In the drilling and completion industry, the formation of boreholes for the purpose of production or injection of fluid is common. The boreholes are used for exploration or extraction of natural resources such as hydrocarbons, oil, gas, water, and alternatively for CO2 sequestration. A tubular inserted within the borehole is used for allowing the natural resources to flow within the tubular to a surface or other location, or alternatively to inject fluids from the surface to the borehole. Opening perforations through the wall of the tubular to allow fluid flow there through after deployment of the tubular within the borehole is not uncommon. One method of opening such perforations is through ignition of ballistic devices, referred to as perforation guns. Due to the explosive nature of the guns, the art would be receptive to alternate methods of opening perforations in tubulars that do not require guns.
A cement masking system includes a tubular having a wall with at least one radial port; at least one swellable member arranged to cover the at least one port, the at least one swellable member configured to at least partially displace cement radially of the tubular during radial expansion of the at least one swellable member.
A method of masking ports in a tubular from cement, the method includes covering the ports by at least one swellable member; inserting the tubular within a borehole; cementing an annular space between the tubular and the borehole; allowing the swellable member to expand from liquid and, at least partially displacing the cement with the swellable member.
A cement masking system including a tubular having a wall with at least one radial port; at least one radially extendable member arranged to cover the at least one port, the at least one radially extendable member configured to at least partially displace cement radially of the tubular during radial expansion of the at least one radially extendable member; and, at least one shunt tube configured to allow passage of cement past the at least one radially extendable member
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The radially extendable member 38 is a swell elastomer that can increase radially while surrounding the ports 22 of the tubular 18. A swell elastomer is achieved by blending a super absorbent polymer into a base elastomer compound. When the swell elastomer is exposed to liquid, such as, but not limited to water, cement (which contains water), and/or oil, the liquid is absorbed in the polymer in the swell elastomer and the swell elastomer volume increases. The swell elastomer is used as a volumetric masking agent to substantially limit the amount of cement 34 delivered to certain areas within the borehole 12, in particular the areas in the radial vicinity of the ports 22.
With reference to
The introduction of cement 34 is shown in
The radial extension of the radially extendable member 38 displaces some more of the cement 34 as the radially extendable member 38 radially extends into contact with the wall 16. While a radial extension is disclosed, it is possible for the radially extendable member 38 to also longitudinally expand in uphole and downhole directions, and therefore the shunt length is chosen as described above so as not to be obstructed by the radially extendable member 38 when expanded. The members 38 will deploy to the swelled state substantially surrounding/enclosing the flow ports 22 of the system 10 upon exposure to liquid (such as that found in the green cement 34, cement that has not yet cured). This is shown in
Once the cement 34 has at least substantially cured in the unmasked areas (the areas not containing the deployed members 38), the system 10 is activated to move sleeves 48 and expose the ports 22 through a series of ball drops. As shown in
Once the cement 34 has cured, the result is a substantially cemented completion system 10 with a cement sheath that is absent or severely compromised in the areas adjacent to any of the flow ports 22 as a result of the deployment of the member or members 38.
Removal of the member 38, whether via the agent 50 or other treatments which chemically and/or mechanically remove the member 50, allows fluidic communication between an interior 46 of the tubular 18 and the earth formation 14. This fluid communication allows treating of the formation 14. Such treatments include fracturing, pumping proppant and acid treating, for example. Additionally, the system 10 would allow for production of fluids, such as hydrocarbons, for example, from the formation 14. The system 10 enables the use of pre-formed ports 22 within the tubular 18, as opposed to perforating the tubular 18 with perforations while within the borehole 12. Thus, perforating guns are not required.
While
Thus,
Therefore, a method and apparatus for progressive fracturing has been described using swelling elastomers as a means to keep cement out of undesirable areas during cementing operations. The system incorporates swelling elastomers as radially extendable members, and further features an additional integral conduit enabling cement flow-through.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
3273641 | Bourne | Sep 1966 | A |
5094103 | Wicks, III | Mar 1992 | A |
5515915 | Jones et al. | May 1996 | A |
6619398 | MacKenzie et al. | Sep 2003 | B2 |
6644406 | Jones | Nov 2003 | B1 |
6662873 | Nguyen et al. | Dec 2003 | B1 |
6755249 | Robison et al. | Jun 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
7243732 | Richard | Jul 2007 | B2 |
7318481 | Richard | Jan 2008 | B2 |
7392852 | Richard | Jul 2008 | B2 |
7578347 | Bosma | Aug 2009 | B2 |
7690437 | Guillot et al. | Apr 2010 | B2 |
7784532 | Sevre et al. | Aug 2010 | B2 |
7866393 | Badalamenti et al. | Jan 2011 | B2 |
8104538 | Richard et al. | Jan 2012 | B2 |
8967276 | Mazyar et al. | Mar 2015 | B2 |
20030070811 | Robison et al. | Apr 2003 | A1 |
20040168804 | Reddy | Sep 2004 | A1 |
20050205263 | Richard | Sep 2005 | A1 |
20060000617 | Harrall et al. | Jan 2006 | A1 |
20060048939 | Johnson | Mar 2006 | A1 |
20060124310 | Lopez de Cardenas et al. | Jun 2006 | A1 |
20060207765 | Hofman et al. | Sep 2006 | A1 |
20080210423 | Boney | Sep 2008 | A1 |
20080289823 | Willberg et al. | Nov 2008 | A1 |
20090014168 | Tips et al. | Jan 2009 | A1 |
20090188569 | Saltel | Jul 2009 | A1 |
20100096119 | Sevre et al. | Apr 2010 | A1 |
20100230103 | Parker | Sep 2010 | A1 |
20100300689 | McRobb et al. | Dec 2010 | A1 |
20100314111 | Karcher | Dec 2010 | A1 |
20110077324 | Ravi | Mar 2011 | A1 |
20110135953 | Xu | Jun 2011 | A1 |
20110220359 | Soliman et al. | Sep 2011 | A1 |
20110220362 | Huang | Sep 2011 | A1 |
20110226479 | Tippel et al. | Sep 2011 | A1 |
20110284229 | Radmanovich et al. | Nov 2011 | A1 |
20120048551 | Allison et al. | Mar 2012 | A1 |
20120073819 | Richard et al. | Mar 2012 | A1 |
20120175134 | Robisson et al. | Jul 2012 | A1 |
20120261127 | Zhou | Oct 2012 | A1 |
20130140043 | Swanson et al. | Jun 2013 | A1 |
20130180725 | Richard et al. | Jul 2013 | A1 |
20130199843 | Ross | Aug 2013 | A1 |
20130220635 | Greci et al. | Aug 2013 | A1 |
20140110119 | Luyster et al. | Apr 2014 | A1 |
20150027709 | Richard et al. | Jan 2015 | A1 |
20150090448 | O'Malley et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2011218707 | Sep 2011 | AU |
2011131306 | Oct 2011 | WO |
2011131307 | Oct 2011 | WO |
WO2013109408 | Jul 2013 | WO |
Entry |
---|
“FracPoint MP Sleeve with DirectConnect Ports”; Baker Hughes Incorporated; Trade Show Material, 2012; 4 pages. |
A.S. Metcalf et al., “Case Histories of Successful Acid Stimulation of Carbonate Completed With Horizontal Open Hole Wellbores”; Journal of Canadian Petroleum Technology, vol. 48, No. 6; Jun. 2006, 5 pages. |
Brooks et al. “Use of Swellable Elastomers to Enhance Cementation in Deep Water Applications” Deep Offshore Technology Conference—International in Houston, TX, Feb. 12-14, 2008, pp. 13. |
International Search Report and the Written Opinion of the International Searching Authority; PCT/US2014/044505; Oct. 27, 2014, 5 pages. |
International Search Report and the Written Opinion of the International Searching Authority; PCT/US2014/050635; Mailed Nov. 28, 2014; 13 pages. |
Miller et al., Unlocking Tight Oil: Selective Multi-Stage Fracturing in the BakkenShale, Whiting Petroleum Corporation, Baker Hughes, Sep. 21-24, 2008, SPE International 116105-MS, pp. 1-6. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration; PCT/US2013/020049; Apr. 10, 2013, 9 pages. |
PCT International Search Report and the Written Opinion of the International Searching Authority; PCT/US2014/050638; Nov. 21, 2014, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20150090449 A1 | Apr 2015 | US |