This disclosure relates to measuring stress and more specifically to systems and processes that measure stress in a hardened cementitious materials.
Concrete is a structural building material used in critical infrastructure around the world. When concrete fails, it can cause catastrophic results that isolate populations or expose them to hazards. In many instances, concrete fails because of its inability to support loads. Concrete's stress state is a measure of concrete's structural integrity especially when it is subject to changing loads.
The integrity of a wellbore requires competence of the materials comprising the well (casing, cement and rock) as well as the bonding between them. Wellbore cement is an important component because it is the material that is primarily responsible for providing vertical isolation along the wellbore, while also protecting the casing from potentially damaging formation fluids. It is also a particularly vulnerable component in the well system because it is an engineered material that is mixed and then formed in a very poorly controlled environment. During the operational life of a well, the cement will experience a number of cyclic pressure and temperature loads associated with activities such as drilling, stimulation, injection and production. These loads deform the cement and can produce cracks or delamination that may ultimately result in a failure of the seal between zones or, in some rare cases, all the way to the surface.
A fundamental parameter associated with the failure of a material is its stress state. Not coincidentally, stress is also a primary parameter in the design and engineering of structural systems. Considering its critical role as a structural material, cement has relatively low tensile strength and ductility. This makes knowing its stress state important when it comes to both the design and monitoring of the well system. In spite of this importance, there have been neither experimental nor field measurements of the actual stress experienced by cement in operating conditions and, in fact, there are no commercially available sensors for monitoring the stress within cement.
In
In
In operation, absorption region light is transmitted (by a source such as the laser that is not shown) through the fiber optic cable 110 embedded in the cement or concrete. Some of the incident laser light is absorbed by the alumina powder in the cement. The energy from the incident light non-radiatively de-excites down to 14400 and 14430 cm−1, which are the two emission lines known as R-lines (referred to as R1 and R2 or the R-lines) because the emission occurs at 692 nm, in the red region of E-M spectrum. These peaks shift at about ˜7.6 cm−1,/GPa of hydrostatic stress. Here, the effect of temperature at the mechanical coupling 112 is accounted and compensated for by measuring stress-free samples at the location or locations of interest and subtracting or adding the contribution representing the temperature contribution to the peak shift.
In
In
The stress sensing characteristics of some stress-measuring mediums may be compliant with one or more characteristics. For example, when a blend of alpha-alumina (α-Al2O3) comprises the stress-measuring medium, the polarized emission spectra (referred to as R1 and R2 or the R-lines) is preferably consistent to accurately measure stress variation within the stress-measuring medium when under load. Further, the cement (that is a blend of OPC and expansive admixture) is preferably slightly expanding while setting in order to maintain contact and measure the response of the load under pressure. Further, the intensity of the R-lines is preferably sufficient to receive the spectra with a high signal-to-noise ratio in a short time period, preferably, less than about one minute.
The directional stress sensor of
In operation, absorption region light is transmitted (by a source such as a laser that is not shown) through the fiber optic cable 110 embedded in the stress-measuring medium 208.
For an isotropic polycrystalline α-Al2O3, the shift in a wavenumber is related to the hydrostatic stress by the expression below, where ΔV is the wavenumber change and
ΔV=Πiiσh EQ. 1
Πi i is the piezospectroscopic (PS) coefficient, given in units of cm−1,/GPa. The PS coefficient of polycrystalline alumina is 2.46 cm−1,/GPa for the R1 line and 2.50 cm-1/GPa for the R2 line in tension and compression loading tests. In other implementations, the PS coefficient for alumina-epoxy nanocomposites is between 3.16 cm−1,/GPa and 5.63 cm−1,/GPa for the R1 line and between 2.6 cm−1,/GPa and 5.08 cm−1,/GPa for the R2 line when the volume fraction of alumina varies between about 5% and 38%.
To meet a desired spectral resolution, such as about 0.01 cm−1 at about 14430 cm−1 (which corresponds to 1.3 MPa hydrostatic stress for a PS coefficient of 7.62 cm−1,/GPa, the PS coefficient for the R2-line of polycrystalline alumina), for example, some systems maintain the signal variability of the alumina powders to be less than or close to the desired spectral resolution metric.
To meet performance criterion, stress sensing-cement may be prepared by combining OPC, an expansive mineral additive, such as a calcium sulfoaluminate cement (e.g., a calcium sulfoaluminate cement), a water-reducing admixture, such as MasterGlenium 7700, and an isotropic polycrystalline α-Al2O3 at the weight functions summarized in Table 1 below. The expansive mineral additive is added to the OPC at the level of about 15% to counteract the shrinkage of the combination during curing. The dry blend components—the OPC, the expansive materials, and the alumina may be mixed in a V-type blender. The grout preparation may be made by mixing the water and water reducer followed by addition of increasing amounts of dry blend and mixing well after each addition.
An alternate stress sensing-cement may be prepared by combining a Class H oil well cement with, an expansive mineral additive, a water-reducing admixture, and an isotropic polycrystalline α-Al2O3 with a particle size of about 80 nm at weight functions summarized in Table 2 below. The dry blend components—the class H cement, the expansive mineral additive, and alumina may be combined through a V-blender. The grout may be prepared by first mixing the water and water reducer. The API specification 10A may be followed for the preparation of the slurries using a one-quart size, bottom-drive, blade-type mixer. The dry blend may be added progressively and mixed in a commercial high shear mixer. The high shear mixer may fluidify the grout before dry blend additions. At the end of the dry blend additions, the grout may be mixed for about 30-45 seconds via a high-speed mixer.
In use as a strain gauge, several directional stress sensors may be arranged to measure strain at zero degrees, forty-five degrees, ninety degrees, etc. to render an entire stress tensor σ within a subterranean plane. The directional stress sensors may completely define the stress state at a point inside a material in the deformed state, placement, or configuration. In other words, it may define the tensor's nine components σij.
In operation, absorption region light is transmitted (by the laser source that is not shown) through the fiber optic cable 110 embedded in the cement or concrete at 406. Here, the effect of temperature at the mechanical coupling point 112 is compensated for by measuring stress free samples at the location or locations of interest and subtracting or adding the contribution representing the temperature contribution to the optical measure.
While each of the disclosed systems and processes shown in
The term “coupled” disclosed in this description may encompass both direct and indirect coupling. Thus, first and second parts are said to be coupled together when they directly contact one another, as well as when the first part couples to an intermediate part which couples either directly or via one or more additional intermediate parts to the second part. The term “substantially” or “about” encompass a range that is largely (ninety five percent or more), but not necessarily wholly, that which is specified. It encompasses all but a significant amount. When operations are responsive to or occur in response to the actions and/or steps of other operations that are occurring, those subsequent operations necessarily occur as a direct or indirect result of the preceding operation. In other words, the operations occur as a result of the preceding operations. An operation that is responsive to another operation requires more than an action (i.e., the operation's response to) merely follow the prior operation.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application is a continuation-in-part of U.S. application Ser. No. 15/675,473, filed Aug. 11, 2017, entitled Stress Sensor for Cement or Fluid Applications, and further claims priority to U.S. Application Ser. No. 62/428,569, filed Dec. 1, 2016, entitled Cement Having Stress-Indicating Properties, the entirety of both which are incorporated by reference.
This invention was made with United States government support under Contract No. DE-AC05-000R22725 awarded by the United States Department of Energy. The United States government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3778388 | Cornelius | Dec 1973 | A |
4055509 | Weimer | Oct 1977 | A |
4328038 | Briggs | May 1982 | A |
6230804 | Mueller | May 2001 | B1 |
6626243 | Go Boncan | Sep 2003 | B1 |
7270705 | Lin | Sep 2007 | B2 |
8105433 | Kishi | Jan 2012 | B2 |
8951604 | Hoffmann | Feb 2015 | B2 |
20130082191 | Raghavan | Apr 2013 | A1 |
20180015198 | Ren | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
103896533 | Jul 2014 | CN |
Number | Date | Country | |
---|---|---|---|
20180156677 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62428569 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15675473 | Aug 2017 | US |
Child | 15807950 | US |