansion of cells at the final manufacturing step, they are concentrated and transferred into an appropriate solvent depending on the desired application.


Therapeutic cells are stored in specialized media to prolong the viability of these cells either through refrigeration and or freezing processes. Such specialized media may not be compatible when the therapeutic cells are introduced into a patient. It may thus be helpful to both wash and concentrate the therapeutic cells in a buffer or wash media that is biocompatible with both the therapeutic cells and with the patient. The washing step may be repeated a number of times. For example, the specialized media (which can be pyrogenic or otherwise harmful) may be fully removed with multiple wash steps, and the cells may be suspended in a new buffer or wash solution.


Separation of biomaterials can be accomplished by functionalized material distributed in a fluid chamber. The functionalized material bind the specific target materials such as recombinant proteins and monoclonal antibodies or cells. The functionalized material, which may take a form of microcarriers that are coated with an affinity protein, is trapped by nodes and/or anti-nodes of an acoustic standing wave. In this approach, the functionalized material is trapped without contact (for example, using mechanical channels, conduits, tweezers, etc.).


The present disclosure provides methods and systems for replacing or augmenting conventional centrifugation and physical filtration processes along with the multiple washing steps with a simpler, lower cost, and more friendly process for particles such as therapeutic cells. The methods/processes can be performed in a sterile/closed environment and in a continuous form.


Disclosed herein are methods of washing particles, which comprise feeding an initial mixture of a first media and the particles through a flow chamber of an acoustophoretic device. For example, the first media may contain preservatives such as dimethyl sulfoxide (DMSO) which are undesirable for future applications/uses of the particles, such as cells. The acoustophoretic device also comprises at least one ultrasonic transducer that includes a piezoelectric material that is configured to be driven to create a multi-dimensional acoustic standing wave in the flow chamber. The at least one ultrasonic transducer is driven to create a multi-dimensional acoustic standing wave in the flow chamber, such that at least a portion of the particles are trapped in the multi-dimensional acoustic standing wave. The trapped particles are subsequently mixed with a second media to wash the trapped particles (e.g. remove the first media from the particles).


In some embodiments, the initial mixture is run through the flow chamber to obtain an intermediate mixture of the particles in a reduced volume of the first media. The intermediate mixture is then collected, and mixed together with the second media to form a secondary mixture. The secondary mixture is then fed through the flow chamber to obtain a final mixture of particles in a reduced volume of the second media.


In other embodiments, the second media is fed into the flow chamber after the initial mixture is fed through the flow chamber. Here, the second media displaces the first media, or gradually replaces the first media. The second media can be a biocompatible wash or a buffer solution.


In still other embodiments, the acoustophoretic device further comprises a collector located below the at least one ultrasonic transducer so that as the trapped particles form clusters and grow to a critical size and subsequently fall out of the multi-dimensional acoustic standing wave, the clusters fall into the collector. The collector leads to a collection container that contains the second media, mixing the clusters of particles together with the second media.


The particles may be cells. The cells may be Chinese hamster ovary (CHO) cells, NSO hybridoma cells, baby hamster kidney (BHK) cells, human cells, regulatory T-cells, Jurkat T-cells, CAR-T cells, B cells, or NK cells, peripheral blood mononuclear cells (PBMCs), algae, plant cells, bacteria, or viruses. The cells may be attached to microcarriers.


Sometimes, the piezoelectric material of the at least one ultrasonic transducer is in the form of a piezoelectric array formed from a plurality of piezoelectric elements. Each piezoelectric element can be physically separated from surrounding piezoelectric elements by a potting material. The piezoelectric array can be present on a single crystal, with one or more channels separating the piezoelectric elements from each other. Each piezoelectric element can be individually connected to its own pair of electrodes. The piezoelectric elements can be operated in phase with each other, or operated out of phase with each other. The acoustophoretic device may further comprise a cooling unit for cooling the at least one ultrasonic transducer.


Also disclosed herein are acoustophoretic systems, comprising an acoustophoretic device with a port that may operate as a wash inlet, a concentrate outlet and/or a wash outlet. The acoustophoretic device may include one or more ultrasonic transducers including a piezoelectric material. The piezoelectric material can be excited to form a standing wave on its surface, which can generate a multi-dimensional acoustic standing wave in an adjacent fluid.





BRIEF DESCRIPTION OF THE DRAWINGS

The following is a brief description of the drawings, which are presented for the purposes of illustrating the example embodiments disclosed herein and not for the purposes of limiting the same.



FIG. 1 is a block diagram of a cell therapy production process.



FIG. 2 is a diagram of an acoustic angled wave process.



FIG. 3 is a diagram illustrating a magnetically activated affinity process.



FIG. 4 is a diagram illustrating an acoustically activated affinity process.



FIG. 5 is a flowchart illustrating a process for depletion of TCR+ cells.



FIG. 6 is a set of diagrams illustrating an acoustic separation process.



FIGS. 7 and 8 are a set of diagrams illustrating a concentrate-wash operation.



FIG. 8 is a conventional single-piece monolithic piezoelectric material used in an ultrasonic transducer.



FIG. 9 is a block diagram illustrating affinity processes.



FIG. 10 is a block diagram illustrating an integrated concentrate-wash-cell selection device.





DETAILED DESCRIPTION

The present disclosure may be understood more readily by reference to the following detailed description of desired embodiments and the examples included therein. In the following specification and the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings.


Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function. Furthermore, it should be understood that the drawings are not to scale.


The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


As used in the specification and in the claims, the term “comprising” may include the embodiments “consisting of” and “consisting essentially of.” The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named components/steps and permit the presence of other components/steps. However, such description should be construed as also describing compositions or processes as “consisting of” and “consisting essentially of” the enumerated components/steps, which allows the presence of only the named components/steps, along with any impurities that might result therefrom, and excludes other components/steps.


Numerical values should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.


All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 grams to 10 grams” is inclusive of the endpoints, 2 grams and 10 grams, and all the intermediate values).


A value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified. The approximating language may correspond to the precision of an instrument for measuring the value. The modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4.”


It should be noted that many of the terms used herein are relative terms. For example, the terms “upper” and “lower” are relative to each other in location, e.g. an upper component is located at a higher elevation than a lower component in a given orientation, but these terms can change if the device is flipped. The terms “inlet” and “outlet” are relative to a fluid flowing through them with respect to a given structure, e.g. a fluid flows through the inlet into the structure and flows through the outlet out of the structure. The terms “upstream” and “downstream” are relative to the direction in which a fluid flows through various components, e.g. the flow fluids through an upstream component prior to flowing through the downstream component. It should be noted that in a loop, a first component can be described as being both upstream of and downstream of a second component.


The terms “horizontal” and “vertical” are used to indicate direction relative to an absolute reference, e.g. ground level. The terms “upwards” and “downwards” are also relative to an absolute reference; an upwards flow is always against the gravity of the earth.


The present application refers to “the same order of magnitude.” Two numbers are of the same order of magnitude if the quotient of the larger number divided by the smaller number is a value of at least 1 and less than 10.


Cell Therapy Processes


Cell therapy is a therapy that uses cellular material to treat a patient. Such a therapy sometimes involves obtaining cells, which may be provided by the patient, modifying the cells for therapeutic purposes, and introducing the cells into the patient. The production process for obtaining a final product that is introduced to the patient involves a number of steps or processes for handling and/or manipulating the cellular material. The present disclosure discusses a number of such processes that are implemented using acoustics to separate and/or retain and/or filter materials.


In some examples, a system is provided that is a closed and modular fluidic system composed of acoustic elements and cell processing reagents for a cellular manufacturing process on the scale of 30 to 150 billion cells and 750 mL to 5 L.


In some examples, the process steps include mononuclear cell (MNC) isolation from apheresis products, isolation of T-cells (CD3+, CD3+CD4+ and CD3+CD8+) from apheresis products, removal of T-cell receptor positive cells (TCR+ cells) post cell expansion, as well as several wash and volume change steps.


Implementations may include scale-dependent and/or scale-independent applications, or combinations thereof. Example implementations may control the cellular manufacturing process starting and final cell population and/or automate these process steps.


The various example processes may include one or more of the following, which may be independent or integrated or combined in various combinations or sequences. It should be understood that any types of cellular material may be processed with the disclosed acoustic cellular processing systems and methods. The following examples include processes for T-cells, and one or more of the processes may be applied, independently or in various combinations, to other types of cells.


Referring to FIG. 1, a block diagram 100 illustrates various steps in a cell production process. The process is directed to T cells, however, any type of cellular material can be processed with the acoustic devices described herein. The various steps illustrated are apheresis collection, apheresis product wash/fractionation, T-cell selection, T-cell activation, gene transfer, T-cell expansion, T-cell formulation and T-cell cryopreservation. In accordance with the present disclosure, acoustic processing can be applied to some or all of these steps, some of which may be combined or integrated within a single acoustic device.


As illustrated in diagram 100, an apheresis product is obtained, which may include a number of particles or components including T-cells, red blood cells (RBCs), platelets and/or granulocytes. The various components are separated, for example, with an acoustic process that differentiates the particles based on size, density, compressibility and/or acoustic contrast factor. In another example, T-cells are separated from the apheresis product using an affinity selection process. The affinity selection process may implement selection based on markers, including CD3+, CD3+CD4+, CD3+CD8+, for example. Another separation example provides label-free selection of mononucleated cells (MNC) from the apheresis product.


Diagram 100 illustrates activation of the T-cells using a nanobead process in which acoustics are used to retain or pass the activated T-cells. The activated T-cells may be subjected to a gene transfer process, which may involve a lentiviral transduction operation, which may be implemented with an acoustic process that traps and/or co-locates the T-cells and lentivirus. The T-cells may be washed and/or concentrated and/or washed, in any desired order or to produce any desired results for concentrate/wash operations, using one or more acoustic devices that can retain the T cells and concentrate them into a reduced volume. The T-cells population may be expanded, such as by culturing, using an acoustic device that maintains or recycles the T cells in a culture in which the culture media is exchanged. The expanded T-cell population may be washed and/or concentrated and/or washed using one or more acoustic devices that can retain the T cells and concentrate them into a reduced volume. The T-cell culture may be separated to remove TCR+ cells, which may be achieved through negative selection using an affinity process that retains the TCR+ cells using acoustics. The resulting TCR−-CAR+ cells can be recovered using an acoustic process that separates those cells from the host fluid. A fill and finish process can be implemented on the recovered T cells to prepare a dose representing the final product.


Acoustic Angled Wave Separation


RBC depletion and other fractionation processes may be implemented using angled wave technology. The fractionation of RBC, granulocyte, platelet and MNC using the angled wave device is discussed below. FIG. 2 illustrates an acoustic transducer that generates a bulk acoustic wave within a fluid flow with a mean direction flow that is angled relative to the acoustic wave. The angled acoustic wave can cause particles within the fluid to deflect at different angles that depend upon various characteristics of the particles. Thus, bulk acoustic standing waves angled relative to a direction of flow through a device can be used to deflect, collect, differentiate, or fractionate particles or cells from a fluid flowing through the device. FIG. 2 illustrates generation of angled acoustic standing waves due to the acoustic waves being reflected with the acoustic reflector. It should be understood that any type of acoustic wave may be used, including traveling waves, which may be implemented without an acoustic reflector, or maybe implemented with an acoustic absorber. The illustrated acoustic standing wave can be used to separate or fractionate particles in the fluid by, for example, size, density, speed of sound, and/or shape. The angled acoustic standing wave can be a three-dimensional acoustic standing wave. The acoustic standing wave may also be a planar wave where the piezoelectric material of the acoustic transducer is excited in a piston fashion, or the acoustic standing waves may be a combination of the planar acoustic standing waves and the multidimensional acoustic standing waves. The deflection of the particles by the standing wave can also be controlled or amplified by the strength of the acoustic field, the angle of the acoustic field, the properties of the fluid, the dimensionality or mode of the standing wave, the frequency of the standing wave, the acoustic chamber shape, and the mixture flow velocity.


When acoustic standing waves propagate in liquids, the fast oscillations may generate a non-oscillating force on particles suspended in the liquid or on an interface between liquids. This force is known as the acoustic radiation force. The force originates from the non-linearity of the propagating wave. As a result of the non-linearity, the wave is distorted as it propagates and the time-averages are nonzero. By serial expansion (according to perturbation theory), the first non-zero term will be the second-order term, which accounts for the acoustic radiation force. The acoustic radiation force on a particle, or a cell, in a fluid suspension is a function of the difference in radiation pressure on either side of the particle or cell. The physical description of the radiation force is a superposition of the incident wave and a scattered wave, in addition to the effect of the non-rigid particle oscillating with a different speed compared to the surrounding medium thereby radiating a wave.


As illustrated in FIG. 2, an apheresis product is fractionated into lymphocytes, monocytes and RBCs, granulocytes and other particles. This process can be used to isolate T cells in the apheresis product.


Affinity Separation


The affinity separation of biological materials, such as proteins or cells, is accomplished in some examples through the use of a ligand that is covalently bonded to a structure, such as a microbead. The ligand interacts with the protein or cell such that the protein or cell is bound to the ligand on the microbead.


A ligand is a substance that forms a complex with the biomolecules. With protein-ligand binding, the ligand is usually a molecule which produces a signal by binding to a site on a target protein the binding typically results in a change of confirmation of target protein. The ligand can be a small molecule, ion, or protein which binds to the protein material. The relationship between ligand and binding partner is a function of charge, hydrophobicity, and molecular structure. Binding occurs by intermolecular forces such as ionic bonds, hydrogen bonds and van der Waals forces. The Association of docking is actually reversible through disassociation. Measurably irreversible covalent bonds between the ligand and target molecule is a typical in biological systems.


A ligand that can bind to a receptor, alter the function of the receptor, and trigger a physiological response is called an agonist for the receptor. Agonist binding to receptor can be characterized both in terms of how much physiological response can be triggered and in terms of the concentration of the agonist that is required to produce the physiological response. High affinity ligand binding implies that the relatively low concentration of the ligand is adequate to maximally occupy a ligand—binding site and trigger a physiological response. The lower the Ki level is, the more likely there will be a chemical reaction between the pending and the receptive antigen. Low—affinity binding (high Ki level) implies that a relatively high concentration of the ligand is required before the binding site is maximally occupy and the maximum physiological response to the ligand is achieved. Bivalent ligands consist of two connected molecules as ligands, and are used in scientific research to detect receptor timers and to investigate the properties.


The T cell receptor, or TCR, is a molecule found on the surface of T cells or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerative.


Referring to FIG. 3, paramagnetic beads, such as iron or ferro-magnetic beads sold under the name Dynabeads, have been used to achieve affinity extraction. The magnetic beads, coated with a functionalized material, bind to biological targets in complex mixtures to permit the target material to be separated out of the complex mixture using a magnetic field. The beads carry molecules for affine binding various targets with high specificity. The beads are injected into the complex mixture and incubated to bind the targets. The beads are extracted by a magnet together with the targets attached to the beads.


Micro sized beads are available, such as, e.g., Dynabeads, which are on the order of 4.5 μm in size. Nano sized beads may be used, such as, e.g., Myltenyi, which are on the order of 50 nm in size. Some of the affine molecules that may be used include antibodies, aptamers, oligonucleotides and receptors, among others. The targets for the affinity binding may include biomolecules, cells, exosomes, drugs, etc.


Referring to FIG. 4, beads with high acoustic contrast and affinity chemistry are illustrated. These acoustic beads can be used in exactly the same way as magnetic beads with regard to having functionalized material coatings or composition for affinity binding. The acoustic beads are designed to be extracted from a complex mixture or fluid with an acoustic field. The acoustic beads can be directly used in all the applications developed in cell manufacturing, biochemistry, diagnostics, sensors, etc. that use magnetic beads.


The acoustic beads can use the same surface and affinity chemistry as is used with magnetic beads. This ease of substitution of acoustic beads for magnetic beads has many advantages, including simplifying approval for applications, as well as simplifying the applications.


The acoustic beads can be made biocompatible. Such beads can be produced in different sizes, which permits continuous separation based on size in a size differentiating acoustic field, such as may be provided with an angled-field fractionation technology. The acoustic beads can be combined with an enclosed acoustics-based system, leading to a continuous end-to-end cycle for therapeutic cell manufacturing. This functionality provides an alternative to magnetic bead extraction, while preserving use of currently existing affinity chemistry, which can be directly transferred to the acoustic beads. The acoustic beads may be a consumable product in the separation operation.


In an example, a proof of concept trial was made using the published Memorial Sloan Kettering Cancer Center (MSKCC) protocol for extraction of CD3+ T cells from patient's blood. In the trial, paramagnetic beads were used, and the magnetic field is replaced with an acoustic field. The process of extracting CD3+ T cells from patient's blood is an integral part of manufacturing CAR (chimeric antigen receptor) T cells. Current processes are based on commercially available CD3 Dynabeads. In the trial, efforts were made to minimize the protocol differences, including performing the experiments in culture broth, rather than blood. The difference is considered reduced since several steps in CAR T cell manufacturing work from broth. The solvent density was increased to make T cells “acoustically invisible,” or not as susceptible to an acoustic field. The small size of the Dynabeads may provide an acoustic contrast that is similar to the cells, thus making separation tolerances smaller. The trial employed Jurkat CD3+ and CD3− T cell lines as models. The CD3− cells were employed as a control for non-specific trapping.


The cell suspensions were incubated with CD3 Dynabeads, which bound CD3+ cells. The mixture was passed through the acoustic system, which trapped the magnetic beads (with or without cells). The collected cells were successfully grown in culture. They cultured cells were examined with overlap of bright field images with fluorescence images. The beads were black with slight reddish autofluorescence. The live cells were fluorescent red. The bead diameter is 4.5 microns. CD3+ T-cell complexes with beads were observed, which demonstrates the efficiency of the technique. No CD3− T-cells were extracted in this example, which demonstrates the specificity and selectivity of the technique.


Referring to FIG. 5, a process for affinity selection and removal of TCR+ cells is illustrated. The process steps include a concentrate/wash step, followed by incubation with biotinylated anti-TCR Ab beads. The beads are used to select and remove TCR+ cells through a magnetic process, followed by a culturing and centrifuge process. In accordance with the present disclosure, acoustically sensitive beads are used instead of magnetic selection beads. The acoustic beads may have the same or similar surface chemistry as the magnetic beads. The acoustic beads may be used to select and remove the TCR+ cells has discussed herein.


In an example, a trial with acoustic beads was conducted. In this trial, agarose beads were used as the acoustic beads. These beads are available off-shelf from several manufacturers, and are not paramagnetic or have little to none iron or ferro magnetic content. Some agarose beads have surface modifications that simplify antibody attachment. They are also composed of biocompatible material, which can be important for therapeutic solutions. For example, ABTBeads, which are relatively inexpensive, heterogeneous (20-150 μm), off-shelf beads, which are available with streptavidin and biotin conjugates can be used. CellMosaic agarose beads, which tend to be relatively expensive, homogeneous (20-40 μm) can be configured with any modification by order.


The acoustic beads can be trapped in an acoustic field, such as a multi-dimensional acoustic standing wave. Proof-of-concept and validation of performance has been shown using acoustic affinity beads in an acoustic system. The disclosed methods and systems permit the use of off-shelf reagents, and currently available acoustic systems. The affinities can target any type of desired T cells or markers including TCR+, CD3+, CD4+, CD8+. The acoustic beads can have a high, neutral or low contrast factor, which can affect how the beads respond to an acoustic field, for example being urged toward an acoustic node or antinode, or passing through the field.


The beads may be composed of various materials and combinations, which permits development of optimal chemistry with acoustic performance and biocompatibility. The beads may be processed for isolation, sorting or any other function useful in a separation process. When used with a tuned acoustic system, the performance of specifically designed acoustic beads can match or exceed that of paramagnetic beads.


Existing chemistries may be used with the acoustic beads, and in conjunction with specifications of size and structure homogeneity to achieve desired results for acoustic and for isolation performance. The beads may be composed of composite constructs to advance acoustic efficiency. The acoustic system provides flexibility to manage small sizes, with heat management, and the use of fluidics to obtain results that are not possible with paramagnetic beads alone. The biocompatibility and/or biodegradability of the acoustic beads and simplified processing permits integration with existing hardware for CAR T cell manufacturing. The affinity acoustic beads can be used in a number of environments, including model environments such as, e.g., animal blood spiked with target cells and murine spleen extracts. The acoustic beads may thus be used in collaboration with existing systems, and may be designed and manufactured for target applications. The beads may be provided with a core that is acoustically active or neutral, and the bead themselves may be configured for high, neutral or low acoustic contrast. The size of the beads may be configured for separation and affinity in combination, for example a certain sized bead may include functionalized material to target a certain biomaterial, while another sized bead, may be functionalized to target another biomaterial, each of which can be separated simultaneously and continuously in a closed or flowing system. The beads can be designed to be of a homogeneous size distribution within a narrow or relatively broad range. Various affinity chemistries may be used, including streptavidin-biotin complex and immunoglobulin or aptamer. The beads may be designed for ease of manufacturability and/or for shelf-life. The beads may be used with approved chemistries, so that they may readily be integrated into known systems that use approved chemistries.


Affinity negative selection of TCR+ cells with a volume of 1 L and 30 billion cells was specified in an example trial. In a parallel trial, affinity negative selection of TCR+ cells with a volume of 5 L and 150 billion cells was specified. Table 1 summarizes the results for the trials.











TABLE 1





Item
Baseline
Preferred







Initial volume (flexible if FDS
1 L (5 L)



owns previous stage of the process)


Final volume
100-200 mL



(500-1000 mL)


Total viable cells
30 B (150 B)


Viable TCRCAR+ cell recovery
  70%

>70%



TCR+ cell removal efficiency
99.9%
>99.9%









Affinity selection of CD3+ cells from an apheresis product was specified in an example trial. Table 2 summarizes the results for the trial.











TABLE 2





Item
Baseline
Preferred







Initial volume
300 mL



Final volume
To be adjusted for activation


Total viable cells
15 B MNCs (correct if T-cells)


Viable CD3+ cell recovery
80%
>80%


Purity
95% CD3+
>95%









Affinity selection of CD3+CD4+ and CD3+CD8+ cells from an apheresis product was specified in an example trial. Table 3 summarizes the results for the trial.











TABLE 3





Item
Baseline
Preferred







Initial volume
300 mL



Final volume
To be adjusted for activation


Total viable cells
15 B MNCs


Viable CD3 + CD4+
80%
>80%


and CD3 + CD8+ cell


recovery


Purity
95% CD3 + CD4+ and
>95%



CD3 + CD8+









Label-free selection of mononucleated cells (MNC) from apheresis product was specified in an example trial. Table 4 summarizes the results for the trial.











TABLE 4





Requirement
Baseline
Preferred







Initial volume
300 mL



Final volume
To be adjusted for activation


Total viable cells
15 B MNCs (correct if T-cells)


Viable MNC recovery
80%
>80%


RBC, Platelets and
99%
>99%


Granulocyte removal


efficiency









Concentrate/Wash


The acoustophoretic technology of the present disclosure employs acoustic standing waves to concentrate, wash, and/or separate materials (such as particles or a secondary fluid) in a primary or host fluid. In particular, as shown in the upper left image (A) of FIG. 6, an ultrasonic transducer T creates an acoustic wave in the fluid, which interacts with a reflector R positioned across from the ultrasonic transducer to create an acoustic standing wave. Although a reflector R is illustrated in FIG. 6, another transducer may be used to reflect and/or generate acoustic energy to form the acoustic standing wave.


As shown in the upper right image (B) of FIG. 6, as the host fluid and material entrained in the host fluid flows upwards through the acoustic standing wave, the acoustic standing wave(s) traps (retains or holds) the material (e.g., secondary phase materials, including fluids and/or particles). The scattering of the acoustic field off the material results in a three-dimensional acoustic radiation force, which acts as a three-dimensional trapping field.


The three-dimensional acoustic radiation force generated in conjunction with an ultrasonic standing wave is referred to in the present disclosure as a three-dimensional or multi-dimensional standing wave. The acoustic radiation force is proportional to the particle volume (e.g. the cube of the radius) of the material when the particle is small relative to the wavelength. The acoustic radiation force is proportional to frequency and the acoustic contrast factor. The acoustic radiation force scales with acoustic energy (e.g. the square of the acoustic pressure amplitude). For harmonic excitation, the sinusoidal spatial variation of the force drives the particles to the stable positions within the standing waves. When the acoustic radiation force exerted on the particles is stronger than the combined effect of fluid drag force and buoyancy and gravitational force, the particle can be trapped within the acoustic standing wave field, as shown in the upper right image (B) of FIG. 6.


As can be seen in the lower left image (C) of FIG. 6, this trapping results in coalescing, clumping, aggregating, agglomerating, and/or clustering of the trapped particles. Additionally, secondary inter-particle forces, such as Bjerkness forces, aid in particle agglomeration.


As the particles continue to coalesce, clump, aggregate, agglomerate, and/or cluster the particles can grow to a certain size at which gravitational forces on the particle cluster overcome the acoustic radiation force. At such size, the particle cluster can fall out of the acoustic standing wave, as shown in the lower right image (D) of FIG. 6.


Desirably, the ultrasonic transducer(s) generate a three-dimensional or multi-dimensional acoustic standing wave in the fluid that exerts a lateral force on the suspended particles to accompany the axial force so as to increase the particle trapping capabilities of the standing wave. A planar or one-dimensional acoustic standing wave may provide acoustic forces in the axial or wave propagation direction. The lateral force in planar or one-dimensional acoustic wave generation may be two orders of magnitude smaller than the axial force. The multi-dimensional acoustic standing wave may provide a lateral force that is significantly greater than that of the planar acoustic standing wave. For example, the lateral force may be of the same order of magnitude as the axial force in the multi-dimensional acoustic standing wave.


The acoustic standing waves of the present disclosure can be used to trap particles (e.g. therapeutic cells such as T cells, B cells, NK cells) suspended in a first media in the standing wave. The first media can then be replaced with a second media (e.g., a biocompatible wash or buffer solution). Put another way, the host fluid of the particles can be replaced. Prior to replacing the first media with the second media, acoustophoresis can be used to perform a diafiltration process, as shown in FIG. 7.


In FIG. 7, starting with an initial mixture that has a low cell density of, for example, less than 1×106 cells/mL, acoustophoresis can be used to reduce the volume of the initial mixture, for example by at least 10×, including 20× and up to 100× or more. The cell concentration may be increased by at least 10×, including 20× and up to 100× or more. This initial reduction process is the first volume reduction step (A). Next, the second media (e.g., a biocompatible wash or buffer solution) can be introduced to at least partially displace the first media, as indicated in step (B). Next, the new mixture of the cells and second media can be subjected to an acoustophoretic volume reduction step (C). This series of operations is referred to as a “diafiltration” process.



FIG. 8 illustrates a single-step, push-through process in which particles/cells are trapped in the acoustic standing wave and held in the acoustophoretic device. The second media (e.g., a biocompatible wash or buffer solution) is then flowed into the acoustophoretic device to effectively “wash out” the first media. With the push-through process, more than 90%, including up to 99% or more, of the first media can be removed from the particles/cells. The push-through process can be employed as a continuous, single-use process that uses less buffer solution and less time than the diafiltration process of FIG. 7.


The piezoelectric transducer(s) of the acoustophoretic devices and systems of the present disclosure can be single monolithic piezoelectric materials or can be made from an array of piezoelectric materials. The piezoelectric material can be a ceramic material, a crystal or a polycrystal, such as PZT-8 (lead zirconate titanate). The outer surface and the inner surface are relatively large in area, and the crystal is relatively thin (e.g. about 0.040 inches for a 2 MHz crystal).


Each piezoelectric element in the piezoelectric array of the present disclosure may have individual electrical attachments (e.g. electrodes), so that each piezoelectric element can be individually controlled for frequency and power. These elements can share a common ground electrode. This configuration allows for not only the generation of a multi-dimensional acoustic standing wave, but also improved control of the acoustic standing wave. In this way, it is possible to drive individual piezoelectric elements (or multiple, separate ultrasonic transducers) with arbitrary phasing and/or different or variable frequencies and/or in various out-of-phase modes.


The concentration efficiency of the acoustophoretic device was tested. First, a T-cell suspension having a cell density of 1×106 cells/mL was used. A feed volume of between about 500 and 1000 mL was used at a flow rate of 10-15 mL/minute. The device exhibited a concentration factor of between 10× and 20×, a 90% cell recovery, and a 77% washout efficiency (e.g., the amount of the first media that was displaced by the second media) over ten minutes of testing. A 10° C. temperature increase was observed.


The concentration efficiency of the acoustophoretic device was again tested with a higher cell density. A T-cell suspension having a cell density of 5×106 cells/mL was used. A feed volume of 1000 mL was used at a flow rate of 10-15 mL/minute. The device exhibited a concentration factor of better than 10×, a 90% cell recovery, and a 77% washout efficiency over one hour of testing. A 10° C. temperature increase was again observed.


During testing, it was also discovered that active cooling of the ultrasonic transducer led to greater throughput and efficiency and more power. As such, a cooling unit was developed for actively cooling the transducer. The cooling unit includes an independent flow path that is separate from the flow path through the device containing the fluid that is to be exposed to the multi-dimensional acoustic standing wave. A coolant inlet is adapted to permit the ingress of a cooling fluid into the cooling unit. A coolant outlet serves as the outlet through which the coolant and waste heat exit the cooling unit. Here, the coolant inlet is located below the coolant outlet, though this path can be varied as desired. The coolant that flows through the cooling unit can be any appropriate fluid. For example, the coolant can be water, air, alcohol, ethanol, ammonia, or some combination thereof. The coolant can, in certain embodiments, be a liquid, gas, or gel. The coolant can be an electrically non-conductive fluid to prevent electric short-circuits. The cooling unit can be used to cool the ultrasonic transducer, which can be particularly advantageously when the device is to be run continuously with repeated processing and recirculation for an extended period of time (e.g., perfusion). The cooling unit can also be used to cool the host fluid running through the device, if desired.



FIG. 9 illustrates a four-step process (with an optional fifth step) for concentrating, washing, and separating microcarriers from cells. The first step in the process involves concentrating the microcarriers with attached cells in an acoustophoretic device, such as those described herein. The microcarriers and attached cells can be introduced to the acoustophoretic device by receiving the microcarriers with attached cells from a bioreactor. In the bioreactor, the microcarriers and cells are suspended in a first media (e.g., growth serum or preservative material used to keep the cells viable in the bioreactor). The microcarriers with attached cells surrounded by the first media are concentrated by the acoustic standing wave(s) generated in the acoustophoretic device. In a second step, the concentrated microcarriers with attached cells are then washed with a second media to remove the first media (e.g., bioreactor growth serum or preservative material). The third step is to then introduce a third media containing an enzyme into the acoustophoretic device to detach the cells from the microcarriers through enzymatic action of the second media. In particular embodiments, trypsin is the enzyme used to enzymatically detach the cells from the microcarriers. The multi-dimensional acoustic standing wave can then be used to separate the cells from the microcarriers. Usually, this is done by trapping the microcarriers in the multi-dimensional acoustic standing wave, while the detached cells pass through with the third media. However, the cells can be trapped instead, if desired. Finally, the separated cells may optionally be concentrated and washed again, as desired.


After being concentrated and trapped/held in the multi-dimensional acoustic standing wave, the microcarriers can coalesce, clump, aggregate, agglomerate, and/or cluster to a critical size at which point the microcarriers fall out of the acoustic standing wave due to enhanced gravitational settling. The microcarriers can fall into a collector of the acoustophoretic device located below the acoustic standing wave, to be removed from the flow chamber.


During testing, steps one and two of concentration and washing, respectively, were performed using red and blue food dye to make colored fluid. The concentration mixture included SoloHill microcarriers in red fluid. The wash mixture included blue fluid and was passed through the device three times. The concentrate was observed under a microscope. The concentration step was shown to have a 99% efficiency. The first media (dyed red) was progressively washed out by a second media (dyed blue) over a series of wash passes. The light absorbance data is shown in Table 5 below.












TABLE 5









Light Absorbance












Sample
Red (510 nm)
Blue (630 nm)







Feed
0.138
0.041



Wash Pass 1
0.080
0.066



Wash Pass 2
0.063
0.080



Wash Pass 3
0.054
0.084










The decrease in red light absorbance and increase in blue light absorbance evidences the feasibility of the washing steps. The testing of the acoustophoretic concentrating, washing, and separating process showed that the process is appropriate for cell therapy and microcarrier applications. The concentrate and wash steps were performed with a resulting efficiency of greater than 99%, and the separating step e.g., separating the cells from the microcarriers, was performed with greater than 98% efficiency.


In an example implementation, a concentrate-wash process was employed with a volume of 750 mL, 1.5 billion cells, prior to electroporation. A parallel example implementation had a volume of 5 L and 150 billion cells prior to electroporation. Table 6 summarizes the results for each example.













TABLE 6







Item
Baseline
Preferred









Initial volume
750 mL (3.75 L)




Final volume
10-25 mL (50-125 mL)



Total viable cells
1-1.5 B (5-7.5 B)



Viable cell recovery
80%
>80%










In an example implementation, a concentrate-wash process was employed with a volume of 1 L, 30 billion cells, post cell expansion. A parallel example implementation had a volume of 5 L and 150 billion cells post cell expansion. Table 7 summarizes the results for each of these examples.













TABLE 7







Item
Baseline
Preferred









Initial volume
1 L (5 L)




Final volume (flexible if FDS
100-200 mL



owns next stage of the process)
(500-1000 mL)



Total viable cells
30 B (150 B)



Viable cell recovery
80%
>90%










As discussed above, one or more processes in the systems for production of cell therapy products may be integrated in a single device. Referring to FIG. 10, a block diagram of a device suitable for implementing a concentrate-wash process and a cell selection process is illustrated. The illustrated device is capable of mixing and separation operations. A cell culture bag can be loaded into the device for the application of various processes. The cell culture bag includes various ports for fluidic input and/or output. The device provides an acoustic field that can retain cells and/or particles such as beads to implement an affinity selection process, a concentration process and/or a wash process. In some examples, mechanisms are provided to control the inputs, outputs and operations of the device to permit one or more processes to be automated. The automation implementation includes a controller that can operate pumps, valves, ultrasonic transducers, and other equipment used to implement the above noted processes. The automation implementation includes a user interface that's displays information related to various processes, and can accept input for a selection of parameters and/or process steps. The user interface may also provide statistical or process status data.


The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various procedures or components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and that various steps may be added, omitted, or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.


Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known processes, structures, and techniques have been shown without unnecessary detail to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations provides a description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.


Also, configurations may be described as a process that is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional stages or functions not included in the figure.


Having described several example configurations, various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. For example, the above elements may be components of a larger system, wherein other structures or processes may take precedence over or otherwise modify the application of the invention. Also, a number of operations may be undertaken before, during, or after the above elements are considered. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims
  • 1. A system for producing a therapeutic by implementing a series of processes, the system comprising: a user interface for accepting a user input for process selection;a cell processing device for performing a process on a cell suspension to obtain a processed cell suspension;an acoustic device fluidly connected to the cell processing device with a closed connection and being configured to selectively implement a concentrate process, a washing process or an affinity selection process on the cell suspension or on the processed cell suspension, wherein the acoustic device includes an ultrasonic transducer configured to generate an acoustic wave to retain cellular material or a structure to which the cellular material is bound;a chamber in the acoustic device for receiving the cellular material or a structure to which the cellular material is bound, the ultrasonic transducer being coupled to the chamber;at least a portion of the chamber near the ultrasonic transducer being vertically oriented;a valve coupled to the chamber for controlling fluid flow into or out of the chamber; anda controller coupled to the user interface, the valve and the ultrasonic transducer and configured to control the valve and the ultrasonic transducer to implement a selected concentrate process, washing process or affinity selection process based on the user input.
  • 2. The system of claim 1, further comprising an angled wave acoustic device for fractionating the cellular material.
  • 3. The system of claim 2, wherein the angled wave acoustic device is configured to receive cellular material that is included in an apheresis product.
  • 4. The system of claim 1, wherein the acoustic device further comprises a recirculation path.
  • 5. The system of claim 1, further comprising a bag coupled to the chamber.
  • 6. The system of claim 1, further comprising a closed system.
  • 7. The system of claim 1, wherein the affinity selection process includes negative selection for TCR+cells.
  • 8. The system of claim 1, further comprising another acoustic device fluidly coupled to the acoustic device to form a closed end-to-end CAR T production process.
  • 9. A cell therapy production system, comprising: a user configured to accept a user input for process selection;a number of fluidly interconnected devices that form a closed system, at least one of the devices being a cell processing device for performing a process on a cell suspension to obtain a processed cell suspension, and at least another one of the devices being an acoustic device configured to retain cells or structures for supporting cells in the cell suspension or in the processed cell suspension;the acoustic device including an ultrasonic transducer coupled to a vertically oriented chamber through which the cell suspension or the processed cell suspension is flowed; anda controller coupled to the user interface and the acoustic device and configured to control the acoustic device to implement a concentrate process, a washing process or an affinity selection process based on the user input.
  • 10. The system of claim 9, wherein the devices form and end-to-end cell therapy production system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 15/788,784, filed on Oct. 19, 2017, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/410,312, filed on Oct. 19, 2016. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 62/468,895, filed on Mar. 8, 2017. The entire disclosures of these applications are hereby fully incorporated herein by reference.

US Referenced Citations (738)
Number Name Date Kind
2473971 Ross Jun 1949 A
2535355 Froman Dec 1950 A
2667944 Crites Feb 1954 A
3004338 Turner Oct 1961 A
3372370 Cyr Mar 1968 A
3555311 Weber Jan 1971 A
4055491 Porath-Furedi Oct 1977 A
4065875 Srna Jan 1978 A
4118649 Schwartzman et al. Oct 1978 A
4125789 Van Schoiack Nov 1978 A
4158629 Sawyer Jun 1979 A
4165273 Azarov et al. Aug 1979 A
4173725 Asai et al. Nov 1979 A
4204096 Barcus et al. May 1980 A
4211949 Brisken et al. Jul 1980 A
4254661 Kossoff et al. Mar 1981 A
4320659 Lynnworth et al. Mar 1982 A
4344448 Potts Aug 1982 A
4398325 Piaget et al. Aug 1983 A
4484907 Sheeran, Jr. Nov 1984 A
4552669 Sekellick Nov 1985 A
4666595 Graham May 1987 A
4673512 Schram Jun 1987 A
4699588 Zinn et al. Oct 1987 A
4743361 Schram May 1988 A
4759775 Peterson et al. Jul 1988 A
4800316 Wang Jan 1989 A
4821838 Chen Apr 1989 A
4836684 Javorik et al. Jun 1989 A
4860993 Goode Aug 1989 A
4878210 Mitome Oct 1989 A
4983189 Peterson et al. Jan 1991 A
5059811 King et al. Oct 1991 A
5062965 Bernou et al. Nov 1991 A
5085783 Feke et al. Feb 1992 A
5164094 Stuckart Nov 1992 A
5225089 Benes et al. Jul 1993 A
5371429 Manna Dec 1994 A
5395592 Bolleman et al. Mar 1995 A
5431817 Braatz et al. Jul 1995 A
5443985 Lu et al. Aug 1995 A
5452267 Spevak Sep 1995 A
5475486 Paoli Dec 1995 A
5484537 Whitworth Jan 1996 A
5527460 Trampler et al. Jun 1996 A
5560362 Sliwa, Jr. et al. Oct 1996 A
5562823 Reeves Oct 1996 A
5594165 Madanshetty Jan 1997 A
5604301 Mountford et al. Feb 1997 A
5626767 Trampier et al. May 1997 A
5688405 Dickinson et al. Nov 1997 A
5711888 Trampler et al. Jan 1998 A
5831166 Kozuka et al. Nov 1998 A
5834871 Puskas Nov 1998 A
5844140 Seale et al. Dec 1998 A
5902489 Yasuda et al. May 1999 A
5912182 Coakley et al. Jun 1999 A
5947299 Vazquez et al. Sep 1999 A
5951456 Scott Sep 1999 A
6029518 Oeftering Feb 2000 A
6090295 Raghavarao et al. Jun 2000 A
6166231 Hoeksema Dec 2000 A
6216538 Yasuda et al. Apr 2001 B1
6205848 Faber et al. Jun 2001 B1
6273262 Yasuda et al. Aug 2001 B1
6332541 Coakley et al. Dec 2001 B1
6391653 Letcher et al. May 2002 B1
6475151 Koger et al. Nov 2002 B2
6482327 Mori et al. Nov 2002 B1
6487095 Malik et al. Nov 2002 B1
6592821 Wada et al. Jul 2003 B1
6641708 Becker et al. Nov 2003 B1
6649069 DeAngelis Nov 2003 B2
6699711 Hahn et al. Mar 2004 B1
6727451 Fuhr et al. Apr 2004 B1
6763722 Fjield et al. Jul 2004 B2
6881314 Wang et al. Apr 2005 B1
6929750 Laurell et al. Aug 2005 B2
6936151 Lock et al. Aug 2005 B1
7008540 Weavers et al. Mar 2006 B1
7010979 Scott Mar 2006 B2
7061163 Nagahara et al. Jun 2006 B2
7081192 Wang et al. Jul 2006 B1
7093482 Berndt Aug 2006 B2
7108137 Lal et al. Sep 2006 B2
7150779 Meegan, Jr. Dec 2006 B2
7186502 Vesey Mar 2007 B2
7191787 Redeker et al. Mar 2007 B1
7235227 Lanza et al. Jun 2007 B2
7322431 Ratcliff Jan 2008 B2
7331233 Scott Feb 2008 B2
7340957 Kaduchak et al. Mar 2008 B2
7373805 Hawkes et al. May 2008 B2
7541166 Belgrader et al. Jun 2009 B2
7601267 Haake et al. Oct 2009 B2
7673516 Janssen et al. Mar 2010 B2
7674630 Siversson Mar 2010 B2
7837040 Ward et al. Nov 2010 B2
7846382 Strand et al. Dec 2010 B2
7968049 Takahashi et al. Jun 2011 B2
8075786 Bagajewicz Dec 2011 B2
8080202 Takahashi et al. Dec 2011 B2
8134705 Kaduchak et al. Mar 2012 B2
8256076 Feller Sep 2012 B1
8266950 Kaduchak et al. Sep 2012 B2
8273253 Curran Sep 2012 B2
8273302 Takahashi et al. Sep 2012 B2
8309408 Ward et al. Nov 2012 B2
8319398 Vivek et al. Nov 2012 B2
8334133 Fedorov et al. Dec 2012 B2
8387803 Thorslund et al. Mar 2013 B2
8592204 Lipkens et al. Nov 2013 B2
8679338 Rietman et al. Mar 2014 B2
8691145 Dionne et al. Apr 2014 B2
8865003 Yang Oct 2014 B2
8873051 Kaduchak et al. Oct 2014 B2
8889388 Wang et al. Nov 2014 B2
9023658 Gauer et al. May 2015 B2
9272234 Lipkens et al. Mar 2016 B2
9357293 Claussen May 2016 B2
9365815 Miyazaki et al. Jun 2016 B2
9368110 Hershey et al. Jun 2016 B1
9375662 Kambayashi et al. Jun 2016 B2
9388363 Goodson et al. Jul 2016 B2
9391542 Wischnewskiy Jul 2016 B2
9403114 Kusuura Aug 2016 B2
9410256 Dionne et al. Aug 2016 B2
9416344 Lipkens et al. Aug 2016 B2
9421553 Dionne et al. Aug 2016 B2
9422328 Kennedy, III et al. Aug 2016 B2
9457139 Ward et al. Oct 2016 B2
9457302 Lipkens et al. Oct 2016 B2
9458450 Lipkens et al. Oct 2016 B2
9464303 Burke Oct 2016 B2
9476855 Ward et al. Oct 2016 B2
9480375 Marshall et al. Nov 2016 B2
9480935 Mariella, Jr. et al. Nov 2016 B2
9488621 Kaduchak et al. Nov 2016 B2
9504780 Spain et al. Nov 2016 B2
9512395 Lipkens et al. Dec 2016 B2
9513205 Yu et al. Dec 2016 B2
9514924 Morris et al. Dec 2016 B2
9517474 Mao et al. Dec 2016 B2
9532769 Dayton et al. Jan 2017 B2
9533241 Presz, Jr. et al. Jan 2017 B2
9550134 Lipkens et al. Jan 2017 B2
9550998 Williams Jan 2017 B2
9556271 Blumberg et al. Jan 2017 B2
9556411 Lipkens et al. Jan 2017 B2
9566352 Holmes et al. Feb 2017 B2
9567559 Lipkens et al. Feb 2017 B2
9567609 Paschon et al. Feb 2017 B2
9572897 Bancel et al. Feb 2017 B2
9573995 Schurpf et al. Feb 2017 B2
9574014 Williams et al. Feb 2017 B2
9580500 Schurpf et al. Feb 2017 B2
9587003 Bancel et al. Mar 2017 B2
9597357 Gregory et al. Mar 2017 B2
9597380 Chakraborty et al. Mar 2017 B2
9605074 Shah Mar 2017 B2
9605266 Rossi et al. Mar 2017 B2
9606086 Ding et al. Mar 2017 B2
9608547 Ding et al. Mar 2017 B2
9611465 Handa et al. Apr 2017 B2
9616090 Conway et al. Apr 2017 B2
9623348 McCarthy et al. Apr 2017 B2
9629877 Cooper et al. Apr 2017 B2
D787630 Lipkens et al. May 2017 S
9644180 Kahvejian et al. May 2017 B2
9645060 Fiering May 2017 B2
9656263 Laurell et al. May 2017 B2
9657290 Dimov et al. May 2017 B2
9662375 Jensen et al. May 2017 B2
9663756 Lipkens et al. May 2017 B1
9670477 Lipkens et al. Jun 2017 B2
9670938 Beliavsky Jun 2017 B2
9675668 Bancel et al. Jun 2017 B2
9675902 Lipkens et al. Jun 2017 B2
9675906 Lipkens et al. Jun 2017 B2
9677055 Jones et al. Jun 2017 B2
9685155 Hershey et al. Jun 2017 B2
9686096 Lipkens et al. Jun 2017 B2
9688958 Kennedy, III et al. Jun 2017 B2
9689234 Gregory et al. Jun 2017 B2
9689802 Caseres et al. Jun 2017 B2
9695063 Rietman et al. Jul 2017 B2
9695442 Guschin et al. Jul 2017 B2
9810665 Fernald et al. Nov 2017 B2
9833763 Fernald et al. Dec 2017 B2
9869618 Hoyos et al. Jan 2018 B2
9869659 Buckland et al. Jan 2018 B2
9872900 Ciaramella et al. Jan 2018 B2
9873126 Mao et al. Jan 2018 B2
9873894 Conway et al. Jan 2018 B2
9878056 Bancel et al. Jan 2018 B2
9878536 Foresti et al. Jan 2018 B2
9879087 DeSander et al. Jan 2018 B2
9990297 Conway et al. Jan 2018 B2
9907846 Morein et al. Mar 2018 B2
9908288 Harkness Mar 2018 B2
9909117 Kaduchak Mar 2018 B2
9909313 Grubbs Mar 2018 B1
9913656 Stulen Mar 2018 B2
9913866 O'Shea et al. Mar 2018 B2
9925277 Almarsson et al. Mar 2018 B2
9926382 Fischer et al. Mar 2018 B2
9937207 Gregory et al. Apr 2018 B2
9938390 Storti et al. Apr 2018 B2
9943599 Gehl et al. Apr 2018 B2
9944702 Galetto Apr 2018 B2
9944709 Galetto Apr 2018 B2
9947431 El-zahab et al. Apr 2018 B2
9994743 El-Zahab Apr 2018 B2
9974898 Spain et al. May 2018 B2
9983459 Arnold May 2018 B2
10006052 Jarjour et al. Jun 2018 B2
10045913 Warner et al. Aug 2018 B2
10046028 Gregory et al. Aug 2018 B2
10046037 Weinschenk et al. Aug 2018 B2
10047116 Morein et al. Aug 2018 B2
10047123 Weinschenk et al. Aug 2018 B2
10047124 Weinschenk et al. Aug 2018 B2
10047144 Elson et al. Aug 2018 B2
10047365 Williams Aug 2018 B2
10047451 Gaben et al. Aug 2018 B2
10047650 Abram Aug 2018 B2
10052427 Flieg et al. Aug 2018 B2
10052431 Dreschel et al. Aug 2018 B2
10052631 Ben-yakar et al. Aug 2018 B2
10071148 Weinschenk et al. Sep 2018 B2
10071383 Dionne et al. Sep 2018 B2
10072062 Collingwood et al. Sep 2018 B2
10073098 Wong et al. Sep 2018 B2
10076574 Wang et al. Sep 2018 B2
10160786 Weinschenk et al. Dec 2018 B1
10166255 Moriarity et al. Jan 2019 B2
10166323 Fiering et al. Jan 2019 B2
10167310 Esteron Jan 2019 B2
10167474 Rossi et al. Jan 2019 B2
10167478 Williams Jan 2019 B2
10175240 Mouchantat Jan 2019 B2
10190113 Forsyth Jan 2019 B2
10190137 Zhang et al. Jan 2019 B2
10195605 Reinbigler et al. Feb 2019 B2
10196608 Poirot et al. Feb 2019 B2
10196651 Conway et al. Feb 2019 B2
10196652 Conway et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201652 Dutra et al. Feb 2019 B2
10202457 Ruiz-opazo et al. Feb 2019 B2
10202762 Sollohub et al. Feb 2019 B2
10208300 Messina et al. Feb 2019 B2
10214013 Foresti et al. Feb 2019 B2
10214718 Berteau et al. Feb 2019 B2
10215760 Grove Feb 2019 B2
10221843 Locke et al. Mar 2019 B2
10224015 Hsu Mar 2019 B2
10236797 Wischnewskiy et al. Mar 2019 B2
10238365 Shiraishi Mar 2019 B2
10238741 Creusot Mar 2019 B2
10239058 Lavieu et al. Mar 2019 B2
10239948 Juillerat et al. Mar 2019 B2
10245064 Rhee et al. Apr 2019 B2
10251664 Shelton et al. Apr 2019 B2
10253296 Kahvejian et al. Apr 2019 B2
10254212 Ward et al. Apr 2019 B2
10254401 Suyama Apr 2019 B2
10258698 Hoge et al. Apr 2019 B2
10261078 Branch et al. Apr 2019 B2
10272163 Laterza et al. Apr 2019 B2
10272412 Rubio Martinez et al. Apr 2019 B2
10273283 Springer et al. Apr 2019 B2
10286007 Galetto et al. May 2019 B2
10308928 Lipkens et al. Jun 2019 B2
10316063 Weinschenk et al. Jun 2019 B1
10316101 Galetto Jun 2019 B2
10322949 Lipkens et al. Jun 2019 B2
10323065 Weinschenk et al. Jun 2019 B1
10323076 Ellsworth et al. Jun 2019 B2
10324082 Taylor et al. Jun 2019 B2
10326383 Stiebel et al. Jun 2019 B2
10334390 Bakish et al. Jun 2019 B2
20020038662 Schuler et al. Apr 2002 A1
20020134734 Campbell et al. Sep 2002 A1
20030015035 Kaduchak et al. Jan 2003 A1
20030028108 Miller et al. Feb 2003 A1
20030195496 Maguire Oct 2003 A1
20030209500 Kock et al. Nov 2003 A1
20030230535 Affeld et al. Dec 2003 A1
20040016699 Bayevsky Jan 2004 A1
20040035208 Diaz et al. Feb 2004 A1
20040057886 Zumeris et al. Mar 2004 A1
20040112841 Scott Jun 2004 A1
20040124155 Meegan, Jr. Jul 2004 A1
20040149039 Cardelius Aug 2004 A1
20050031499 Meier Feb 2005 A1
20050055136 Hofmann et al. Mar 2005 A1
20050121269 Namduri Jun 2005 A1
20050145567 Quintel et al. Jul 2005 A1
20050196725 Fu Sep 2005 A1
20050239198 Kunas Oct 2005 A1
20060037915 Strand et al. Feb 2006 A1
20060037916 Trampier Feb 2006 A1
20060050615 Swisher Mar 2006 A1
20060257956 Basset Nov 2006 A1
20070053795 Laugharn et al. Mar 2007 A1
20070138108 Hadfield et al. Jun 2007 A1
20070224676 Haq Sep 2007 A1
20070267351 Roach et al. Nov 2007 A1
20070272618 Gou et al. Nov 2007 A1
20070284299 Xu et al. Dec 2007 A1
20080011693 Li et al. Jan 2008 A1
20080067128 Hoyos et al. Mar 2008 A1
20080105625 Rosenberg et al. May 2008 A1
20080181838 Kluck Jul 2008 A1
20080217259 Siversson Sep 2008 A1
20080245709 Kaduchak et al. Oct 2008 A1
20080245745 Ward et al. Oct 2008 A1
20080264716 Kuiper Oct 2008 A1
20080272034 Ferren et al. Nov 2008 A1
20080272065 Johnson Nov 2008 A1
20080316866 Goodemote et al. Dec 2008 A1
20090029870 Ward et al. Jan 2009 A1
20090042253 Hiller et al. Feb 2009 A1
20090048805 Kaduchak et al. Feb 2009 A1
20090053686 Ward et al. Feb 2009 A1
20090087492 Johnson et al. Apr 2009 A1
20090098027 Tabata et al. Apr 2009 A1
20090104594 Webb Apr 2009 A1
20090126481 Burris May 2009 A1
20090178716 Kaduchak et al. Jul 2009 A1
20090194420 Mariella, Jr. et al. Aug 2009 A1
20090226994 Lemor et al. Sep 2009 A1
20090227042 Gauer et al. Sep 2009 A1
20090045107 Ward et al. Dec 2009 A1
20090295505 Mohammadi et al. Dec 2009 A1
20100000945 Gavalas Jan 2010 A1
20100006501 Laurell et al. Jan 2010 A1
20100078323 Takahashi et al. Apr 2010 A1
20100078384 Yang Apr 2010 A1
20100124142 Laugharn et al. May 2010 A1
20100139377 Huang et al. Jun 2010 A1
20100192693 Mudge et al. Aug 2010 A1
20100193407 Steinberg et al. Aug 2010 A1
20100206818 Leong et al. Aug 2010 A1
20100255573 Bond et al. Oct 2010 A1
20100261918 Chianelli et al. Oct 2010 A1
20100317088 Radaelli et al. Dec 2010 A1
20100323342 Gonzalez Gomez et al. Dec 2010 A1
20100330633 Walther et al. Dec 2010 A1
20110003350 Schafran et al. Jan 2011 A1
20110024335 Ward et al. Feb 2011 A1
20110071055 Belgrader Mar 2011 A1
20110092726 Clarke Apr 2011 A1
20110095225 Eckelberry et al. Apr 2011 A1
20110123392 Dionne et al. May 2011 A1
20110125024 Mueller May 2011 A1
20110146678 Ruecroft et al. Jun 2011 A1
20110154890 Holm et al. Jun 2011 A1
20110166551 Schafer Jul 2011 A1
20110189732 Weinand et al. Aug 2011 A1
20110207225 Mehta et al. Aug 2011 A1
20110245750 Lynch et al. Oct 2011 A1
20110262990 Wang et al. Oct 2011 A1
20110278218 Dionne et al. Nov 2011 A1
20110281319 Swayze et al. Nov 2011 A1
20110309020 Rietman et al. Dec 2011 A1
20120088295 Yasuda et al. Apr 2012 A1
20120145633 Polizzotti et al. Jun 2012 A1
20120161903 Thomas et al. Jun 2012 A1
20120163126 Campbell et al. Jun 2012 A1
20120175012 Goodwin et al. Jul 2012 A1
20120231504 Niazi Sep 2012 A1
20120267288 Chen et al. Oct 2012 A1
20120325727 Dionne et al. Dec 2012 A1
20120325747 Reitman et al. Dec 2012 A1
20120328477 Dionne et al. Dec 2012 A1
20120329122 Lipkens et al. Dec 2012 A1
20130017577 Arunakumari et al. Jan 2013 A1
20130115664 Khanna et al. May 2013 A1
20130175226 Coussios et al. Jul 2013 A1
20130206688 El-Naas Aug 2013 A1
20130217113 Srinivasan et al. Aug 2013 A1
20130277316 Dutra et al. Oct 2013 A1
20130277317 LoRicco et al. Oct 2013 A1
20130284271 Lipkens et al. Oct 2013 A1
20130309757 Kim Nov 2013 A1
20130316412 Schultz Nov 2013 A1
20140011240 Lipkens et al. Jan 2014 A1
20140017758 Kniep et al. Jan 2014 A1
20140033808 Ding et al. Feb 2014 A1
20140046181 Benchimol et al. Feb 2014 A1
20140102947 Baym et al. Apr 2014 A1
20140141413 Laugham, Jr. et al. May 2014 A1
20140154795 Lipkens et al. Jun 2014 A1
20140193381 Warner et al. Jul 2014 A1
20140230912 Aider et al. Aug 2014 A1
20140319077 Lipkens et al. Oct 2014 A1
20140329997 Kennedy, III et al. Nov 2014 A1
20140377834 Presz, Jr. et al. Dec 2014 A1
20150053561 Ward et al. Feb 2015 A1
20150060581 Santos et al. Mar 2015 A1
20150252317 Lipkens et al. Sep 2015 A1
20150253226 Augustsson et al. Sep 2015 A1
20150274550 Lipkens et al. Oct 2015 A1
20150321129 Lipkens et al. Nov 2015 A1
20150322397 Cornforth Nov 2015 A1
20160060615 Walther et al. Mar 2016 A1
20160089620 Lipkens et al. Mar 2016 A1
20160102284 Lipkens et al. Apr 2016 A1
20160121331 Kapur et al. May 2016 A1
20160123858 Kapur et al. May 2016 A1
20160139035 Florescu May 2016 A1
20160145563 Berteau et al. May 2016 A1
20160153249 Mitri Jun 2016 A1
20160175198 Warner et al. Jun 2016 A1
20160184790 Sinha et al. Jun 2016 A1
20160202237 Zeng et al. Jul 2016 A1
20160208213 Doyle et al. Jul 2016 A1
20160230168 Kaduchak et al. Aug 2016 A1
20160237110 Gilmanshin et al. Aug 2016 A1
20160237394 Lipkens et al. Aug 2016 A1
20160237395 Lipkens et al. Aug 2016 A1
20160252445 Yu et al. Sep 2016 A1
20160279540 Presz, Jr. et al. Sep 2016 A1
20160279551 Foucault Sep 2016 A1
20160287778 Leach et al. Oct 2016 A1
20160312168 Pizzi Oct 2016 A1
20160314868 El-Zahab et al. Oct 2016 A1
20160319270 Lipkens et al. Nov 2016 A1
20160325039 Leach et al. Nov 2016 A1
20160325206 Presz, Jr. et al. Nov 2016 A1
20160332159 Dual et al. Nov 2016 A1
20160339360 Lipkens et al. Nov 2016 A1
20160347628 Dionne et al. Dec 2016 A1
20160355776 Lipkens et al. Dec 2016 A1
20160361670 Lipkens et al. Dec 2016 A1
20160363579 Lipkens et al. Dec 2016 A1
20160368000 Dionne et al. Dec 2016 A1
20160369236 Kennedy, III Dec 2016 A1
20160370326 Kaduchak et al. Dec 2016 A9
20170000413 Clymer et al. Jan 2017 A1
20170002060 Bolen et al. Jan 2017 A1
20170002839 Burkland et al. Jan 2017 A1
20170007679 Maeder et al. Jan 2017 A1
20170008029 Lipkens et al. Jan 2017 A1
20170016025 Poirot Jan 2017 A1
20170016027 Lee et al. Jan 2017 A1
20170020926 Mata-Fink et al. Jan 2017 A1
20170029802 Lipkens et al. Feb 2017 A1
20170035866 Poirot et al. Feb 2017 A1
20170037386 Jones et al. Feb 2017 A1
20170038288 Ward et al. Feb 2017 A1
20170042770 Warner et al. Feb 2017 A1
20170044517 Lipkens et al. Feb 2017 A1
20170049949 Gilmanshin et al. Feb 2017 A1
20170056448 Glick et al. Mar 2017 A1
20170058036 Ruiz-Opazo et al. Mar 2017 A1
20170065636 Moriarty et al. Mar 2017 A1
20170066015 Lipkens et al. Mar 2017 A1
20170067021 Moriarty et al. Mar 2017 A1
20170067022 Poirot et al. Mar 2017 A1
20170072405 Mao et al. Mar 2017 A1
20170073406 Schurpf et al. Mar 2017 A1
20170073423 Juillerat et al. Mar 2017 A1
20170073638 Campana et al. Mar 2017 A1
20170073684 Rossi et al. Mar 2017 A1
20170073685 Maeder et al. Mar 2017 A1
20170080070 Weinschenk et al. Mar 2017 A1
20170080423 Dauson et al. Mar 2017 A1
20170081629 Lipkens et al. Mar 2017 A1
20170088809 Lipkens et al. Mar 2017 A1
20170088844 Williams Mar 2017 A1
20170089826 Lin Mar 2017 A1
20170096455 Baric et al. Apr 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107539 Yu et al. Apr 2017 A1
20170119820 Moriarty et al. May 2017 A1
20170128523 Ghatnekar et al. May 2017 A1
20170128857 Lipkens et al. May 2017 A1
20170130200 Moriarty et al. May 2017 A1
20170136168 Spain et al. May 2017 A1
20170137491 Matheson et al. May 2017 A1
20170137774 Lipkens et al. May 2017 A1
20170137775 Lipkens et al. May 2017 A1
20170137802 Lipkens et al. May 2017 A1
20170145094 Galetto May 2017 A1
20170151345 Shah Jun 2017 A1
20170152502 Scharenberg et al. Jun 2017 A1
20170152503 Scharenberg et al. Jun 2017 A1
20170152504 Scharenberg et al. Jun 2017 A1
20170152505 Scharenberg et al. Jun 2017 A1
20170152527 Paschon et al. Jun 2017 A1
20170152528 Zhang et al. Jun 2017 A1
20170158749 Cooper et al. Jun 2017 A1
20170159005 Lipkens et al. Jun 2017 A1
20170159007 Lipkens et al. Jun 2017 A1
20170166860 Presz, Jr. et al. Jun 2017 A1
20170166877 Bayle et al. Jun 2017 A1
20170166878 Thanos et al. Jun 2017 A9
20170166903 Zhang et al. Jun 2017 A1
20170173080 Lee et al. Jun 2017 A1
20170173128 Hoge et al. Jun 2017 A1
20170173498 Lipkens et al. Jun 2017 A9
20170175073 Lipkens et al. Jun 2017 A1
20170175125 Welstead et al. Jun 2017 A1
20170175139 Wu et al. Jun 2017 A1
20170175144 Zhang et al. Jun 2017 A1
20170175509 Abdel-Fattah et al. Jun 2017 A1
20170175720 Tang et al. Jun 2017 A1
20170183390 Springer et al. Jun 2017 A1
20170183413 Galetto Jun 2017 A1
20170183418 Galetto Jun 2017 A1
20170183420 Gregory et al. Jun 2017 A1
20170184486 Mach et al. Jun 2017 A1
20170184579 Florescu Jun 2017 A1
20170189450 Conway et al. Jul 2017 A1
20170190767 Schurpf et al. Jul 2017 A1
20170191022 Lipkens et al. Jul 2017 A1
20170232439 Suresh et al. Aug 2017 A1
20170260493 Lipkens et al. Sep 2017 A1
20170291122 Lipkens et al. Oct 2017 A1
20170374730 Flores Dec 2017 A1
20180000311 Lipkens et al. Jan 2018 A1
20180000870 Britt Jan 2018 A1
20180000910 Chakraborty et al. Jan 2018 A1
20180001011 Paschon et al. Jan 2018 A1
20180008707 Bussmer et al. Jan 2018 A1
20180009158 Harkness et al. Jan 2018 A1
20180009888 Baumeister et al. Jan 2018 A9
20180009895 Smith et al. Jan 2018 A1
20180010085 Lipkens et al. Jan 2018 A1
20180014846 Rhee Jan 2018 A1
20180015128 Britt Jan 2018 A1
20180015392 Lipkens et al. Jan 2018 A1
20180016570 Lipkens et al. Jan 2018 A1
20180016572 Tang Jan 2018 A1
20180020295 Pander et al. Jan 2018 A1
20180021379 Galetto et al. Jan 2018 A1
20180022798 Shurpf et al. Jan 2018 A1
20180028683 Wong et al. Feb 2018 A1
20180043473 Helvajian et al. Feb 2018 A1
20180049767 Gee et al. Feb 2018 A1
20180051089 Galetto et al. Feb 2018 A1
20180051265 Cooper Feb 2018 A1
20180052095 Cumbo et al. Feb 2018 A1
20180052147 Zeng Feb 2018 A1
20180055529 Messerly et al. Mar 2018 A1
20180055530 Messerly et al. Mar 2018 A1
20180055531 Messerly et al. Mar 2018 A1
20180055532 Messerly et al. Mar 2018 A1
20180055997 Cabrera et al. Mar 2018 A1
20180056095 Messerly et al. Mar 2018 A1
20180057810 Zhang et al. Mar 2018 A1
20180058439 Locke et al. Mar 2018 A1
20180066223 Lim Mar 2018 A1
20180066224 Lipkens et al. Mar 2018 A1
20180066242 Zhang Mar 2018 A1
20180067044 Kaduchak et al. Mar 2018 A1
20180071363 Ghatnekar et al. Mar 2018 A1
20180071981 Collino et al. Mar 2018 A1
20180078268 Messerly Mar 2018 A1
20180080026 Rossi et al. Mar 2018 A1
20180085743 Yavorsky et al. Mar 2018 A1
20180087044 Lipkens et al. Mar 2018 A1
20180088083 Sinha Mar 2018 A1
20180092338 Hering et al. Apr 2018 A1
20180092660 Houser et al. Apr 2018 A1
20180094022 Bracewell et al. Apr 2018 A1
20180095067 Huff et al. Apr 2018 A1
20180098785 Price et al. Apr 2018 A1
20180100134 Lim Apr 2018 A1
20180100204 O'Shea Apr 2018 A1
20180119174 Scharenberg et al. May 2018 A1
20180130491 Mathur May 2018 A1
20180136167 Smith et al. May 2018 A1
20180143138 Shreve et al. May 2018 A1
20180143167 Mziray et al. May 2018 A1
20180147245 O'shea et al. May 2018 A1
20180147576 Lavieu et al. May 2018 A1
20180148740 Conway et al. May 2018 A1
20180148763 Shimada et al. May 2018 A1
20180153946 Alemany et al. Jun 2018 A1
20180155716 Zhang et al. Jun 2018 A1
20180157107 Koyama et al. Jun 2018 A1
20180161775 Kapur et al. Jun 2018 A1
20180177490 Shiraishi Jun 2018 A1
20180178184 Holland Jun 2018 A1
20180180610 Taha et al. Jun 2018 A1
20180223256 Kim Aug 2018 A1
20180223273 Lipkens et al. Aug 2018 A1
20180223439 Lipkens et al. Aug 2018 A1
20180230433 Kokkaliaris et al. Aug 2018 A1
20180231555 Davis Aug 2018 A1
20180236103 Friedland et al. Aug 2018 A1
20180236280 Cooke Aug 2018 A1
20180237533 Juillerat et al. Aug 2018 A1
20180237768 Reik et al. Aug 2018 A1
20180237798 Duchateau et al. Aug 2018 A1
20180243382 Wang et al. Aug 2018 A1
20180243665 Lacki et al. Aug 2018 A1
20180244722 Stickel et al. Aug 2018 A1
20180246103 Lipkens et al. Aug 2018 A1
20180249688 Ayares et al. Sep 2018 A1
20180250424 Cotta-ramusino Sep 2018 A1
20180251723 Murthy Sep 2018 A1
20180251770 Friedland et al. Sep 2018 A1
20180255751 Regev et al. Sep 2018 A1
20180256922 Mittelstein et al. Sep 2018 A1
20180257042 Hester et al. Sep 2018 A1
20180257076 Weitz et al. Sep 2018 A1
20180258160 Lai et al. Sep 2018 A1
20180258955 Levasseur et al. Sep 2018 A1
20180258957 Levasseur et al. Sep 2018 A1
20180296954 Trampler et al. Oct 2018 A1
20180353614 Peters Dec 2018 A1
20180361053 Fiering et al. Dec 2018 A1
20180361383 Kapur et al. Dec 2018 A1
20180361384 Kapur et al. Dec 2018 A1
20180369816 Ai et al. Dec 2018 A1
20180371418 Yang et al. Dec 2018 A1
20190000932 Martini et al. Jan 2019 A1
20190000933 Martini et al. Jan 2019 A1
20190000947 Weinschenk et al. Jan 2019 A1
20190000959 Ciaramella et al. Jan 2019 A1
20190000982 Wang et al. Jan 2019 A1
20190002497 Stickel et al. Jan 2019 A1
20190002504 Weinschenk et al. Jan 2019 A1
20190002561 Galetto Jan 2019 A1
20190002573 Galetto Jan 2019 A1
20190002578 Brayshaw et al. Jan 2019 A1
20190002589 Bardroff et al. Jan 2019 A1
20190002890 Martini et al. Jan 2019 A1
20190004052 Herd et al. Jan 2019 A1
20190006036 Jacobs et al. Jan 2019 A1
20190008943 Poolman et al. Jan 2019 A1
20190008948 Ciaramella et al. Jan 2019 A1
20190010190 Weinschenk et al. Jan 2019 A1
20190010192 Binder et al. Jan 2019 A1
20190010471 Zhang et al. Jan 2019 A1
20190010495 Boitano et al. Jan 2019 A1
20190010514 Poirot et al. Jan 2019 A1
20190011407 Lipkens et al. Jan 2019 A9
20190015501 Ciaramella et al. Jan 2019 A1
20190016753 Jang et al. Jan 2019 A1
20190016767 Shah Jan 2019 A1
20190016781 Bolen et al. Jan 2019 A1
20190022019 Martini et al. Jan 2019 A1
20190023577 Feng et al. Jan 2019 A1
20190024114 Bauer et al. Jan 2019 A1
20190030073 Kalayoglu et al. Jan 2019 A1
20190030151 Jones et al. Jan 2019 A1
20190030533 Shachar et al. Jan 2019 A1
20190031780 Eavarone et al. Jan 2019 A1
20190031999 Suresh et al. Jan 2019 A1
20190032036 Zhang et al. Jan 2019 A1
20190032052 Zhang et al. Jan 2019 A1
20190036152 Gaben et al. Jan 2019 A1
20190036172 Gaben et al. Jan 2019 A1
20190038671 Fan et al. Feb 2019 A1
20190039060 Chien et al. Feb 2019 A1
20190040099 Brellisford et al. Feb 2019 A1
20190040117 Elson et al. Feb 2019 A1
20190040414 Wu Feb 2019 A1
20190046986 Yuan et al. Feb 2019 A1
20190048060 Conway et al. Feb 2019 A1
20190054112 Gregoire Feb 2019 A1
20190054119 Alma et al. Feb 2019 A1
20190054122 Moriarity et al. Feb 2019 A1
20190055286 Walz et al. Feb 2019 A1
20190055509 Meacham et al. Feb 2019 A1
20190056302 Berezin et al. Feb 2019 A1
20190056399 Wong et al. Feb 2019 A1
20190060363 Moriarity et al. Feb 2019 A1
20190062185 Amouzadeh Tabrizi et al. Feb 2019 A1
20190062690 Tostoes et al. Feb 2019 A1
20190062735 Welstead et al. Feb 2019 A1
20190064146 Glick et al. Feb 2019 A1
20190067554 Karrai et al. Feb 2019 A1
20190070233 Yeung et al. Mar 2019 A1
20190070528 Luthe et al. Mar 2019 A1
20190071695 Wagner et al. Mar 2019 A1
20190071717 Zhang et al. Mar 2019 A1
20190076473 Nguyen et al. Mar 2019 A1
20190076769 Meacham et al. Mar 2019 A1
20190078133 Cavanagh et al. Mar 2019 A1
20190079070 Shiffman et al. Mar 2019 A1
20190083533 Soon-shiong et al. Mar 2019 A1
20190085067 Schurpf et al. Mar 2019 A1
20190085082 Bicknell et al. Mar 2019 A1
20190085381 Neely et al. Mar 2019 A1
20190090900 Rhee et al. Mar 2019 A1
20190091683 Baudoin et al. Mar 2019 A1
20190092794 Rubio Martinez et al. Mar 2019 A1
20190092865 Ruiz-opazo et al. Mar 2019 A1
20190093097 Madison et al. Mar 2019 A1
20190094185 Athanassiadis Mar 2019 A1
20190101541 Wandall et al. Apr 2019 A1
20190105043 Jaworek et al. Apr 2019 A1
20190106039 Winton et al. Apr 2019 A1
20190106710 Zhang et al. Apr 2019 A1
20190107420 Kincel Apr 2019 A1
20190111480 Barbati et al. Apr 2019 A1
20190119387 Brett Apr 2019 A1
20190119701 Liang et al. Apr 2019 A1
20190125839 Frederick et al. May 2019 A1
20190127685 Abdel Fattah et al. May 2019 A1
20190133633 Neurohr et al. May 2019 A1
20190135942 Duthe et al. May 2019 A1
20190136261 Conway et al. May 2019 A1
20190143013 Vincent et al. May 2019 A1
20190153027 Natarajan et al. May 2019 A1
20190153106 Ruiz-opazo et al. May 2019 A1
20190160463 Ai et al. May 2019 A1
20190161540 Gearing May 2019 A1
20190167722 Soon-shiong et al. Jun 2019 A1
20190169233 Weinschenk et al. Jun 2019 A1
20190169597 Astrakhan et al. Jun 2019 A1
20190169639 Zhang et al. Jun 2019 A1
20190170745 Hu et al. Jun 2019 A1
20190173129 Gaben et al. Jun 2019 A1
20190175517 Martini et al. Jun 2019 A1
20190175651 Lee et al. Jun 2019 A1
20190177368 Weinschenk et al. Jun 2019 A1
20190177369 Weinschenk et al. Jun 2019 A1
20190183931 Alice et al. Jun 2019 A1
20190184035 Jarjour et al. Jun 2019 A1
20190184312 Liu et al. Jun 2019 A1
20190185860 Kim et al. Jun 2019 A1
20190191252 Lipkens et al. Jun 2019 A1
20190192653 Hoge et al. Jun 2019 A1
20190194049 Lindemann et al. Jun 2019 A1
20190194087 Larsen Jun 2019 A1
20190194340 Emtage et al. Jun 2019 A1
20190199312 Dasgupta et al. Jun 2019 A1
20190199322 Dasgupta et al. Jun 2019 A1
20210301459 Haverhals Sep 2021 A1
20210324318 Parietti Oct 2021 A1
Foreign Referenced Citations (438)
Number Date Country
2002236405 Sep 2002 AU
105 087 788 Nov 2015 CN
104722106 Apr 2016 CN
30 27 433 Feb 1982 DE
32 18 488 Nov 1983 DE
196 48 519 Jun 1998 DE
103 19 467 Jul 2004 DE
10 2008 006 501 Sep 2008 DE
102013224569 Jun 2014 DE
10 2014 206 823 Oct 2015 DE
0 292 470 Nov 1988 EP
0 167 406 Jul 1991 EP
0 641 606 Mar 1995 EP
1 175 931 Jan 2002 EP
1 254 669 Nov 2002 EP
1 308 724 May 2003 EP
2 209 545 Jul 2010 EP
3219800 Sep 2017 EP
270152 Jan 2018 EP
2419511 Jan 2018 EP
3068888 Jan 2018 EP
3257600 Jan 2018 EP
3274453 Jan 2018 EP
3274454 Jan 2018 EP
3275894 Jan 2018 EP
278108 Feb 2018 EP
3279315 Feb 2018 EP
3286214 Feb 2018 EP
2289535 Mar 2018 EP
2545068 Mar 2018 EP
2675540 Mar 2018 EP
2750683 Mar 2018 EP
2796102 Mar 2018 EP
3066201 Mar 2018 EP
3066998 Mar 2018 EP
3107552 Mar 2018 EP
3288660 Mar 2018 EP
3288683 Mar 2018 EP
3289362 Mar 2018 EP
3291842 Mar 2018 EP
3291852 Mar 2018 EP
3292142 Mar 2018 EP
3292195 Mar 2018 EP
3292515 Mar 2018 EP
3294343 Mar 2018 EP
3294764 Mar 2018 EP
3294857 Mar 2018 EP
3294871 Mar 2018 EP
3294888 Mar 2018 EP
3294896 Mar 2018 EP
3296302 Mar 2018 EP
3297740 Mar 2018 EP
3298046 Mar 2018 EP
3164488 Apr 2018 EP
3301115 Apr 2018 EP
3302783 Apr 2018 EP
3302789 Apr 2018 EP
3303558 Apr 2018 EP
3306310 Apr 2018 EP
2675901 May 2018 EP
2956772 May 2018 EP
3323444 May 2018 EP
3324996 May 2018 EP
3327127 May 2018 EP
3337819 Jun 2018 EP
2772196 Aug 2018 EP
2882091 Aug 2018 EP
2910568 Aug 2018 EP
3265805 Aug 2018 EP
3359676 Aug 2018 EP
3360955 Aug 2018 EP
3361252 Aug 2018 EP
3362102 Aug 2018 EP
3363456 Aug 2018 EP
3363813 Aug 2018 EP
3365062 Aug 2018 EP
3365095 Aug 2018 EP
3365441 Aug 2018 EP
3365447 Aug 2018 EP
3366696 Aug 2018 EP
3367118 Aug 2018 EP
2931892 Sep 2018 EP
3019606 Sep 2018 EP
3089800 Sep 2018 EP
3123534 Sep 2018 EP
3368528 Sep 2018 EP
3368670 Sep 2018 EP
3371295 Sep 2018 EP
3372813 Sep 2018 EP
3372814 Sep 2018 EP
2922902 Jan 2019 EP
3421975 Jan 2019 EP
3423092 Jan 2019 EP
3423580 Jan 2019 EP
3425386 Jan 2019 EP
3426271 Jan 2019 EP
3426372 Jan 2019 EP
3426375 Jan 2019 EP
3426690 Jan 2019 EP
3427815 Jan 2019 EP
3429753 Jan 2019 EP
3430050 Jan 2019 EP
3430134 Jan 2019 EP
3430146 Jan 2019 EP
3430463 Jan 2019 EP
3433363 Jan 2019 EP
3433366 Jan 2019 EP
3434774 Jan 2019 EP
3434776 Jan 2019 EP
2598533 Feb 2019 EP
2691422 Feb 2019 EP
2925431 Feb 2019 EP
3170185 Feb 2019 EP
3436030 Feb 2019 EP
3436196 Feb 2019 EP
3436575 Feb 2019 EP
3436579 Feb 2019 EP
3437740 Feb 2019 EP
3439698 Feb 2019 EP
3440191 Feb 2019 EP
3441468 Feb 2019 EP
3442598 Feb 2019 EP
3443002 Feb 2019 EP
3443084 Feb 2019 EP
3445407 Feb 2019 EP
3445848 Feb 2019 EP
3445853 Feb 2019 EP
3445856 Feb 2019 EP
2694091 Mar 2019 EP
3080260 Mar 2019 EP
3448291 Mar 2019 EP
3448995 Mar 2019 EP
3449850 Mar 2019 EP
3452133 Mar 2019 EP
3452499 Mar 2019 EP
3453406 Mar 2019 EP
3456339 Mar 2019 EP
3458081 Mar 2019 EP
3458083 Mar 2019 EP
3458104 Mar 2019 EP
3458105 Mar 2019 EP
3458107 Mar 2019 EP
3458108 Mar 2019 EP
3458590 Mar 2019 EP
3066115 Apr 2019 EP
3119807 Apr 2019 EP
3186281 Apr 2019 EP
3463433 Apr 2019 EP
3463660 Apr 2019 EP
3464198 Apr 2019 EP
3464594 Apr 2019 EP
3467276 Apr 2019 EP
3467491 Apr 2019 EP
3468225 Apr 2019 EP
3468351 Apr 2019 EP
3468594 Apr 2019 EP
3470089 Apr 2019 EP
3470519 Apr 2019 EP
3471621 Apr 2019 EP
3473707 Apr 2019 EP
2546144 May 2019 EP
3311588 May 2019 EP
3474904 May 2019 EP
3475307 May 2019 EP
3481361 May 2019 EP
3481867 May 2019 EP
2412817 Jun 2019 EP
3490562 Jun 2019 EP
3490574 Jun 2019 EP
3490694 Jun 2019 EP
3490712 Jun 2019 EP
3491124 Jun 2019 EP
3491126 Jun 2019 EP
3493836 Jun 2019 EP
3493907 Jun 2019 EP
3495376 Jun 2019 EP
3495811 Jun 2019 EP
3498846 Jun 2019 EP
3500244 Jun 2019 EP
3500271 Jun 2019 EP
3500297 Jun 2019 EP
3500659 Jun 2019 EP
3500696 Jun 2019 EP
3502137 Jun 2019 EP
3502253 Jun 2019 EP
3490801 Jun 2021 EP
2 420 510 May 2006 GB
2-290266 Nov 1990 JP
9-136090 May 1997 JP
11-90110 Apr 1999 JP
2005-249267 Sep 2005 JP
1442486 Sep 2014 KR
2037327 Jun 1995 RU
94015846 Jun 1996 RU
2067079 Sep 1996 RU
2085933 Jul 1997 RU
629496 Oct 1978 SU
WO 198707178 Dec 1987 WO
WO 8911899 Dec 1989 WO
WO 9005008 Mar 1990 WO
WO 9501214 Jan 1995 WO
WO 9734643 Sep 1997 WO
WO 1998017373 Apr 1998 WO
WO 9850133 Nov 1998 WO
WO 0041794 Jul 2000 WO
WO 02072234 Sep 2002 WO
WO 02072236 Sep 2002 WO
WO 03089567 Oct 2003 WO
WO 2004079716 Sep 2004 WO
WO 2009063198 May 2009 WO
WO 2009111276 Sep 2009 WO
WO 2009144709 Dec 2009 WO
WO 2010024753 Apr 2010 WO
WO 2010040394 Apr 2010 WO
WO 2011023949 Mar 2011 WO
WO 2011025890 Mar 2011 WO
WO 2011027146 Mar 2011 WO
2011130321 Oct 2011 WO
WO 2011131947 Oct 2011 WO
WO 2011161463 Dec 2011 WO
2013030691 Mar 2013 WO
2013043046 Mar 2013 WO
WO 2013043044 Mar 2013 WO
WO 2013043297 Mar 2013 WO
WO 2013049623 Apr 2013 WO
WO 2013055517 Apr 2013 WO
WO 2013138797 Sep 2013 WO
WO 2013148376 Oct 2013 WO
WO 2013159014 Oct 2013 WO
WO 2014014941 Jan 2014 WO
WO 2014029505 Feb 2014 WO
2014035457 Mar 2014 WO
WO 2014046605 Mar 2014 WO
WO 2014055219 Apr 2014 WO
2014083162 Jun 2014 WO
WO 2014124306 Aug 2014 WO
2014165177 Oct 2014 WO
WO 2014153651 Oct 2014 WO
WO 2015006730 Jan 2015 WO
WO 2015102528 Jul 2015 WO
2015144135 Oct 2015 WO
WO 2016004398 Jan 2016 WO
WO 2016124542 Aug 2016 WO
2016141204 Sep 2016 WO
WO 2016176663 Nov 2016 WO
2016205749 Dec 2016 WO
2016205764 Dec 2016 WO
WO 2016209082 Dec 2016 WO
2017011519 Jan 2017 WO
2017015622 Jan 2017 WO
2017021543 Feb 2017 WO
2017031476 Feb 2017 WO
WO 2017041102 Mar 2017 WO
2017066707 Apr 2017 WO
2017069965 Apr 2017 WO
2017070110 Apr 2017 WO
2017070284 Apr 2017 WO
2017070605 Apr 2017 WO
2017072131 May 2017 WO
2017075475 May 2017 WO
2017079674 May 2017 WO
2017101749 Jun 2017 WO
2017148928 Sep 2017 WO
2017152015 Sep 2017 WO
2017153038 Sep 2017 WO
2017156349 Sep 2017 WO
2017156484 Sep 2017 WO
2017157426 Sep 2017 WO
2017158339 Sep 2017 WO
2017160991 Sep 2017 WO
2017161384 Sep 2017 WO
2017161553 Sep 2017 WO
2017165826 Sep 2017 WO
2017172645 Oct 2017 WO
2017173005 Oct 2017 WO
2017173384 Oct 2017 WO
2017175145 Oct 2017 WO
2017177137 Oct 2017 WO
2017178354 Oct 2017 WO
2017180665 Oct 2017 WO
2017180786 Oct 2017 WO
2017180993 Oct 2017 WO
2017184768 Oct 2017 WO
2017186718 Nov 2017 WO
2017189308 Nov 2017 WO
2017191289 Nov 2017 WO
2017192760 Nov 2017 WO
2017193107 Nov 2017 WO
2017201328 Nov 2017 WO
2017201342 Nov 2017 WO
2017201346 Nov 2017 WO
2017201347 Nov 2017 WO
2017201348 Nov 2017 WO
2017201350 Nov 2017 WO
2017202747 Nov 2017 WO
2017202949 Nov 2017 WO
WO 20174201349 Nov 2017 WO
2017207589 Dec 2017 WO
2017214216 Dec 2017 WO
2017217870 Dec 2017 WO
2017218519 Dec 2017 WO
2017220767 Dec 2017 WO
2017222777 Dec 2017 WO
WO 2017218714 Dec 2017 WO
WO 2018009894 Jan 2018 WO
WO 2018002036 Jan 2018 WO
WO 2018005873 Jan 2018 WO
WO 2018013558 Jan 2018 WO
WO 2018013629 Jan 2018 WO
WO 2018013840 Jan 2018 WO
WO2018014174 Jan 2018 WO
WO2018015561 Jan 2018 WO
WO 20180011600 Jan 2018 WO
2018026605 Feb 2018 WO
2018026914 Feb 2018 WO
WO2018018958 Feb 2018 WO
WO2018021920 Feb 2018 WO
WO2018022158 Feb 2018 WO
WO 2018022513 Feb 2018 WO
WO2018022619 Feb 2018 WO
WO2018022651 Feb 2018 WO
WO2018022930 Feb 2018 WO
WO2018023114 Feb 2018 WO
WO2018024639 Feb 2018 WO
WO2018026644 Feb 2018 WO
WO2018026941 Feb 2018 WO
WO2018028647 Feb 2018 WO
WO 2018034343 Feb 2018 WO
WO2018034885 Feb 2018 WO
WO 2018035141 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO20180202691 Feb 2018 WO
WO2018034655 Mar 2018 WO
WO 2018038711 Mar 2018 WO
WO 2018039119 Mar 2018 WO
WO 2018039407 Mar 2018 WO
WO 2018039408 Mar 2018 WO
WO 2018039410 Mar 2018 WO
WO 2018039412 Mar 2018 WO
WO 2018039515 Mar 2018 WO
WO 2018045284 Mar 2018 WO
WO 2018049226 Mar 2018 WO
WO 2018050738 Mar 2018 WO
WO 2018057825 Mar 2018 WO
2018058275 Apr 2018 WO
WO 2018063291 Apr 2018 WO
2018091879 May 2018 WO
2018094244 May 2018 WO
WO 2018081476 May 2018 WO
WO 20180814701 May 2018 WO
2018098671 Jun 2018 WO
2018102752 Jun 2018 WO
2018106163 Jun 2018 WO
2018112145 Jun 2018 WO
2018112335 Jun 2018 WO
2018138385 Aug 2018 WO
2018140573 Aug 2018 WO
2018140845 Aug 2018 WO
2018142364 Aug 2018 WO
2018151811 Aug 2018 WO
2018151823 Aug 2018 WO
2018153772 Aug 2018 WO
2018160548 Sep 2018 WO
2018160909 Sep 2018 WO
2018160993 Sep 2018 WO
2018161017 Sep 2018 WO
2018161026 Sep 2018 WO
2018161038 Sep 2018 WO
2018161905 Sep 2018 WO
2018163183 Sep 2018 WO
2018227286 Dec 2018 WO
2018229612 Dec 2018 WO
2018231759 Dec 2018 WO
2018231990 Dec 2018 WO
2018232045 Dec 2018 WO
2018232131 Dec 2018 WO
2018234421 Dec 2018 WO
2018235228 Dec 2018 WO
2018236708 Dec 2018 WO
2018237201 Dec 2018 WO
2018237239 Dec 2018 WO
2018183966 Jan 2019 WO
2019002551 Jan 2019 WO
2019002633 Jan 2019 WO
2019005155 Jan 2019 WO
2019007869 Jan 2019 WO
2019008335 Jan 2019 WO
2019010422 Jan 2019 WO
2019018423 Jan 2019 WO
2019018491 Jan 2019 WO
2019018796 Jan 2019 WO
2019022671 Jan 2019 WO
2019023523 Jan 2019 WO
2019025661 Feb 2019 WO
2019025984 Feb 2019 WO
2019028172 Feb 2019 WO
2019032675 Feb 2019 WO
2019036382 Feb 2019 WO
2019041344 Mar 2019 WO
2019046450 Mar 2019 WO
2019048639 Mar 2019 WO
2019048666 Mar 2019 WO
2019051106 Mar 2019 WO
2019051255 Mar 2019 WO
2019051278 Mar 2019 WO
2019051316 Mar 2019 WO
2019051355 Mar 2019 WO
2019055697 Mar 2019 WO
2019055817 Mar 2019 WO
2019055896 Mar 2019 WO
2019056015 Mar 2019 WO
2019057774 Mar 2019 WO
2019058321 Mar 2019 WO
2019058326 Mar 2019 WO
2019060253 Mar 2019 WO
2019060425 Mar 2019 WO
2019060779 Mar 2019 WO
2019067015 Apr 2019 WO
2019069101 Apr 2019 WO
2019070541 Apr 2019 WO
2019070974 Apr 2019 WO
2019072889 Apr 2019 WO
2019075409 Apr 2019 WO
2019079497 Apr 2019 WO
2019079819 Apr 2019 WO
2019080898 May 2019 WO
2019081521 May 2019 WO
2019094360 May 2019 WO
2019098839 May 2019 WO
2019099619 May 2019 WO
2019099736 May 2019 WO
2019099949 May 2019 WO
2019101691 May 2019 WO
2019101956 May 2019 WO
2018215686 Jun 2019 WO
2019111250 Jun 2019 WO
2019113310 Jun 2019 WO
2019118475 Jun 2019 WO
Non-Patent Literature Citations (110)
Entry
Lab on Chip, 2012, 12, 4296-4304 (Year: 2012).
Fiering et al. SLAS Technology 2018, vol. 23 (4) 352-363. (Year: 2018).
Borenstein et al. Eurpoena Pharmaceutical Review Website Jun. 29, 2017. (Year: 2017).
Bancroft et al. Biopharma reporter Website Feb. 7, 2017. (Year: 2017).
Alvarez et al.; ShockWaves, vol. 17, No. 6, pp. 441-447, 2008.
Augustsson et al., Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells, Biomicrofluidics, Sep. 2012, 6(3):34115.
Benes et al.; Ultrasonic Separation of Suspended Particles, 2001 IEEE Ultrasonics Symposium; Oct. 7-10, 2001; pp. 649-659; Atlanta, Georgia.
Castilho et al.; Animal Cell Technology: From Biopharmaceuticals to Gene Therapy; 11—Animal Cell Separation; 2008.
Castro; Tunable gap and quantum quench dynamics in bilayer graphene; Jul. 13, 2010; Mathematica Summer School.
Chitale et al.; Understanding the Fluid Dynamics Associated with Macro Scale Ultrasonic Separators; Proceedings of Meetings on Acoustics, May 2015.
Cravotto et al.; Ultrasonics Sonochemistry, vol. 15, No. 5, pp. 898-902, 2008.
Garcia-Lopez, et al; Enhanced Acoustic Separation of Oil-Water Emulsion in Resonant Cavities. The Open Acoustics Journal. 2008, vol. 1, pp. 66-71.
Grenvall et al.; Concurrent Isolation of Lymphocytes and Granulocytes Using Prefocused Free Flow Acoustophoresis; Analytical Chemistry; vol. 87; pp. 5596-5604; 2015.
Higginson et al.; Tunable optics derived from nonlinear acoustic effects; Journal of Applied Physics; vol. 95; No. 10; pp. 5896-5904; 2004.
Hill et al.; Ultrasonic Particle Manipulation; Microfluidic Technologies for Miniaturized Analysis Systems, Jan. 2007, pp. 359-378.
Ilinskii et al.; Acoustic Radiation Force on a Sphere in Tissue; AIP Conference Proceedings; 2012.
Kuznetsova et al.; Microparticle concentration in short path length ultrasonic resonators: Roles of radiation pressure and acoustic streaming; Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, vol. 116, No. 4, Oct. 1, 2004, pp. 1956-1966, DOI: 1.1121/1.1785831.
Latt et al.; Ultrasound-membrane hybrid processes for enhancement of filtration properties; Ultrasonics sonochemistry 13.4 (2006): 321-328.
Li et al.; Electromechanical behavior of PZT-brass unimorphs; J. Am. Ceram. Soc. vol. 82; No. 7; pp. 1733-1740, 1999.
Lipkens et al.; The effect of frequency sweeping and fluid flow on particle trajectories in ultrasonic standing waves; IEEE Sensors Journal, vol. 8, No. 6, pp. 667-677, 2008.
Lipkens et al.; Frequency sweeping and fluid flow effects on particle trajectories in ultrasonic standing waves; Acoustics 08, Paris, Jun. 29-Jul. 4, 2008.
Lipkens et al.; Prediction and measurement of particle velocities in ultrasonic standing waves; J. Acoust. Soc. Am., 124 No. 4, pp. 2492 (A) 2008.
Lipkens et al.; Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves; Presented at the International Congress on Ultrasonics, Santiago; Jan. 11-17, 2009.
Lipkens et al.; Separation of bacterial spores from flowering water in macro-scale cavities by ultrasonic standing waves; submitted/uploaded to http://arxiv.org/abs/1006.5467 on Jun. 28, 2010.
Lipkens et al., Macro-scale acoustophoretic separation of lipid particles from red blood cells, The Journal of the Acoustical Society of America, vol. 133, Jun. 2, 2013, p. 045017, XP055162509, New York, NY.
Meribout et al.; An Industrial-Prototype Acoustic Array for Real-Time Emulsion Layer Detection in Oil Storage Tanks; IEEE Sensors Journal, vol. 9, No. 12, Dec. 2009.
Musiak et al.; Design of a Control System for Acoustophoretic Separation, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2013, pp. 1120-1123.
Nilsson et al.; Review of cell and particle trapping in microfluidic systems; Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118. Lund, Sweden, Analytica Chimica Acta 649, Jul. 14, 2009, pp. 141-157.
Pangu et al.; Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields; Ultrasonics 46, pp. 289-302 (2007).
phys. org. “Engineers develop revolutionary nanotech water desalination membrane.” Nov. 6, 2006. http://phys.org/news82047372.html.
Ponomarenko et al.; Density of states and zero Landau level probed through capacitance of graphene; Nature Nanotechnology Letters, Jul. 5, 2009; DOI: 10.1038/NNANO.2009.177.
“Proceedings of the Acoustics 2012 Nantes Conference,” Apr. 23-27, 2012, Nantes, France, pp. 278-282.
Ryll et al.; Performance of Small-Scale CHO Perfusion Cultures Using an Acoustic Cell Filtration Device for Cell Retention: Characterization of Separation Efficiency and Impact of Perfusion on Product Quality; Biotechnology and Bioengineering; vol. 69; Iss. 4; pp. 440-449; Aug. 2000.
Seymour et al, J. Chem. Edu., 1990, 67(9), p. 763, published Sep. 1990.
Volpin et al.; Mesh simplification with smooth surface reconstruction; Computer-Aided Design; vol. 30; No. 11; 1998.
Wang et al.; Retention and Viability Characteristics of Mammalian Cells in an Acoustically Driven Polymer Mesh; Biotechnol. Prog. 2004, pp. 384-387 (2004).
Wicklund et al.; Ultrasonic Manipulation of Single Cells; Methods in Molecular Biology; vol. 853; pp. 1777-196; 2012.
Annex to Form PCT/ISA/206—Communication Relating to the Results of the Partial International Search Report dated Jul. 18, 2013.
European Search Report of European Application No. 11769474.5 dated Sep. 5, 2013.
European Search Report of European Application No. 11796470.0 dated Jan. 5, 2016.
European Search Report of European Application No. 13760840.2, dated Feb. 4, 2016.
European Search Report of European Application No. 13721179.3 dated Mar. 23, 2016.
European Search Report for European Application No. 14749278.9 dated Jan. 13, 2017.
Extended European Search Report for European Application No. EP 12833859.7 dated Mar. 20, 2015.
Extended European Search Report for European Application No. EP 14787587.6 dated Jan. 2, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2011/032181 dated Dec. 20, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/040787 dated Feb. 27, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2012/051804 dated Nov. 16, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2013/037404 dated Jun. 21, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2013/032705 dated Jul. 26, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2013/050729 dated Sep. 25, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2013/059640 dated Feb. 18, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/015382 dated May 6, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/035557 dated Aug. 27, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/043930 dated Oct. 22, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/046412 dated Oct. 27, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/064088 dated Jan. 30, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/010595 dated Apr. 15, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/019755 dated May 4, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/030009 dated Jul. 30, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/039125 dated Sep. 30, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/053200 dated Dec. 28, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/066884, dated Mar. 22, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/024082 dated Jun. 27, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/031357 dated Jul. 26, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/038233 dated Sep. 26, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/024365 dated Oct. 13, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/041664 dated Oct. 18, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/044586 dated Oct. 21, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/049088 dated Nov. 28, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/050415 dated Nov. 28, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/037104 dated Dec. 16, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2017/015197 dated Apr. 3, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/015450 dated Apr. 10, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2016/047217 dated Apr. 11, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2016/048243 dated Apr. 20, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017788 dated May 8, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/030903 dated Jul. 19, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/025108 dated Jul. 20, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/031425 dated Aug. 30, 2017.
Sony New Release: <http://www.sony.net/SonyInfo/News/Press/201010/10-137E/index.html>.
International Search Report and Written Opinion for International Application No. PCT/US2017/031425 dated Oct. 23, 2017.
European Search Report of European Application No. 12825592.4 dated Apr. 28, 2015, 7 pages.
European Search Report of European Application No. 15847217.5 dated Oct. 15, 2018, 8 pages.
Extended European Search Report for EP Patent Application No. 19738317.7 dated Apr. 6, 2021, 6 pages.
Extended European Search Report received for European Patent Application No. 19764743.1 dated Dec. 3, 2021, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US18/63698, dated May 27, 2019, 14 pages.
International Search Report and Written Opinion for International Application No. PCT/US18/65839, dated May 16, 2019, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US19/12950, dated May 24, 2019, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US19/21492, dated Jun. 25, 2019, 16 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/057485, dated Jan. 4, 2018, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/026617, dated Jul. 4, 2018, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/31267, dated Aug. 1, 2018, 7 pages.
Ding et al., “Cell Separation Using Tilted-angle Standing Surface Acoustic Waves”, PNAS Early Edition, 2014, 6 pages.
Ensminger et al., “Ultrasonics Fundamentals”, Technologies, and Applications, 2011, 4 pages.
Evander et al., “Acoustofluidics 20: Applications in acoustic trapping”, Lab on a Chip, vol. 12, Oct. 2012, pp. 4667-4676.
Gallego-Juarez et al., “Piezoelectric ceramics and ultrasonic transducers”, Journal of Physics E: Scientific Instruments, 1989, pp. 804-816.
Ganguly et al., “Essential Physics for Radiology and Imaging”, Academic Publishers, Jan. 2016, 3 pages.
Gorenflo et al., “Characterization and optimization of acoustic filter performance by experimental design methodology”, Biotechnology Bioengineering, vol. 90, Issue 6., 2005, pp. 746-753.
Gor'kov L.P., “On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid”, Soviet Physics Doklady, vol. 6, Mar. 1962, pp. 773-775.
Greenhall et al., “Dynamic behavior of microscale particles controlled by standing bulk acoustic waves”, Applied Physics Letters. vol. 105, 144105, 2014, 5 pages.
Jin Zuwei, “Expanded Bed Absorption-Challenges and Advances in Column and Process Design”, Pharmaceutical Engineering, vol. 35 No. 1, Jan./Feb. 2015, 12 pages.
Lenshof et al., “Acoustofluidics 5: Building microfluidic acoustic resonators”, Lab Chip, 12, 2012, pp. 684-695.
Mock et al., “Abstract: 2043 Automated Lentiviral Transduction of T Cells with Cars Using the Clinimacs Prodigy”, ASH 57th Annual Meeting and Exposition, vol. 126, No. 23, 2015, 6 pages.
National Science Foundation,,“Catalyzing Commercialization: putting sound to work for challenQinQ separations”, CEP, Sep. 2015, p. 14.
Nienow et al., “A potentially scalable method for the harvesting of hMSCs from microcarriers”, Biochemical Engineering Journal, vol. 85, Apr. 15, 2014, pp. 79-88.
Shitizu et al., “A Tutorial Review on Bioprocessing Systems Engineering”, 1996, pp. 915-941.
Woodside et al., “Acoustic force distribution in resonators for ultrasonic particle separation”, vol. 44 Issue 9, Biotechnology Laboratory and Dept of Chemical and Bio-Resource Engineering, University of British Columbia, Sep. 1998, pp. 1976-1984.
Zhanqiu et al., “Culture Conditions and Types of Growth Media for Mammalian Cells (whole document)”, InTechOpen, Biomedical Tissue Culture, 2012, 27 pages.
Lilliehorn et al., “Trapping of microparticles in the near field of an ultrasonic transducer”, Ultrasonics, vol. 43, 2005, pp. 293-303.
Related Publications (1)
Number Date Country
20190276815 A1 Sep 2019 US
Provisional Applications (2)
Number Date Country
62410312 Oct 2016 US
62468895 Mar 2017 US
Continuation in Parts (1)
Number Date Country
Parent 15788784 Oct 2017 US
Child 15916270 US