Venetian-style, expandable/collapsible cellular window shades typically have tubular vanes made stiff along their length to avoid sagging when supported by spaced cords. Hinging areas between stiffened regions enable the tube to be collapsed or expanded, despite the lengthwise stiffening, and control the shape of the cell that results when the tubular vane is expanded.
The tubular vane shade requires cording which is not fore-and-aft, as in conventional Venetians for tilting fore-and-aft, but rather in-plane, for central, balanced lifting and lowering of the upper and lower portions of each cell. Further, the cords must engage either the upper or lower portion of each tubular slat-cell, with some cords engaging only uppers and others engaging only lowers. To remain on the centerplane only, the cords must pass through an opening in each slat, rather than over the slats as is possible with conventional fore-and-aft arrangements. Conventional ladder cords are not only fore-and-aft in orientation, but only support each slat from its lower surface.
For tubular-slat shades, a series of beads or other regularly-spaced attachment devices can be attached to the cords for interfacing with each slat, but a method and means are required for manufacturing the shade economically and rapidly from initially separate stacks of slats and continuous cord supplied from reels. In the U.S. Pat. No. 6,618,400 patent, for example, the cords are produced with uniformly spaced beads attached to the cord before it is supplied in reels for engagement with slats. There, beaded cords were attached to the respective upper and lower portions of each slat, but only after a full complement of slats for a complete window shade had been made. This technique required engagement features (e.g., specially shaped holes) in both top and bottom surfaces of the cells, as well as free-passage features (clearance holes) where cords and their beads are not to engage. The features on the top and bottom surfaces are typically not identical in any location, but must be aligned precisely to allow non-binding and non-wearing movements of the cords.
In practice, the manufacture of such beaded cords to the close tolerance in spacing variations required for uniform appearance and operation has proven costly. The insertion and retention of the many beads in their respective engagement features has proven difficult to achieve with certainty. These shortcomings have lead to excessive product cost and limited manufacturing speed and product acceptance.
Disclosed herein is an improved construction and associated method and implementing apparatus for a kind of Venetian-style window shade wherein the individual light-control elements, which may be called vanes or cells or slats, that in a conventional Venetian blind tilt around their long axis to control light passage, are here instead expanded and contracted to alter their light-blocking effect. In their expanded condition, such slats have a tubular or cellular form, and at their maximum expansion, come into contact with adjacent elements to form a fully closed (i.e., view-obstructing) cellular shade. Such an actuation requires that the cords which space and move the multiple individual slats must separately address and engage the upper and lower surfaces of those slats, enabling the cords to control the position of those surfaces and thereby expand and collapse the cell-slats.
The improved method of manufacture disclosed here still enables such slat-cells to be made from flat goods for economy (and adds an in-process coloring step to further lower cost and expand aesthetic range), and provides a less-costly means for separately addressing and engaging the upper and lower portions thereof with cords that are beaded after the slat-cells are fully manufactured. The present invention also includes a less-costly operating means, which nonetheless assures more perfect cell-to-cell closure, resulting in improved aesthetic value and insulating effect of the finished product.
A simplified perspective view of a portion of an individual cell 16 and one set of its associated cords is shown in
Lift cords 44 are a continuation of lift cord 18 (
Lifter elements 58 (
The camber is created by passing the strips through a first straight-across slot passage that is heated to the softening-forming temperature of the stiffener, and then through a chilled and cambered (i.e., curved) slot passage that sets the newly formed shapes before release. Optionally, a forming roll set may also be added between the two slots to pre-form the hot, flat strips before they enter the chilled passage. The camber serves two purposes. First, it provides added longitudinal bending stiffness to each cell, thereby minimizing the number of pairs of support cords 50,54 needed along the length of the cells in a given window shade. Second, the matching cambers of the bottom wall of one cell with the top wall of the next lower cell permit adjacent cells to nest when in their fully expanded condition, further assuring that light-admitting straight-through gaps will not exist in that condition.
Those skilled in the art will appreciate that other cell cross-sectional profiles could be utilized, while still incorporating features of the present invention such as those disclosed in commonly-owned U.S. Pat. Nos. 5,680,891 (Prince), 5,733,632 (Marusal), 5,918,655 (Corey), 6,786,268 (Corey et al.) and 6,817,400 (Corey et al).
The gaps between strips 62 and between strips 62 and 64, which comprise unstiffened fabric 60, function as living hinges, allowing the pre-form to be folded into a tubular shape, as shown in
Following the thermoforming of the top and bottom walls, and before the necessary folding and joining step, the previously described holes are punched in the top and bottom walls 32, 34 of the still-unfolded strip. The previously described four-hole groupings of these holes are spaced at pre-determined intervals along the length of the laminated web, based upon the desired dimensions of the finished window blind.
After the hole-punching step, laminated web passes through a conventional series of guides that fold the web along at least two predetermined hinge lines into the configuration shown in
A method and apparatus for accomplishing that assembly step will now be described. The stringing of the cords is preferably accomplished by placing the necessary complement of individual cells for a particularly sized window into a vertical stack on a fixture, with the pre-formed holes in vertical alignment, just as they would be when installed in a window. The cells are initially fully collapsed, so that the height of the stack is relatively small. The plain, unbeaded cords are fed from spools located beneath the fixture, the spools being movable laterally (i.e., parallel to the longitudinal axis of the cells) as necessary to align the cords with the particular hole grouping spacing of the shade being assembled. The individual cords are fed upwardly through the aligned holes and their upper ends secured to a vertically movable top rail initially located immediately above the collapsed stack.
Next, vacuum grippers are positioned to engage the top cell of the stack and lift it along the cords and away from the remainder of the stack a distance more than the height of a fully open cell. A pair of laterally and vertically spaced crimping heads, each holding one of the C-shaped lifters 58, advances into the space created between the lifted cell and the topmost of the remaining collapsed cells of the stack. The spacing corresponds with the desired vertical distance between the two lifters for a given cell and the horizontal distance between the two lifter cords 50,54 (
This method of assembling the cells to the control cords and applying the lifters to the cords provides improved repeatability and uniformity of lifter positioning and spacing across all of the control cords. The cell-raising and top rail/control cord-raising steps can be implemented by air cylinders with precisely controlled and repeatable strokes, and the lifter-crimping mechanism can be at a constant height in the assembly apparatus, thereby assuring maximum accuracy for these important assembly steps. Furthermore, this stringing method applies the lifters or beads under uniform, as-installed, cord tension, avoiding prior art cord-beading problems wherein variances in cord stretch rates readily results in variable bead pitch and therefore unsightly non-uniform gaps between the cells or vanes.
Referring once again to the operation of the disclosed window blind, this blind differs from that disclosed in previously mentioned U.S. Pat. No. 6,786,268, for example, especially in that the expansion and collapse of the cells (together, the “actuation”) is accomplished solely by lifting the lower parts or alternately by lowering the upper parts of the cells to collapse them, rather than doing both at once. Unlike previously known and disclosed embodiments of cellular-Venetian blinds, where the tops and bottoms of the cells were moved in substantially equal but opposite amounts, to preserve the overall mass centers and thereby avoid loads in the actuator, the new hardware accepts these loads by working only on the cell bottoms, lifting them to collapse the cells for view-through between the cells, and releasing them to allow cells to settle into contact for insulation, room darkening or privacy. Lifting the lower parts to collapse the cells has the further advantage of needing no actuating forces in those cords when the cells are expanded, making complete and uniform contact between adjacent cells largely independent of the accuracy of those lifting actuator cord beads. That is, the lower edges are allowed to simply fall onto the tops of adjacent cells below, and the relaxed lifting beads pass freely into the lower cells.
In practice, this means that only one set of cords (either the top-supporting or the bottom-supporting cord) must be moved to actuate the cells. Accordingly, the tilting structures and slip clutches of U.S. Pat. No. 6,786,268 are not needed, and only a cord lock is required to maintain a selected actuation position, anywhere between fully collapsed and fully expanded. Because unbeaded cords to which lifting/supporting elements are applied during assembly to the cells (and then only to the portion of the cords that engage the cells), there is no need to perform the uneconomical step of removing beads from the portion of the cords that would pass through a cord lock. For these reasons, conventional and identical cord locks can be employed for both actuator cord 18 and lift cord 20.
In the enlarged exploded view of
As previously noted, the illustrated window blind assembly 10 of
Because the use of only one set of beaded cords to actuate the cells results in the mass center of each cell moving up and down with actuation, unlike the prior art, for longer span and therefore heavier blinds it is advantageous to reduce the force that a user must apply to the actuating cords to effect the actuation. In those circumstances, the operating force for lifting all the cell bottoms is too great for comfort (or for secure cord lock function), and it is desirable to employ an actuator cord 20 arrangement that is modified from that shown in
It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be apparent to those of skill in the art upon reading this description. The scope of the invention should be determined, not with reference to the above description or drawings, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed embodiments will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
This Application is a Non-Prov of Prov (35 USC 119(e)) application 61/029,201 filed on Feb. 15, 2008 and application 61/030,164 filed on Feb. 20, 2008.
Number | Date | Country | |
---|---|---|---|
61029201 | Feb 2008 | US | |
61030164 | Feb 2008 | US |