This invention relates to cementing casing in subterranean formations. In particular, this invention relates to methods for initiating circulation through the well bore to allow cement composition to flow into the well bore at low pressure. The circulation may be established in either reverse-circulation or conventional-circulation directions.
Typically, prior to cement operations, casing is inserted in a well bore. Circulation fluid fills the inner diameter (“ID”) of the casing and the casing-by-well bore annulus. For purposes of this disclosure, “circulation fluid” is defined as circulation fluid, drilling mud, and/or any other fluid typically found in precement wells. Once stagnant in the well bore, the circulation fluid has a certain gel strength that renders the circulation fluid resistive to flow initiation. Thus, a higher pumping pressure is required to initiate fluid circulation than is required once circulation is established. Further, because cement composition is typically heavier than circulation fluid, once a sufficient amount of cement composition has been pumped into the well bore, gravity will pull the cement composition down into the well bore to drive fluid circulation through the well bore.
One method of pumping cement composition into the casing-by-well bore annulus involves pumping the cement composition down the casing at the well head. The cement composition is pumped at high pressure down the ID of the casing until it reaches a casing shoe. The cement composition then exits the casing ID into the annulus through the casing shoe. The cement composition then flows up the annulus from the casing shoe. Circulation fluid is usually pumped down the casing ID behind the cement composition to drive the cement composition through the casing shoe and up the annulus. In most instances, high pressure pumps and pumping systems are required to lift the cement composition from the casing shoe in the annulus. This establishes fluid flow in a conventional-circulation direction.
Another method of pumping a cement composition into the casing-by-well bore annulus involves pumping the cement composition directly into the annulus at the well head, which is generally referred to as “reverse-circulation.” The circulation fluid flows in a reverse-circulation direction from the annulus, through the casing shoe and up through the ID of the casing where it flows out of the well head. Generally, this pumping method requires
somewhat lower pumping pressures than flowing the fluid in the conventional direction, because the weight of the cement composition in the annulus helps to drive fluid flow.
In cases where cementing operations commence after the circulation fluid in the well bore has become stagnant, the gel strength of the circulation fluid and/or drilling mud should be overcome to initiate fluid circulation through the well. In both conventional-circulation and reverse-circulation methods, a certain pump pressure should be obtained to initiate fluid circulation. Circulation should be established to allow a sufficient quantity of cement composition to flow into the well bore for the weight of the cement composition to maintain fluid circulation.
This invention relates to cementing casing in subterranean formations. In particular, this invention relates to methods for initiating reverse-circulation through the well bore to allow cement composition to flow into the well bore at low pressure.
One aspect of the invention provides a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method having the following steps: increasing the annulus fluid pressure; flowing a cement composition into the annulus at the top of the well bore; and maintaining a difference in pressure between the fluid pressure of the casing inner diameter and the fluid pressure of the annulus until enough of the cement composition has entered the annulus to drive fluid circulation by the added cement composition weight.
According to a further aspect of the invention, there is provided a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method having the following steps: decreasing the casing inner diameter fluid pressure by removing fluid from the casing inner diameter; flowing a cement composition into the annulus at the top of the well bore; and maintaining a difference in pressure between the fluid pressure of the casing inner diameter and the fluid pressure of the annulus until enough cement composition has entered the annulus to drive fluid circulation by the added cement composition weight.
Another aspect of the invention provides a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method having the following steps: depositing a gas within the fluid in the casing inner diameter, whereby a portion of the fluid in the casing inner diameter is displaced by the gas; flowing a cement composition into the annulus at the top of the well bore; and continuing the depositing of a gas within the fluid in the casing inner diameter until enough of the cement composition has entered the annulus to drive fluid circulation by the added cement composition weight.
According to still another aspect of the invention, there is provided a method of cementing a casing in a well bore, the method having the following steps: connecting a low-pressure cement composition pump to an annulus between the well bore and the casing; pumping an initial amount of a cement composition at low pressure into the annulus, whereby fluid flow in a reverse-circulation direction through a well bore annulus and the casing inner diameter is initiated; maintaining fluid flow in a reverse-circulation direction through a well bore annulus and the casing inner diameter until enough of the cement composition has entered the annulus to drive fluid circulation by the added cement composition weight; disconnecting the low-pressure cement composition pump from the annulus; and flowing an additional amount of the cement composition into the annulus to complete a cement operation.
Another aspect of the invention provides a method of cementing a casing in a well bore, wherein an annulus is defined between the casing and the well bore, the method having the following steps: connecting a circulation fluid pump to the casing inner diameter; pumping circulation fluid out of the casing inner diameter, whereby fluid flow in a reverse-circulation direction through the casing inner diameter and annulus is initiated; maintaining fluid flow in a reverse-circulation direction through a well bore annulus and the casing inner diameter until an initial amount of a cement composition has entered the annulus sufficient to drive fluid circulation by the added cement composition weight; disconnecting the low-pressure cement composition pump from the annulus; and flowing an additional amount of the cement composition into the annulus to complete a cement operation.
According to a further aspect of the invention, there is provided a well bore cementing system for initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the system having: a low-pressure cement composition pump fluidly connected to the annulus, wherein the low-pressure cement composition pump is operable to initiate reverse-circulation fluid flow in the well bore; and a cement composition container fluidly connected to the annulus, wherein a cement composition is flowable from the container into the annulus once reverse-circulation fluid flow has been established.
According to another aspect of the present invention, there is provided a well bore cementing system for initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the system having several parts including: a low-pressure pump fluidly connected to the casing inner diameter, wherein the low-pressure pump is operable to remove fluid from the casing inner diameter to initiate reverse-circulation fluid flow in the well bore; and a cement composition container fluidly connected to the annulus, wherein a cement composition is flowable from the container into the annulus once reverse-circulation fluid flow has been established.
Another aspect of the invention provides a well bore cementing system for initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the system having components as follows: a gas introducing device fluidly connected to the casing inner diameter, wherein the gas inducing device is operable to introduce gas in the casing inner diameter to initiate reverse-circulation fluid flow in the well bore; and a cement composition container fluidly connected to the annulus, wherein a cement composition is flowable from the container into the annulus once reverse-circulation fluid flow has been established.
A further aspect of the invention imparts a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method including: increasing the casing inner diameter fluid pressure at the top of the well bore; flowing a cement composition into the casing inner diameter at the top of the well bore; maintaining a difference in pressure between the fluid pressure of the casing inner diameter and the fluid pressure of the annulus until enough of the cement composition has entered the casing inner diameter to drive fluid circulation by the added cement composition weight; reducing the casing inner diameter fluid pressure at the top of the well bore while flowing a further portion of cement composition into the casing inner diameter; and pumping at a relatively higher fluid pressure the cement composition from the casing inner diameter into the annulus through a lower end of the casing.
According to still another aspect of the invention, there is provided a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method including: decreasing the annulus fluid pressure by removing fluid from the annulus; flowing a cement composition into the casing inner diameter at the top of the well bore; maintaining a difference in pressure between the fluid pressure of the casing inner diameter and the fluid pressure of the annulus until enough of the cement composition has entered the casing inner diameter to drive fluid circulation by the added cement composition weight; and pumping at a relatively higher fluid pressure the cement composition from the casing inner diameter into the annulus through a lower end of the casing.
Still another aspect of the invention offers a method of initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing, the method including: depositing a gas within the fluid in the annulus, whereby a portion of the fluid in the annulus is displaced by the gas; flowing a cement composition into the casing inner diameter at the top of the well bore; maintaining a difference in pressure between the fluid pressure of the casing inner diameter and the fluid pressure of the annulus until enough of the cement composition has entered the annulus to drive fluid circulation by the added cement composition weight; and pumping at a relatively higher fluid pressure the cement composition from the casing inner diameter into the annulus through a lower end of the casing.
According to a further aspect of the invention, there is provided a method of cementing a casing in a well bore, the method including: connecting a low-pressure cement composition pump to the casing inner diameter; pumping an initial amount of a cement composition at low pressure into the casing inner diameter, whereby fluid flow in a conventional-circulation direction through a well bore annulus and the casing inner diameter is initiated; maintaining fluid flow in a conventional-circulation direction through a well bore annulus and the casing inner diameter until enough of the cement composition has entered the casing inner diameter to drive fluid circulation by the added cement composition weight; disconnecting the low-pressure cement composition pump from the casing inner diameter; flowing an additional amount of the cement composition into the casing inner diameter; connecting a high-pressure pump to the casing inner diameter; and pumping at a relatively higher fluid pressure the cement composition from the casing inner diameter into the annulus through a lower end of the casing.
Further aspects of the invention provide a method of cementing a casing in a well bore, wherein an annulus is defined between the casing and the well bore, the method including: connecting a pump to the annulus; pumping circulation fluid out of the annulus, whereby fluid flow in a conventional-circulation direction through the casing inner diameter and annulus is initiated; flowing an initial amount of a cement composition into the casing inner diameter; maintaining fluid flow in a conventional-circulation direction through a well bore annulus and the casing inner diameter until enough of the cement composition has entered the casing inner diameter to drive fluid circulation by the added cement composition weight; disconnecting the pump from the annulus; flowing an additional amount of the cement composition into the casing inner diameter; connecting a relatively higher pressure pump to the casing inner diameter; and pumping at a relatively higher fluid pressure the cement composition from the casing inner diameter into the annulus through a lower end of the casing.
Another aspect of the invention affords a well bore cementing system for cementing a casing in the well bore, the system including: a low-pressure cement composition pump fluidly connected to the casing inner diameter, wherein the low-pressure cement composition pump is operable to initiate conventional-circulation fluid flow in the well bore; a cement composition container fluidly connected to the casing inner diameter, wherein a cement composition is flowable from the container into the casing inner diameter once conventional-circulation fluid flow has been established; and a high-pressure pump fluidly connected to the casing inner diameter, wherein the high-pressure pump is operable to pump cement composition from casing inner diameter into the annulus through a lower end of the casing.
According to yet another aspect of the invention, there is provided a well bore cementing system for initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing and for cementing the casing, the system including: a low-pressure pump fluidly connected to the annulus, wherein the low-pressure pump is operable to remove fluid from the annulus to initiate conventional-circulation fluid flow in the well bore; a cement composition container fluidly connected to the casing inner diameter, wherein a cement composition is flowable from the container into the casing inner diameter once conventional-circulation fluid flow has been established; and a high-pressure pump fluidly connected to the casing inner diameter, wherein the high-pressure pump is operable to pump cement composition from casing inner diameter into the annulus through a lower end of the casing.
A still further aspect of the invention provides a well bore cementing system for initiating fluid circulation in a well bore through a casing inner diameter and an annulus outside the casing and for cementing the casing, the system including: a gas introducing device fluidly connected to the annulus, wherein the gas inducing device is operable to introduce gas in the annulus to initiate conventional-circulation fluid flow in the well bore; a cement composition container fluidly connected to the casing inner diameter, wherein a cement composition is flowable from the container into the casing inner diameter once conventional-circulation fluid flow has been established; and a high-pressure pump fluidly connected to the casing inner diameter, wherein the high-pressure pump is operable to pump cement composition from casing inner diameter into the annulus through a lower end of the casing.
The objects, features, and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows.
The present invention is better understood by reading the following description of non-limiting embodiments with reference to the attached drawings wherein like parts of each of the several figures are identified by the same referenced characters, and which are briefly described as follows.
It is to be noted, however, that the appended drawings illustrate only a few embodiments of this invention and are therefore not to be considered limiting of its scope, as the invention encompasses equally effective embodiments.
Referring to
In this embodiment of the invention, an electric pump 11 is fluidly connected to the annulus 5 through the well head 2. The inlet side of the electric pump 11 is connected to a pump truck 9. A cement composition is mixed by the cement pump truck 9 and pumped to the electric pump 11. The electric pump 11 pumps the cement composition from the cement pump truck 11 directly into the annulus 5 through the well head 2. To overcome the gel strength of the circulation fluid in the well bore, the electric pump 11 should produce enough head pressure to drive the cement composition into the annulus 5. The electric pump 11 is used to pump a sufficient amount of cement composition into the annulus 5 until the weight of the cement composition in the annulus 5 is sufficient to maintain fluid flow in the reverse-circulation direction through the annulus 5 and the inner diameter of the casing 3. When fluid circulation is established in the reverse-circulation direction, pumping with the electric pump 11 may be discontinued, and the cement pump truck 9 may be connected directly to the annulus 5 through the well head 2. In alternative embodiments, the electric pump 11 is not disconnected, but rather a manifold is used to bypass the pump or the remainder of the cement composition is flowed through the pump with the pump turned off. Returns from the casing inner diameter are taken through the pipe 8 and deposited in the receptacle 7. A remainder of cement composition is allowed to flow into the annulus 5 until the entire annulus is full. When the cement composition reaches the casing shoe 4, the flow of cement composition is stopped and the cement composition is allowed to harden or set in the annulus 5 as is well known to persons of skill.
Depending on the particular well configuration and circumstances, a differential pressure of 0.5 psi/ft may be sufficient to overcome the gel strength of the circulation fluid. The gel strength is highly dependent on the type of fluid found in the well bore and the depth of the well bore. Where only water is found in the well bore, a differential pressure of 0.05 psi/ft may be sufficient to overcome the gel strength.
Any pump capable of pumping cement composition may be used as are available and known to persons of skill, including, but not limited to: diaphragm pumps, peristaltic pumps, roper pumps, centrifugal pumps, triplex pumps, positive displacement pumps, progressive cavity pumps, and reciprocating pumps.
An electric reciprocating, positive displacement pump may be used. These pumps utilize gearing, crankshafts and connecting rods to translate rotational motion to linear motion inside the power end. The fluid is moved by the motion of either a plunger or piston reciprocating inside the fluid end. The volume pumped per crankshaft revolution is defined by the plunger/piston diameter and stroke length. Well service pumps of this type can operate from near zero flow rate upwards to 40 BPM and at pressures up to 20,000 psi. Smaller pumps of this type will operate inside these limits and are used as car wash pumps and in industrial cleaning operations. Reciprocating positive displacement pumps can be single-acting or double-acting.
Positive displacement pumps may be powered by either a diesel or electric motor. In the oilfield service industry, the horsepower requirements range from 300 BHP up to approximately 3,000 BHP. For diesel engines, transmissions are normally used to either increase the torque output of the engine by reducing the rotational speed therefore increasing the pressure output of the pump, or by increasing the rotational speed of the engine to increase the flow rate out of the pump. These transmissions can be either manual or automatic shifting. Electric motors can also be used with positive displacement pumps. These are generally variable speed motors in order to control the discharge rate and pressure for the pump. Positive displacement pumps suitable for use with the present invention are manufactured by Halliburton Energy Services, SPM and Gardner-Denver, and National Oilwell.
Centrifugal pumps (rotodynamic pumps) may also be used with the present invention. The pumps use a rotating impeller or impellers inside a fixed housing to impart energy to the fluid. The energy is in the form of velocity changes as the fluid passes through the vanes of the impeller(s). These pumps are described as radial flow, axial flow or mixed flow and can be single or multistaged, based on the geometry and number of impellers. Typical oilfield centrifugal pumps generally operate up to 150 psi and 4,000 gpm (based on pump size and horsepower available). Centrifugal pumps suitable for use in the present invention are manufactured by Deming, Gorman-Rupp, Galigher, Durco, Worthington, Mission, Allis-Chalmers and Duncan Equipment (for Halliburton centrifugal pumps).
Progressive cavity pumps, or screw pumps, are a special type of rotary positive displacement pump that may also be used in the present invention. In these pumps, the flow through the pumping elements is axial. The liquid is forced to travel circumferentially between the rotor and the stator, thus giving the screw pump a unique axial flow pattern and low internal velocities. The typical pressures range from 50 to 5,000 pounds per square inch with flow rates as high as 8,000 gal/min. Progressive cavity pumps can come in single stage, dual stage, or multiple stage pumps with the pressure ranges increasing with each stage, wherein all of these pumps may be used in the present invention. Progressive cavity pumps suitable for use with the present invention are manufactured by Moyno, Roper, Mono-pump, and National Oilwell.
Positive displacement rotary pumps may also be used with the present invention. There are various types of positive displacement rotary pumps, including vane, gear and lobe pumps. These pumps displace a finite volume or cavity of fluid with each rotation of the rotating and stationary parts. The pump enclosure initially opens to the pump inlet and expands as the pump rotates. As rotation continues, the volume progresses through the pump to a point where it is no longer open to the pump inlet but not yet open to the pump outlet. The volume continues to rotate until the volume opens to the outlet port and the vanes or gear continues to force the volume of captured fluid out the pump. Vane and lobe pumps are rated for up to 1,000 gpm and pressures up to 125 psi. Gear pumps have about the same rate but the pressure can reach about 225 psi in an internal gear pump. Manufactures of these types of pumps suitable for use with the present invention include: Oberdorfer, Borger, Eagle pump, Tuthill, Roper, and Viking.
Depending on the pressure required to initiate well bore fluid circulation, various pumps may be connected in a series to produce higher pumping pressures.
Pipes or flexible hose, such as hose made of a rubber and metal composite, may be used to connect the electric pump to the well head. Flow meters and densitometers may also be used to monitor flow rates and the density of the cement composition. Valves or manifolds may also be included in the system to stop or restrict cement composition flow on the upstream or downstream side of the electric pump.
This invention may be used to initiate fluid flow with low pressure in conventional-circulation or reverse-circulation directions, depending on the particular application. In some applications, it is desirable to inject a cement composition into the inner diameter of the casing for later movement of cement composition into the annulus. In these applications, a slow-setting cement composition is used or a cement composition that is activated to set after it is pumped from the casing ID into the annulus. The low-pressure pumping techniques disclosed throughout this disclosure are suitable for depositing a cement composition in the inner diameter of the casing according to a conventional-circulation direction. As the cement composition is pumped or flowed into the casing ID, returns are taken from the annulus. After the low-pressure pumping techniques have been used to deposit the cement composition in the casing, high-pressure pumps are later used to pump the cement composition from the casing ID into the annulus through a casing shoe or circulation valve. For example, with reference to the system shown in
Referring to
In this embodiment, one end of a standpipe 21 is fluidly connected to the annulus 5 through the well head 2. An end of the standpipe 21 is connected via a pipe or flexible hose, such as a hose made of a rubber and metal composite, to the well head 2 or the lower end of the standpipe 21 is plugged with a stopper and a hose is connected to a coupling near the end of the standpipe. With the standpipe 21 laid horizontally on the ground or in any manageable configuration (not shown), cement composition from the cement pump truck 9 or a hopper 22 is allowed to flow into the standpipe 21. When the standpipe 21 is full of cement composition, it is then raised to a substantially vertical position as illustrated in
Depending on the configuration of the well, it may be necessary to pump more than one standpipe-volume of cement composition into the annulus 5 to initiate reverse-circulation flow. To this end, the standpipe is again horizontally positioned and recharged with more cement composition. The recharged standpipe 21 is again lifted to a vertical position to allow the cement composition to flow from the standpipe into the annulus 5 through the well head 2. This process may be repeated as many times as necessary to initiate fluid circulation in the well.
As shown in
A standpipe may also be used to initiate circulation in the conventional direction by pumping cement composition into the ID of the casing and taking returns out of the annulus.
Referring to
To initiate circulation of the fluid in the well with the cement composition, the cement composition from the cement pump truck 9 is dumped into the hopper 32. The rig pump 33 pumps the cement composition from the hopper 32 directly into the annulus 5. The cement composition in the annulus 5 drives the circulation fluid downward in the annulus 5 and up through the inner diameter of the casing 3. The rig pump 33 is used to pump cement composition until a sufficient amount of cement composition is in the annulus to maintain, by its own weight, fluid flow in a reverse-circulation direction. Depending on the particular application, the rig pump 33 may be used to initiate fluid flow in the conventional-circulation or reverse-circulation directions. As noted above, premixed, on-site mixed, and stored cement compositions may be used with the rig pump to initiate flow.
Any type of rig pump capable of pumping cement composition may be used to initiate fluid flow. Any of the pumps described above may be used with this aspect of the invention. Pipes or flexible hose, such as hose made of a rubber and metal composite, may be used to connect the rig pump 33 to the well head 2. Flow meters and densitometers may also be used to monitor flow rates and the density of the cement composition. Valves or manifolds may also be included in the system to stop or restrict cement composition flow.
Referring to
In this embodiment, a hopper 42 is connected to a siphon pump 41. The siphon pump 41 is a long section of pipe or tubing suspended in the annulus 5 from the well head 2. Any type of pipe, tubing, flexible hose, etc. known to persons of skill may be used as the siphon pump to initiate fluid flow. The siphon pump 41 is filled with cement composition prior to insertion into the annulus. Once fully inserted into the annulus 5, the siphon pump is opened to allow gravity to pull the cement composition in the siphon pump 41 down into the annulus 5. As the cement composition in the siphon pump 41 is drawn downward, additional cement composition from the hopper 42 is drawn into the siphon pump 41 from the hopper 42. As discussed previously, the siphon pump 41 may be used until an amount of cement composition sufficient to initiate reverse-circulation is pumped into the annulus. Once reverse-circulation is established, the siphon pump 41 may be withdrawn from the annulus 5 and the hopper 42 may be connected directly to the annulus 5 through the well head 2.
Alternatively, a hopper may be omitted so that the cement pump truck 9 is connected directly to the siphon pump 41. After the cement composition filled siphon pump is inserted into the annulus, the pump truck may be used to inject additional cement composition into the siphon pump at low pressure. Flow meters and densitometers may also be used to monitor flow rates and the density of the cement composition. Valves may also be included in the system to stop or restrict cement composition flow.
A siphon pump may also be used to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping to the annulus.
In an alternative embodiment of the invention, a vacuum is induced in the inner diameter of the casing 3 to draw circulating fluid out of the casing ID to enable cement composition to be pumped into the annulus at a lower-than-normal pressure to establish flow in the reverse-circulation direction. In addition to drawing circulation fluid out of the casing ID, the vacuum pump may be used to create vacuum pressure in the casing ID sufficient to cause the circulation fluid to vaporize or boil, which lowers the weight of the fluid column in the casing ID to induce circulation fluid flow in the reverse-circulation direction. In implementing these embodiments of the invention, one should recognize that high-pressure wells are susceptible to blow-out. By reducing the weight of the fluid column in the casing ID or generating a vacuum in the casing ID, the risk of blow-out is increased. Blow-out prevention techniques, as are known in the art, may be implemented to reduce this risk.
Referring to
Cement composition from the cement pump truck 9 is deposited in the hopper 52 and allowed to flow into the annulus 5. To initiate fluid flow and the reverse-circulation direction, the vacuum pump 51 draws circulation fluid out of the ID of the casing 3 and deposits the fluid in the receptacle 7. A combination of reduced pressure in the ID of the casing 3 caused by the vacuum pump 51 and increased pressure in the annulus 5 caused by cement composition from the hopper 52 initiates fluid flow in the reverse-circulation direction. Once fluid flow has been established, the vacuum pump 51 may be disengaged from the flow line 8 to allow fluid to flow directly from the ID of the casing 3 into the receptacle 7 through the flow line 8. Alternately the pump is not disengaged and is used to further assist the flow and/or simply pass through the fluids.
Any type of pump capable of drawing the circulation fluid out of the casing ID may be used to initiate fluid flow. Any of the pumps identified or described herein may by used in this aspect of the invention. In some embodiments of the invention, the vacuum pump is a pump on a vacuum truck. For example, vacuum trucks suitable for use with the invention include GapVax® Hydro-Excavator trucks having container capacities as high as 1,600 gallons and pumps that produce vacuum as great as 28″ Hg. Pipe or flexible hose, such as hose made of a rubber and metal composite, may be used to connect the vacuum pump 51 to the well head 2. Flow meters and densitometers may also be used to monitor flow rates and the density of the cement composition flowing into the annulus or the circulation fluid flowing out of the ID of the casing 3. Valves may also be included in the system to stop or restrict cement composition and/or circulation fluid flow. Also, a tail pipe or macaroni string (coiled tubing) may be inserted down the ID of the casing 3 and attached to the vacuum pump 51. Submersible pumps may also be inserted into the inner diameter of the casing to a certain depth below the surface to pump the circulation fluid out of the inner diameter of the casing. Suitable submersible pumps include those manufactured by Mono Pump and Flight ITT.
A vacuum pump may also be used to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping into the annulus. The vacuum pump is simply connected to the annulus and the cement composition is injected into the ID of the casing.
Because the Venturi jet pump 61 sucks the fluid out of the ID of the casing 3, a lower relative pressure is induced in the ID of the casing 3 whereby fluid flow in the reverse-circulation direction may be initiated. As more and more cement composition flows into the annulus 5 from the hopper 62, the weight of the cement composition in the annulus will begin to drive flow in the reverse-circulation direction. When the Venturi jet pump 61 is no longer necessary to maintain fluid flowing in the reverse-circulation direction, the Venturi jet pump 61 may be withdrawn from the ID of the casing 3. Alternatively, the Venturi jet pump 61 may be positioned at the surface on the outside of the well head 2 so as to create a vacuum pressure in the inner diameter of the casing. Where the Venturi jut pump is placed inside the inner diameter of the casing, circulation fluid at lower depths may be pulled from the casing.
The Venturi jet pump 61 may be positioned at the well head 3 or lowered into the inner diameter of the casing 4. The Venturi jet pump 61 may be lowered to any desired depth, for example, 60 to 150 feet, so long as enough suction could be supplied to break the frictional resistance and start circulation. Any type of Venturi pump capable of drawing the circulation fluid out of the casing ID may be used to initiate fluid flow. However, care should be taken in choosing a Venturi pump, because these pumps are typically capable of pulling a deep vacuum. If excessive vacuum is pulled on the fluid in the inner diameter of the casing, the pump may dehydrate the cement composition in the annulus or perhaps even collapse the casing 3.
A Venturi pump may also be used to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping into the annulus. The Venturi pump, in that case, is connected to or inserted into the annulus.
Venturi pumps or jet pumps transfer energy from a liquid or gas primary fluid to a secondary fluid, in order to produce flow. The jet pump offers significant advantages over mechanical pumps such as no moving parts, adaptability of installation, simplicity, and low cost. The primary drawback is efficiency. Venturi or jet pumps suitable for use with the present invention are manufactured by: Gould, Weatherford, and Halliburton Energy Services.
In this embodiment, the rig pump 73 is used to initiate fluid flow in the reverse-circulation direction by drawing fluid out of the ID of the casing 3. As previously described, cement composition is pumped into the hopper 72 for insertion into the annulus while the fluid is drawn out of the ID of the casing 3. Differential pressures then initiate fluid flow in the reverse-circulation direction. As soon as enough cement composition has flowed into the annulus, the weight of the cement composition will then maintain fluid flow in the reverse-circulation direction so that the rig pump 73 may be disengaged from the flow line 8. Also, a tail pipe or “macaroni string” (coiled tubing) may be inserted down the ID of the casing 3 and attached to the rig pump 73. Alternatively, the rig pump is not disconnected throughout the entire cementing operation.
Depending on the particular application, the rig pump 33 may be used to initiate fluid flow in the conventional-circulation or reverse-circulation directions. For example, the hopper 72 may be connected to the inner diameter of the casing, and the rig pump may be connected to the annulus to enable placement of the cement composition in the inner diameter of the casing for later pushing the cement composition into the annulus with a different pump. In that case, the rig pump is used to initiate conventional-circulation fluid flow by drawing circulation fluid out of the annulus. As noted above, premixed, on-site mixed, and stored cement compositions may be used with the rig pump to initiate flow.
Referring to
To initiate reverse-circulation fluid flow, fluid and/or gas is pumped from the storage tank 83 by the fluid-gas pump 84 into the fluid-gas line 81. The fluid-gas line 81 has perforations along its length for depositing fluid and/or gas at various depths in the ID of the casing 3. If fluid is pumped into the ID of the casing 3, the fluid is a gas-generating fluid that vaporizes after injection. Whether it be gas or fluid that is injected into the ID of the casing 3, vapor displaces the circulating fluid in the ID of the casing to reduce the weight of the fluid column. Because the vapor weighs significantly less than the circulation fluid in the ID of the casing 3, the vapor induces fluid flow in the reverse-circulation direction by a difference in column weight between the fluid in the ID of the casing 3 and the fluid in the annulus 5. This allows cement composition to be pumped into the annulus at lower-than-normal pressure. As previously indicated, when enough cement composition is deposited in the annulus 5 to maintain fluid flow, the fluid-gas line 81 may be withdrawn from the ID of the casing 3. Alternatively, the fluid-gas line 81 is left in the well bore throughout the entire cementing operation.
This invention may also be used to initiate fluid flow in a conventional-circulation direction. The fluid-gas line is simply inserted into the annulus rather than the inner diameter of the casing.
In an alternative embodiment of the invention, a gas under pressure is pumped into the inner diameter of the casing to displace the circulating fluid into the annulus through the casing shoe. Excess circulation fluid is taken out of the well bore at the surface from the annulus. The weight of the fluid/gas column in the inner diameter of the casing is less than the weight of the fluid column in the annulus because of the difference in fluid height. With the gas charged in the inner diameter of the casing, the cement composition is then introduced at the well head into the annulus. The pressurized gas in the inner diameter of the casing is then bled off, allowing the circulating fluid and cement composition in the annulus to reverse-circulate through the casing shoe. After the gas has bled out of the casing inner diameter, returns are then taken out of the casing ID until the cement composition is placed in the annulus.
Also, gas under pressure may similarly be pumped into the annulus to use the same method to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping into the annulus.
According to another embodiment of the invention, a circulation fluid is formulated with a gas-generating additive. In certain embodiments, the circulation fluid formulated with the gas-generating additive may function as a shock absorber. After the gas has formed in the casing ID and pushed the circulating fluid into the annulus, the operator bleeds the gas from the casing, which permits the cement composition and circulating fluid to flow down the annulus at reduced pressure. Depending on the slurry formulation, the gas formation in the casing inner diameter may take minutes, hours or days to vaporize. As long as the valve to the casing inner diameter is closed, vapor generated in the casing inner diameter will form a trapped air pocket in the top of the casing inner diameter. As more and more vapor is generated, the vapor drives fluid into the annulus and/or creates a fluid column in the casing inner diameter having a lower column height than the fluid column in the annulus. The difference in fluid column height generates a weight difference sufficient to initiate reverse-circulation upon release of the vapor in the casing inner diameter.
Gas-generating additives may also be injected into the annulus to use the same method to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping into the annulus.
Optionally, the internal casing ID can be loaded with a fluid containing a gas-generating additive that can generate a gas in situ at a desired time. When included in the present invention, the fluid contained in the casing would react causing gas to be liberated and drive the circulating fluid from the casing, into the annulus at the casing shoe, and out the annulus at the surface. Once the casing fluid has reacted, the gas is then removed or bled from the casing resulting in flow initiation on the annulus. Cement slurry then can enter the annulus and propagate fluid flow the in the reverse mode since heavier density slurry is replacing lighter density circulating fluid. Examples of gas-generating fluids include mixing a high pH water (caustic water) with the addition of azodicarbonamide to generate nitrogen gas. Also, HCl acid may be introduced into lime water to form CO2 in situ. Other gases and/or gas-generating additives also may be suitable for inclusion in the well bore fluids according to the present invention to generate a gas inside the inner diameter of the casing. Exothermic gas liberating reactions that heat the resulting gas by the reaction increase the expansion of the gas so as to further drive fluid from the inner diameter of the casing into the annulus for removal of annular circulating fluid at the well head. Where included, the gas or gas-generating additive may be added to the circulating fluid in a variety of ways, including, but not limited to, dry blending it with the hollow particles, or injecting it into the circulating fluid as a liquid suspension while the circulation fluid is being pumped into the inner diameter of the casing through the well head. In certain exemplary embodiments wherein a gas-generating additive is used, the gas-generating additive may be encapsulated, or may be used in conjunction with an inhibitor, so that the gas-generating additive does not begin to generate a gas until a desired time after placement of the circulation fluid in the inner diameter of the casing.
The timing of gas generation can be controlled by encapsulating the gas generating chemical, for example aluminum, by either encapsulating the material or by addition to the slurry gas generating inhibitors. Examples of such encasulating or gas generating materials include surfactants such as sorbitan monooleate or sorbitan trioleate, mineral oil, waxes and the like. In the case of nitrogen gas generation a combination of two chemicals may be used, one of which is a source of the gas, for example carbohydrazide, toluenesulfonyl hydrazide, and the other chemical is an oxidizer, for example ammonium persulfate and sodium chlorite. In such system, the timing of gas generation may be controlled by encapsulating one of the chemicals, for example the oxidizer. Examples of encapsulating materials include spray-drying of a latex emulsion containing a cross-linker. Such gas generating chemicals are described in U.S. Pat. Nos. 6,722,434 and 6,715,553, incorporated herein by reference.
In an alternative embodiment of the invention, gas-filled balls or spheres are dropped into the casing inner diameter to generate a gas in the circulation fluid filling the inner diameter of the casing. The spheres contain a gas and are weighted to sink in the circulation fluid. When the spheres reach a certain depth, they collapse under the hydrostatic pressure to release the gas. As more and more of the spheres release the gas, the rising gas bubbles displace circulation fluid to reduce the column weight of the gas/fluid mixture in the inner diameter of the casing. The spheres may also be designed to dissolve so as to thereby release the trapped gas. Microspheres, for example, cenospheres available from Halliburton under the trade name SPHERELITE or hollow glass beads such as SCOTCHLITE from 3M Corporation may be used with the present invention. The beads may also be made from a thermoplastic polymer, such as styrene polymer or from a thermoplastic elastomer such as poly(vinyldene chloride). Such beads may contain an organic vapor or a low boiling organic liquid.
Also, gas-filled spheres may similarly be pumped into the annulus to use the same method to initiate circulation in the conventional direction and to deposit a cement composition in the casing ID for later high-pressure pumping into the annulus.
Fluid flow in the reverse-circulation direction is initiated by pulling the swab 85 out of the casing 3 with the pipe string 86. The swab 85 opens to have a cross-sectional area approximately equal to the inside diameter of the casing. As the swab 85 is lifted, it pulls the circulation fluid toward the top of the casing 3 where it is directed from the well head 2 to the receptacle 7 via the flow line 8. As swab 85 pulls the fluid from the inner diameter of the casing, fluid flow in a reverse-circulation direction is initiated to allow the cement composition to be pumped into the annulus at low pressure.
In another embodiment of the invention, cement composition operations are assumed to begin with the well in a stagnant condition. The casing is suspended in the well bore by the well head, wherein the well head is connected to surface casing. The ID of the casing and the annulus are completely full of stagnant circulation fluid. If a hopper is connected directly to the annulus through the well head, the cement composition will not flow into the annulus due to the gel strength of the circulation fluid. Thus, in this embodiment of the invention, a certain amount of the circulation fluid is removed from the well, either by pumping the circulation fluid from the casing ID or from the annulus. With a certain amount of circulation fluid withdrawn from the well, the fluid level is reduced or lowered below the well head. With no circulation fluid to impede its flow, the cement composition freely flows from the hopper into the annulus and falls in the annulus until it contacts the circulation fluid. As more and more cement composition is flowed into the annulus, the weight of the cement composition pushes the circulation fluid down the annulus and up through the casing ID to initiate circulation in a reverse-circulation direction. An additional amount of the cement composition is flowed into the annulus to maintain circulation and to complete the cementing operation. To initiate fluid flow in the conventional-circulation direction, the cement composition may be flowed into the casing ID rather than the annulus.
The present invention may also be used to deposit cement composition at low pressure in the inner diameter of the casing in a conventional-circulation direction. Returns are taken from the annulus at the well head. Once the cement composition is deposited in the inner diameter of the casing, high pressure pumping equipment may then be attached the inner diameter of the casing through the well head to inject circulation fluid behind the cement composition. The high pressure circulation fluid drives the cement composition down through the inner diameter of the casing and out through the casing shoe and/or circulation valve to the annulus. The high pressure pumps are then used to lift the cement in the annulus to its desired position. Depending on the particular embodiment of the invention, a slow-setting cement composition may be deposited in the inner diameter of the casing by any of the low pressure methods disclosed herein, so that the cement may later be pumped at high pressure from the inner diameter of the casing to the annulus. This invention is particularly applicable where a first operator merely delivers the cement and uses the low pressure pumping equipment disclosed herein to place the cement composition in the inner diameter of the casing and a second operator later uses different high pressure equipment to pump the cement composition into the annulus.
Dry cement may be mixed at the job site with a recirculating cement mixer (RCM) to mix dry cement with water at the job site as the cement is pumped into the annulus. A low-volume mixing hopper that hydrates the cement as it is pumped may also be used. In one embodiment, dry cement is not used, but rather, an extended-set cement or settable fluid is used, such as a cement composition identified as ChannelSeal. This material may be hauled to the job site ahead of time, put into a batch tank, and then pumped into the well bore when ready. In another embodiment, the pump truck may be a vacuum truck, and fluids drawn from the well bore may be mixed with a cement composition at the job site for pumping back into the well bore.
Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2223509 | Brauer | Dec 1940 | A |
2230589 | Driscoll | Feb 1941 | A |
2407010 | Hudson | Sep 1946 | A |
2472466 | Counts et al. | Jun 1949 | A |
2647727 | Edwards | Aug 1953 | A |
2675082 | Hall | Apr 1954 | A |
2849213 | Failing | Aug 1958 | A |
2919709 | Schwegman | Jan 1960 | A |
3051246 | Clark, Jr. et al. | Aug 1962 | A |
3193010 | Bielstien | Jul 1965 | A |
3277962 | Flickinger et al. | Oct 1966 | A |
3948322 | Baker | Apr 1976 | A |
3948588 | Curington et al. | Apr 1976 | A |
3951208 | Delano | Apr 1976 | A |
4105069 | Baker | Aug 1978 | A |
4271916 | Williams | Jun 1981 | A |
4300633 | Stewart | Nov 1981 | A |
RE31190 | Detroit et al. | Mar 1983 | E |
4469174 | Freeman | Sep 1984 | A |
4519452 | Tsao et al. | May 1985 | A |
4531583 | Revett | Jul 1985 | A |
4548271 | Keller | Oct 1985 | A |
4555269 | Rao et al. | Nov 1985 | A |
4671356 | Barker et al. | Jun 1987 | A |
4676832 | Childs et al. | Jun 1987 | A |
4791988 | Trevillion | Dec 1988 | A |
4961465 | Brandell | Oct 1990 | A |
5024273 | Coone et al. | Jun 1991 | A |
5117910 | Brandell et al. | Jun 1992 | A |
5125455 | Harris et al. | Jun 1992 | A |
5133409 | Bour et al. | Jul 1992 | A |
5147565 | Bour et al. | Sep 1992 | A |
5188176 | Carpenter | Feb 1993 | A |
5213161 | King et al. | May 1993 | A |
5273112 | Schultz | Dec 1993 | A |
5297634 | Loughlin | Mar 1994 | A |
5318118 | Duell | Jun 1994 | A |
5323858 | Jones et al. | Jun 1994 | A |
5361842 | Hale et al. | Nov 1994 | A |
5484019 | Griffith | Jan 1996 | A |
5494107 | Bode | Feb 1996 | A |
5507345 | Wehunt, Jr. et al. | Apr 1996 | A |
5559086 | Dewprashad et al. | Sep 1996 | A |
5571281 | Allen | Nov 1996 | A |
5577865 | Manrique et al. | Nov 1996 | A |
5641021 | Murray et al. | Jun 1997 | A |
5647434 | Sullaway et al. | Jul 1997 | A |
5671809 | McKinzie | Sep 1997 | A |
5718292 | Heathman et al. | Feb 1998 | A |
5738171 | Szarka | Apr 1998 | A |
5749418 | Mehta et al. | May 1998 | A |
5762139 | Sullaway et al. | Jun 1998 | A |
5803168 | Lormand et al. | Sep 1998 | A |
5829526 | Rogers et al. | Nov 1998 | A |
5875844 | Chatterji et al. | Mar 1999 | A |
5890538 | Beirute et al. | Apr 1999 | A |
5897699 | Chatterji et al. | Apr 1999 | A |
5900053 | Brothers et al. | May 1999 | A |
5913364 | Sweatman | Jun 1999 | A |
5968255 | Mehta et al. | Oct 1999 | A |
5972103 | Mehta et al. | Oct 1999 | A |
6060434 | Sweatman et al. | May 2000 | A |
6063738 | Chatterji et al. | May 2000 | A |
6098710 | Rhein-Knudsen et al. | Aug 2000 | A |
6138759 | Chatterji et al. | Oct 2000 | A |
6143069 | Brothers et al. | Nov 2000 | A |
6167967 | Sweatman | Jan 2001 | B1 |
6196311 | Treece et al. | Mar 2001 | B1 |
6204214 | Singh et al. | Mar 2001 | B1 |
6244342 | Sullaway et al. | Jun 2001 | B1 |
6258757 | Sweatman et al. | Jul 2001 | B1 |
6311775 | Allamon et al. | Nov 2001 | B1 |
6318472 | Rogers et al. | Nov 2001 | B1 |
6367550 | Chatterji et al. | Apr 2002 | B1 |
6431282 | Bosma et al. | Aug 2002 | B1 |
6454001 | Thompson et al. | Sep 2002 | B1 |
6457524 | Roddy | Oct 2002 | B1 |
6467546 | Allamon et al. | Oct 2002 | B2 |
6481494 | Dusterhoft et al. | Nov 2002 | B1 |
6484804 | Allamon et al. | Nov 2002 | B2 |
6488088 | Kohli et al. | Dec 2002 | B1 |
6488089 | Bour et al. | Dec 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B2 |
6540022 | Dusterhoft et al. | Apr 2003 | B2 |
6622798 | Rogers et al. | Sep 2003 | B1 |
6666266 | Starr et al. | Dec 2003 | B2 |
6732797 | Watters et al. | May 2004 | B1 |
6758281 | Sullaway et al. | Jul 2004 | B2 |
6802374 | Edgar et al. | Oct 2004 | B2 |
6808024 | Schwendemann et al. | Oct 2004 | B2 |
6810958 | Szarka et al. | Nov 2004 | B2 |
20030000704 | Reynolds | Jan 2003 | A1 |
20030029611 | Owens | Feb 2003 | A1 |
20030072208 | Rondeau et al. | Apr 2003 | A1 |
20030192695 | Dillenbeck et al. | Oct 2003 | A1 |
20040079553 | Livingstone | Apr 2004 | A1 |
20040084182 | Edgar et al. | May 2004 | A1 |
20040099413 | Arceneaux | May 2004 | A1 |
20040104050 | Järvelä et al. | Jun 2004 | A1 |
20040104052 | Livingstone | Jun 2004 | A1 |
20040177962 | Bour | Sep 2004 | A1 |
20040231846 | Griffith et al. | Nov 2004 | A1 |
20050061546 | Hannegan | Mar 2005 | A1 |
20060016600 | Badalamenti et al. | Jan 2006 | A1 |
20060042798 | Badalamenti et al. | Mar 2006 | A1 |
20060086499 | Badalamenti et al. | Apr 2006 | A1 |
20060086502 | Reddy et al. | Apr 2006 | A1 |
20060086503 | Reddy et al. | Apr 2006 | A1 |
20060131018 | Rogers et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 419 281 | Mar 1991 | EP |
2193741 | Feb 1988 | GB |
2327442 | Jan 1999 | GB |
2348828 | Oct 2000 | GB |
1716096 | Feb 1992 | RU |
1723309 | Mar 1992 | RU |
1774986 | Nov 1992 | RU |
1778274 | Nov 1992 | RU |
1542143 | Dec 1994 | RU |
2067158 | Sep 1996 | RU |
2 086 752 | Aug 1997 | RU |
571584 | Sep 1977 | SU |
1420139 | Aug 1988 | SU |
1534183 | Jan 1990 | SU |
1758211 | Aug 1992 | SU |
WO 2004104366 | Dec 2004 | WO |
WO 2005083229 | Sep 2005 | WO |
WO 2006008490 | Jan 2006 | WO |
WO 2006064184 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060016599 A1 | Jan 2006 | US |