Cementitious exterior sheathing product with rigid support member

Information

  • Patent Grant
  • 7028436
  • Patent Number
    7,028,436
  • Date Filed
    Tuesday, November 5, 2002
    22 years ago
  • Date Issued
    Tuesday, April 18, 2006
    18 years ago
Abstract
Cementitious exterior sheathing products are provided which include a rigid support member affixed to a cementitious layer. The rigid support member includes at least one nailing flange disposed along one of its lateral sides for allowing the sheathing product to be affixed to an exterior wall of a building. Preferred mechanical and adhesive bonding techniques are suggested for combining the cementitious layer and rigid support member together to form an integrated product. Such products are lighter in weight and are more crack resistant than currently available fiber cement trim boards.
Description
FIELD OF THE INVENTION

This invention relates to exterior sheathing products which incorporate cementitious materials, and especially, fiber cement sheathing which is lighter and more resistant to cracking when fastened to the exterior walls of buildings.


BACKGROUND OF THE INVENTION

Fiber cement has been used in the United States building materials industry since the 1980's. This material is used in residential and commercial construction applications as an alternative to wood for siding, roofing, backer board, trim and fascia applications. Fiber cement is fire and insect resistant, and is more durable. In fact, it was the fastest growing market segment in the exterior sheathing industry in the 1990's, and by 2005, this material is expected to gain up to 25 percent of the siding market.


Fiber cement is, technically, a composite of portland cement, aggregate (usually sand), and cellulose fibers. Cellulose fibers are added to cement to increase its toughness and crack-arresting ability. Fiber cement shingle and shake products are widely available from such sources as James Hardie, Inc. under the brand name Hardiplank® and CertainTeed Corporation under the brand name Weatherboards™. These products are produced by the Hatchek de-watering process, which results in a laminated flat sheet reinforced with a significant amount of cellulose fibers, usually about 30–35 percent by volume.


Fiber cement materials possess useful properties, but they were at one point in their history believed to be unsuitable for exterior use since they were susceptible to damage due to the effect of freeze-thaw cycles. See Harper et al., U.S. Pat. No. 4,637,860. Freeze-thaw action can cause severe deterioration to fiber cement building products. The primary cause of damage is due to the hydraulic pressures that develop as water freezes and expands in tiny fissures and pores of cementitious materials. Once these forces exceed the strength of the material, cracking occurs. During subsequent thawing, the water then moves through the cracks, expanding them further, to cause more damage when freezing occurs again.


Harper et al., U.S. Pat. No. 4,637,860, suggested that better freeze-thaw resistance could be achieved by autoclaving a cellulose fiber cement mixture with silica sand additions. These inventors also recognized that silica sand additions reduced the density of formed sheet materials to a level below that necessary to achieve sufficient strength and freeze-thaw resistance. Accordingly, the '860 patent suggested compressing the wet mixture in a press to reduce its thickness and increase its density prior to autoclaving. Such a process has been proven to be effective in increasing the interlaminar bond strength (“ILB”) of fiber cement boards when pressures approaching 30 bar are used. See Wierman et al., “The Effects of Pressure on Freeze-Thaw Durability of Fiber-Reinforced Cement Board” (September, 2002).


While improvements to the processing of fiber cement sheathing have been introduced, there have been some notable disadvantages associated with fiber cement products compared to vinyl siding products. Specifically, even with cellulose fiber reinforcement, fiber cement panels and trim boards are susceptible to cracking by nails and screws, especially along their edges. Moreover, fiber cement trim boards are far heaver than their vinyl counterparts, and can be difficult to handle.


Accordingly, there is a current need in the cementitious exterior sheathing industry for a lighter weight, more crack resistance, and therefore, more durable siding and trim panel.


SUMMARY OF THE INVENTION

The present invention provides, in a first embodiment, a cementitious exterior sheathing product, including a rigid support member having a wall-facing side and an exterior-facing side. The rigid support member also includes a pair of lateral sides, a pair of longitudinal ends, and at least one nail flange disposed along one of its lateral sides. Disposed on a portion of the exterior-facing side of the rigid support member is a cementitious layer which exhibits an aesthetic appearance.


The cementitious exterior sheathing products and fiber cement trim boards of this invention can be provided in reduced thicknesses, of about 0.31 in., for example, which would be significantly lighter, and easier to carry than the 1 inch thickness trim boards currently provided in the marketplace. By transferring the load to a rigid support member, the cementitious trim boards of this invention can be made as much as 50% lighter than currently available fiber cement trim boards. The rigid support members of this invention are preferably provided with fastener receiving holes so that they, and not the fiber cement material, absorb the stress of hammering.


The preferred rigid support members of this invention include resinous or metallic materials which act as a reinforcement to the cementitious layers. These materials, while rigid and possessing a greater flexural modulus than fiber cement, can, nevertheless, be pre-perforated, perforated by the fasteners used to hang the trim boards, or provided as a lath structure, to enable nail or screw fastening with minimal stress, as well as, provide mechanical locking or bonding between the cementitious material and the rigid support. Additionally, cement bond promoters, such as polyvinyl-acetate (“PVA”) and acrylic coatings, may be used to provide an adhesive bond between the cementitious layers and the rigid support members of this invention.


In a further embodiment of this invention, a fiber cement trim board is provided which includes an elongated rigid support member having a wall-facing side and an exterior-facing side, a pair of lateral side portions and a pair of longitudinal ends. The exterior-facing side of the rigid support member includes at least a first and a second exterior wall portion. Disposed along a first of the pair of lateral side portions of the rigid support member is a first nailing flange, and a fiber cement layer is disposed on a portion of the exterior-facing side of the rigid support member. The fiber cement layer exhibits an aesthetic appearance. In the preferred embodiment, the fiber cement layer is a corner trim board.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:



FIG. 1: is a front perspective view of a corner trim board of this invention;



FIG. 2: is a diagrammatic, partial view of a manufacturing technique, including the de-watering of a plurality of cementitious layers;



FIG. 3: is a flow diagram of a preferred Hatchek and pressing process for manufacturing the trim board and sheathing products of this invention;



FIG. 4: is a diagrammatic front perspective view of the stacking of fiberglass molds, wet cement boards and rigid support members, prior to pressing;



FIG. 5: is a partial cross-sectional side view of a portion of the stacked structure of FIG. 4, showing the alternate layers of fiber cement, fiberglass mold and rigid support members;



FIG. 6: is a diagrammatic side view of a pressing operation; and



FIG. 7: is a diagrammatic side perspective view of a pressing operation for a corner trim board.





DETAILED DESCRIPTION OF THE INVENTION

Cementitious exterior sheathing products, such as lap siding, shingles, panels, planks, vertical siding, soffit panels, fascia, corner post, column corners and trim boards, are provided by this invention. As used herein, “cementitious” refers to hydraulically settable materials, including a hydraulically settable binder, such as hydraulic cement, gypsum hemihydrate, and calcium oxide, and water to which components such as aggregates, fibers, dispersants and a rheology-modifying agents can be selectively added to modify the properties of the mixture. The term “fiber cement” refers to a cementitious composition including portland cement, cellulose fibers and sand.


With reference to the figures, and particularly FIGS. 1–3 thereof, a process for making cementitious exterior sheathing products, such as a corner trim board 100, is disclosed. In a first embodiment of this invention, shown in FIG. 1, a corner trim board 100, is provided. The corner trim board 100 includes an elongated rigid support member 11 having a wall-facing side 20 and an exterior-facing side 10, a pair of lateral side portions and a pair of longitudinal ends. The exterior-facing side 10 includes at least a first and a second exterior wall portion 14 and 16, respectively. The corner trim board 100 further includes a first nailing flange 18 disposed along at least a first of the pair of lateral side portions, and a cementitious layer 22, preferably made from fiber cement, disposed at least on a portion of the exterior-facing side 10 of the rigid support member 11. The cementitious layer 22 exhibits an aesthetic appearance, such as a wood grain. The cementitious layer 22 can also take the shape of decorative panels, including lap and full cut designs with deep, authentic textures, such as lap shingles, random square straight edges, random square staggered edges, half rounds, and octagons.


The corner trim board 100 can further include a second nailing flange 19, the first and second nailing flanges 18 and 19 having disposed therethrough a plurality of fastener receiving holes 32. The fastener receiving holes 32 are desirably elongated slots through the rigid support member 11, although with some sacrifices, fastener holes can also, or alternatively, be located through the cementitious layer 22. The corner trim board 100 further includes, in this embodiment, third and fourth exterior wall portions 26 and 28 connected to the first and second exterior wall portions 14 and 16 respectively. The first, second, third and fourth exterior wall portions 14, 16, 26 and 28 are desirably arranged such that the first and fourth wall portions 14 and 28 are substantially parallel and the second and third wall portions 16 and 26 are substantially parallel. More preferably, the first nailing flange 18 is also substantially parallel to the first wall portion 14 and a second nailing flange 19 is substantially parallel to the second exterior wall portion 16, in this embodiment.


Alternatively, the rigid support member can take the form of a rectangular enclosure having first and second pairs of generally parallel walls (14, 28 and 16, 26 respectively), and a longitudinal slotted opening 23.


The cementitious layer 22 is disposed at least over the exterior-facing side 10 of the rigid support member 11, preferably prior to pressing and autoclaving. A good mechanical bond can be provided between the rigid support member 11 and the cementitious layer 22 by perforating the rigid support layer with through-holes 33 which allow the wet cementitious material to bulge through the rigid support member 11, as shown in FIG. 1., and following setting, provide it with a mechanically locking engagement. A plurality of like through-holes can be uniformly distributed through the first and second exterior wall portions 14 and 16, for example. Alternatively, or additionally, a resinous cementitious bond promoter 30 can be applied to any surface of the rigid support member 11 intended to be in contact with the cementitious layer 22, such as the first and second exterior wall portions 14 and 16, to promote an adhesive bond with the cementitious layer 22. Cementitious bond promoters include PVA and acrylic formulations, such as the acrylic-based cement mortar modifier Rhoplex® E-330, available from Rohm & Haas Company, Philadelphia, Pa. Additionally, the through-holes 33 can be punched through metal sheet or plate so as to provide one or more extending prongs 21 which can further aid in the mechanical locking of the cementitious layer 22 to the rigid support member 11 by extending into the cementitious layer 22 prior to curing.


The preferred corner trim board 100 of this invention enables the use of thinner cementitious materials than those formerly suggested for corner trim applications. The corner trim board 100 of this invention can include, for example, an cementitious layer 22 which is approximately at least about 0.05 inches, preferably about 0.25–0.75 inches, and more preferably about 0.31–0.63 inches in thickness, as opposed to as much as one inch thick prior art constructions. Additionally, since the fastener receiving holes 32 are preferably located in the rigid support member 11, nailing can be accomplished without risking the development of cracks or over-stressed areas in the cementitious layer 22. The corner trim board 100 of this invention can be designed to save at least 10 percent of the weight, and as much as 50 percent of the weight, of conventional trim board constructions without sacrificing strength or durability. In fact, due to the mechanical and/or adhesive bonding between the rigid support member 11 and cementitious layer 22, and the potential for “re-bar”-like reinforcement of the cementitious layer 22, the present construction may be even stronger.


With regard to the process for manufacturing trim boards and sheathing products of this invention, reference is now made to FIGS. 2–7. The steps for manufacturing fiber cement are well known. First, the dry ingredients are mixed thoroughly in a mixing step 210 of FIG. 3. These ingredients typically include, aggregates, fibers, dispersants, and a hydraulically settable binder, such as cement. A typical construction will include portland cement, sand, cellulose fibers, kaolin and performance additives in less than one percent by weight. These dry ingredients are next mixed with water and formed into a slurry at step 212. The slurry 203, shown in FIG. 2, is deposited by displacement screws to a series of tanks 201 which are fluidly connected to a series of transfer (or pick up) rolls 202. Agitators 209 disposed in the tanks 201 help to mix the fiber cement slurry 203 to keep the ingredients from settling. The transfer rolls 202 and pressure rolls 211 apply a thin layer of slurry 203 to the felt belt 213. As this belt 213 passes by each tank 201 it “picks up” a little more slurry until the full wet thickness of each layer 204 is achieved.


The Hatchek process 214 includes a dewatering station or vacuum box 207 for de-watering each layer 204 of cementitious material and an accumulator roll 205 for assembling the layers together into about a 0.25–0.75 inch, preferably about 0.31–0.63 inch (dry cured thickness), multi-layered sheet 206. The cementitious sheet 206 is roll formed at step 216 through one or more further nip rolls or belts, followed by a cutting step 218. In a preferred embodiment, the multi-layered sheet 206 is wet or shear cut at step 216 to provide a 5 ft. wide×12 ft. long sheet dimension. The cutting step 216 can be accomplished by a water jet or cutting knife 306 as shown in FIG. 4.


At the layering step 220, which is diagrammatically illustrated in FIGS. 4 and 5, the rigid support member 302 and suitable fiberglass mold 303, containing, for example, an aesthetic wood grain or the like, are joined with the cut board 301 in a stack 304.


The pressing and final de-watering of the product is accomplished at step 222, shown also in FIG. 6, in which great pressures of about 500 psi (30 bar) are applied by a 16,000 ton press for approximately one hour. The pressing and de-watering step 222 should be sufficient to squeeze water out of the cementitious material and impress an ornamental appearance from the fiberglass mold 303 into the cut board 301.


The disclosed Hatchek process 214, can be modified to introduce an interlaminar bond strength (“ILB”) promoter through spray head 208. Such an ILB strength promoter could include, for example, a cement mortar modifier or adhesive, such as acrylic, or PVA, such as the aforementioned Rhoplex® E-330, for assisting in promoting better adhesion between the layers 204 of the multilayered sheet 206. Alternatively, or additionally, a rheological agent, such as “nano-sized” magnesium alumino silicate, can be sprayed onto the fiber cement layer prior to sheet formation at the accumulation roll 205, to encourage flow between the individual cementitious layers 204 to create better interlaminar bond strength. One rheology-modifying agent used to produce such an effect is the Acti-gel™ brand of activated magnesium alumino silicate available from Active Minerals Company LLC, Hunt Valley, Md. Such rheological agents and cement adhesive promoters can also be added to the slurry 203 in the tank 201, or during initial mixing of the slurry 203 ingredients, or through a combination of these techniques.


In connection with the corner trim board 100 of this invention, an alternate press operation 400 is shown in FIG. 7. In this operation 400, a plurality of 4 inch wide by foot long strips of fiber cement board, such as the first set of fiber cement board strips 406, 407 and second set of fiber cement board strips 408 and 409, are transferred into a stack and layered between the first and second V-shaped fiberglass molds 412, 413 and first and second V-shaped rigid support members 410, 411. The stack is introduced between a pair of V-shaped steel platens, 414, 415 and the press is activated to combine the board strips together into a bonded corner having a imprinted aesthetic surface thereon. This process may be used to make one, or a plurality of corner trim boards 100 of this invention. Following the pressing operation 400, the nailing flanges 18 and 19 can be formed in a break or the like.


Following the pressing and de-watering step 222, the stack 304 of formed boards, fiberglass molds 303 and support members 302 are pre-cured at step 224 in an oven for 12 hours at 140° F. and 100% humidity. The pre-curing step 224 provides the now formed cementitious boards with sufficient mechanical properties to be transferred. At this stage the cementitious product is about 15–20% cured. It is then subjected to a final autoclaving step 226 for 12 hours at 325° F. in a saturated steam environment. The autoclaving step 226 should be sufficient to substantially cure the cementitious product to about a 99.9% cure. Following the autoclaving step 226, the board is separated from the molds at step 228, and then sent to inventory for a week or two prior to the dry cutting step 230. Dry cutting is typically accomplished with a gang saw including about 10 blades which are capable of cutting multiple products or making multiple cuts in a single product. In this fashion, scallops, staggered edges and individual shapes can be cut into the cementitious material to provide an aesthetic appearance. Wet cutting with water jet is also suitable for this purpose.


Following the dry cutting step 230, the cementitious product is sealed and primed at step 232. A good PVA or acrylic latex primer coat followed by a tinted finish coat helps to provide the corner trim board 100 with years of weatherability.


While the steps enumerated in the flow diagram of FIG. 3 have been successful in producing the cementitious products and corner trim boards 100 of this invention, it will be realized that these steps can be modified or changed from their selected sequence while still providing a quality product. For example, cutting could occur in the wet or green state, as opposed to a final cured state of the product to provide trim details such as circles, cuts between shapes and product edges. The pressing step 222 could be eliminated in favor of mold or belt curing or the like. The autoclave and separate mold steps 226 and 228 could be reversed for example, and as an alternative to the Hatchek process, molding processes could be employed, and an extruder could be used instead of an accumulation roll.


MATERIALS DISCUSSION

The following preferred materials have been selected for manufacturing the cementitious products of this invention.


In the preferred embodiment, the rigid support member 11 includes a rigid polymer resin, such as, rigid polyvinyl chloride (“pvc”), fiberglass-reinforced epoxy or polyester, or a metal plate, sheet or lath. Suitable metallic materials include anodized or polymer-coated aluminum or copper, brass, bronze, stainless steel, or galvanized steel, in plate, sheet or lath form. If aluminum is selected, it should be coated wherever it comes in contact with the cementitious material of this invention, since it is prone to attack by alkali compositions. Similarly, carbon steel selections should be coated or galvanized in order to prevent rusting, especially in the first and second nailing flanges 18 and 19. The metal plate or lath can be roll formed and punched in order to provide through-holes 33 and fastener receiving holes 32. If a lath, scrim, or mesh construction is used, separate holes may not be necessary since the open construction of a lath, scrim, or mesh is ideal for mechanically locking with the cementitious layer 22 and is easily penetrated by fasteners such as nails and screws. With lath or scrim constructions, embedding within the cementitious layer 22 is an option, in which case, the rigid support member may contain corrugations, grooves perforations or ridges to assist in mechanically locking with the cementitious layer 22.


Aggregates 25, fibers 24, dispersants, and a rheology-modifying agents can be selectively added to modify the properties of the cementitious layer 22. The cementitious layer 22 most preferably includes a known fiber cement composition including wood fiber, silica sand and portland cement, with or without an acrylic modifier. A variety of additives can be included within the cementitious layer 22, such as organic binders, dispersants, one or more aggregate materials 25, fibers 24, air entraining agents, blowing agents, or reactive metals. The identity and quantity of any additive will depend on the desired properties or performance criteria of both the cementitious layer 22 as well as the sheathing or trim product made therefrom.


Organic binders are simply polymers that when added to water under certain conditions form long chains that intertwine and capture the components of the mixture. As water is removed from the mixture, these long chains solidify and bind the structural matrix. Because of the nature of these organic binders, however, they also function to modify the rheology of a composition. Whether the organic material is a binder, or primarily affects the rheology is a matter of degree and is dependent on the concentration. In smaller amounts the organic material primarily affects the rheology. As the amount of organic material is increased, its ability to bind the particles together increases, although it also continues to affect the rheology.


Organic binders can also be added to increase the cohesive strength, “plastic-like” behavior, and the ability of the mixture to retain its shape when molded or extruded. They act as thickeners and increase the yield stress of the inorganically filled mixture, which is the amount of force necessary to deform the mixture. This creates high “green strength” in the molded or extruded product. Suitable organic binders include a variety of cellulose-, starch-, and protein-based materials (which are generally highly polar), all of which assist in bridging the individual particles together.


Dispersants, on the other hand, act to decrease the viscosity and the yield stress of the mixture by dispersing the individual aggregates 25, fibers 24, and binding particles. This allows for the use of less water while maintaining adequate levels of workability. Suitable dispersants include any material which can be absorbed onto the surface of the binder particles or aggregates and which act to disperse the particles, usually by creating a charged area on the particle surface or in the near colloid double layer. The binders and dispersants can be introduced in the dry mixing step 210, slurry forming step 212 and/or sprayed between layers 204 by a spray head 208 onto the accumulator roll 202, for example.


It may be preferable to include one or more aggregate materials within the cementitious layer 22 in order to add bulk and decrease the cost of the mixture. Aggregates often impart significant strength properties and improve workability. An example of one such aggregate is ordinary silica sand or clay, which are completely environmentally safe, extremely inexpensive, and essentially inexhaustible.


In other cases, lightweight aggregates can be added to yield a lighter, and often more insulating, final product. Examples of lightweight aggregates are perlite, vermiculite, hollow glass spheres, aerogel, xerogel, pumice, and other lightweight rocklike materials. These aggregates are likewise environmentally neutral and relatively inexpensive.


Fibers may be added to the cementitious layer 22 in order to increase the interlaminar bond strength, compressive, tensile, flexural, and cohesive strengths of the wet material as well as the hardened articles made therefrom. Fiber should preferably have high tear and burst strengths (i.e., high tensile strength), examples of which include waste paper pulp, abaca, southern pine, hardwood, flax, bagasse (sugar cane fiber), cotton, and hemp. Fibers with a high aspect ratio of about 10 or greater work best in imparting strength and toughness to the moldable material.


From the foregoing, it can be realized that this invention provides reinforced cementitious sheathing products which are lighter in weight and more resistant to cracking than currently available commercial fiber cement products. The preferred corner trim board of this invention can use less than half of the cementitious material of a conventional trim board, but since it is reinforced with a rigid support member, it will be easier to work with and provide potentially greater durability. The cementitious layers of this invention can be joined to the rigid support member with mechanical and/or adhesive bonds, and the individual layers of the cementitious products of this invention can be further reinforced with Theological modifying agents to increase ILB strength by allowing fibers to displace and flow better across the laminated boundaries of the cementitious materials, or by adding mortar or cement bonding agents for adhesively bonding these layers together, or both. Although various embodiments have been illustrated, this is for the purpose of describing, and not limiting the invention. Various modifications, which will become apparent to one skilled in the art, are within the scope of this invention described in the attached claims.

Claims
  • 1. A fiber cement trim board comprising: (a) an elongated rigid support member having a wall-facing side and an exterior-facing side, a pair of lateral side portions and a pair of longitudinal ends, said exterior-facing side including at least a first and a second exterior wall portion thereon;(b) a first nailing flange disposed along at least a first of said pair of lateral side portions;(c) a fiber cement layer disposed at least on a portion of said exterior-facing side of said rigid support member; said fiber cement layer exhibiting an aesthetic appearance wherein said rigid support member comprises a cement bond promoter disposed on said exterior-facing side thereof.
  • 2. The fiber cement trim board of claim 1 wherein said cement bond promoter comprises an acrylic-based material.
  • 3. A method of manufacturing fiber cement board, comprising: (a) forming a rigid support member having a wall-facing side and an exterior-facing side, a pair of lateral sides and a pair of longitudinal ends, said forming step producing at least first and second exterior wall portions;(b) disposing a fiber cement layer on a portion of said exterior-facing side of said rigid support member, said fiber cement layer exhibiting an aesthetic appearance wherein said disposing step (b) comprises layering said fiber cement layer onto said exterior-facing side of said rigid support member, followed by permitting said fiber cement layer to set.
  • 4. A fiber cement board manufactured by the method of claim 3.
  • 5. A fiber cement trim board comprising: (a) an elongated rigid support member comprising galvanized steel, said rigid support member having a wall-facing side and an exterior-facing side, said exterior facing side of said rigid support member including first and second pairs of generally parallel walls forming a rectangular enclosure having a longitudinal slotted opening;(b) a pair of nail flanges extending from the walls of said rectangular enclosure proximate to said longitudinal slotted opening, said nail flanges having a plurality of fastener receiving holes disposed therethrough, said rigid support member also including a plurality of through-holes distributed among said pair of parallel walls; and(c) a fiber cement layer disposed on a portion of said exterior-facing side of said rigid support member, said fiber cement layer being also disposed through at least a portion of said plurality of through-holes in said pair of parallel walls for forming a mechanical locking engagement with said rigid support member.
  • 6. The fiber cement trim board of claim 5 wherein said rigid support member comprises galvanized steel lath or galvanized and perforated steel sheet or plate.
  • 7. The fiber cement trim board of claim 5 further comprising a resinous cement bond promoter disposed on said exterior-facing side to assist in bonding said fiber cement layer to said rigid support member.
  • 8. The fiber cement trim board of claim 5 wherein said fiber cement layer comprises cellulosic fiber, silica sand and portland cement.
  • 9. A cementitious exterior sheathing product comprising: (a) a rigid metal support member having a wall-facing side and an exterior-facing side, a pair of lateral sides and a pair of longitudinal ends, said rigid support member including a nail flange disposed along one of its lateral sides;(b) a cementitious layer disposed at least on a portion of said exterior-facing side of said rigid support member, said cementitious layer exhibiting an aesthetic appearance wherein said exterior-facing side of said metal support member comprises a cement bond promoter.
  • 10. A cementitious exterior sheathing product comprising: (a) a rigid metal support member having a wall-facing side and an exterior-facing side, a pair of lateral sides and a pair of longitudinal ends, said rigid support member including a nail flange disposed along one of its lateral sides;(b) a cementitious layer disposed at least on a portion of said exterior-facing side of said rigid support member, said cementitious layer exhibiting an aesthetic appearance wherein said metal support member is at least partially embedded within said cementitious layer.
US Referenced Citations (125)
Number Name Date Kind
1447567 Overbury Mar 1923 A
1495070 Finley May 1924 A
1732403 Harris et al. Oct 1929 A
1787163 New Dec 1930 A
1872185 Reade Aug 1932 A
1959960 Magrath May 1934 A
2089005 Sherman et al. Aug 1937 A
2142181 Croce Jan 1939 A
2149741 Miles Mar 1939 A
2171010 Schuetz et al. Aug 1939 A
2174098 Stein Sep 1939 A
2187203 Johnston Jan 1940 A
2199760 Schuetz May 1940 A
2206042 Novak Jul 1940 A
2238017 Duncan Apr 1941 A
2560521 Camp et al. Jul 1951 A
2633441 Guttress Mar 1953 A
2954302 Gorman, Jr. Sep 1960 A
3185297 Rutledge May 1965 A
3284980 Dinkel Nov 1966 A
3289371 Pearson et al. Dec 1966 A
3391037 McNulty Jul 1968 A
3607486 Jacks et al. Sep 1971 A
3608261 French et al. Sep 1971 A
3742668 Oliver Jul 1973 A
3766003 Schuller et al. Oct 1973 A
3830687 Re et al. Aug 1974 A
3868300 Wheeler Feb 1975 A
3927501 Allen et al. Dec 1975 A
3929947 Schwartz et al. Dec 1975 A
3935021 Greve et al. Jan 1976 A
3941632 Swedenberg et al. Mar 1976 A
3944698 Dierks et al. Mar 1976 A
3947398 Williams Mar 1976 A
3993822 Knauf et al. Nov 1976 A
4015391 Epstein et al. Apr 1977 A
4020237 Von Hazmburg Apr 1977 A
4040851 Ziegler Aug 1977 A
4047355 Knorr Sep 1977 A
4065333 Lawlis et al. Dec 1977 A
4065597 Gillespie Dec 1977 A
4073997 Richards et al. Feb 1978 A
4112174 Hannes et al. Sep 1978 A
4128699 Kole et al. Dec 1978 A
4135029 Pfeffer Jan 1979 A
4148781 Narukawa et al. Apr 1979 A
4181767 Steinau Jan 1980 A
4187130 Kautz Feb 1980 A
4195110 Dierks et al. Mar 1980 A
4203788 Clear May 1980 A
4242406 El Bouhnini et al. Dec 1980 A
4263365 Burgess et al. Apr 1981 A
4265979 Baehr et al. May 1981 A
4277526 Jackson Jul 1981 A
4288959 Murdock Sep 1981 A
4296169 Shannon Oct 1981 A
4303722 Pilgrim Dec 1981 A
4324082 Rutkowski et al. Apr 1982 A
4335177 Takeuchi Jun 1982 A
4344804 Bijen et al. Aug 1982 A
4344910 Bijen Aug 1982 A
4351867 Mulvey et al. Sep 1982 A
4361616 Bomers Nov 1982 A
4363666 Johnson et al. Dec 1982 A
4364212 Pearson et al. Dec 1982 A
4366197 Hanlon et al. Dec 1982 A
4378405 Pilgrim Mar 1983 A
4403006 Bruce et al. Sep 1983 A
4428775 Johnson et al. Jan 1984 A
4437274 Slocum et al. Mar 1984 A
4468909 Eaton Sep 1984 A
4477300 Pilgrim Oct 1984 A
4504533 Altenhofer et al. Mar 1985 A
4506060 White, Sr. et al. Mar 1985 A
4543159 Johnson et al. Sep 1985 A
4571356 White, Sr. et al. Feb 1986 A
4637860 Harper et al. Jan 1987 A
4647496 Lehnert et al. Mar 1987 A
4664707 Wilson et al. May 1987 A
4681802 Gaa et al. Jul 1987 A
4722866 Wilson et al. Feb 1988 A
4810569 Lehnert et al. Mar 1989 A
4810576 Gaa et al. Mar 1989 A
4811538 Lehnert et al. Mar 1989 A
5148645 Lehnert et al. Sep 1992 A
5220762 Lehnert et al. Jun 1993 A
5319900 Lehnert et al. Jun 1994 A
5342680 Randall Aug 1994 A
5371989 Lehnert et al. Dec 1994 A
5397631 Green et al. Mar 1995 A
5401588 Garvey et al. Mar 1995 A
5433048 Strasser Jul 1995 A
5439518 Francis et al. Aug 1995 A
5501056 Hannah et al. Mar 1996 A
5601888 Fowler Feb 1997 A
5614307 Andersen et al. Mar 1997 A
5644880 Lehnert et al. Jul 1997 A
5704179 Lehnert et al. Jan 1998 A
5718785 Randall Feb 1998 A
5772846 Jaffee Jun 1998 A
5791109 Lehnert et al. Aug 1998 A
5799446 Tamlyn Sep 1998 A
5830548 Andersen et al. Nov 1998 A
5881502 Tamlyn Mar 1999 A
5897108 Gordon et al. Apr 1999 A
5906364 Thompson et al. May 1999 A
5945182 Fowler et al. Aug 1999 A
5960598 Tamlyn Oct 1999 A
5981406 Randall Nov 1999 A
5993303 Fladgard et al. Nov 1999 A
6018924 Tamlyn Feb 2000 A
6029966 Hertz et al. Feb 2000 A
6258190 Sciarrino et al. Jul 2001 B1
6276107 Waggoner et al. Aug 2001 B1
6293534 Leban Sep 2001 B1
6341458 Burt Jan 2002 B1
6346146 Duselis et al. Feb 2002 B1
6354049 Bennett Mar 2002 B1
6358585 Wolff Mar 2002 B1
6367222 Timbrel et al. Apr 2002 B1
6506248 Duselis et al. Jan 2003 B1
6510667 Cottier et al. Jan 2003 B1
6625950 Shreiner et al. Sep 2003 B1
6684597 Butcher Feb 2004 B1
6705052 Larson Mar 2004 B1
Foreign Referenced Citations (38)
Number Date Country
721719 Nov 1965 CA
794590 Sep 1968 CA
993779 Jul 1976 CA
1 033 133 Jun 1955 DE
1 509 853 Apr 1963 DE
1 223 287 Aug 1965 DE
28 08 723 Mar 1979 DE
0 148 760 Jul 1985 EP
0 148 761 Jul 1985 EP
0973699 Jun 2003 EP
0943040 Dec 2003 EP
772 581 Apr 1957 GB
1 204 541 Sep 1970 GB
1 520 241 Sep 1978 GB
2 004 807 Apr 1979 GB
2 103 563 Feb 1983 GB
2141484 May 1990 JP
3208871 Sep 1991 JP
03337538 Nov 1991 JP
04189937 Jun 1992 JP
04189938 Jun 1992 JP
5147997 Jun 1993 JP
6001679 Jan 1994 JP
6008219 Jan 1994 JP
7187748 Jul 1995 JP
WO 9816697 Apr 1998 WO
WO 9845222 Oct 1998 WO
WO9957392 Nov 1999 WO
WO 0021901 Apr 2000 WO
WO 0061519 Oct 2000 WO
WO 0116048 Mar 2001 WO
WO 0142164 Jun 2001 WO
WO 0225034 Sep 2001 WO
WO 0231287 Apr 2002 WO
WO 02070247 Sep 2002 WO
WO 02070248 Sep 2002 WO
WO 02070425 Sep 2002 WO
WO 2004018090 Aug 2003 WO
Related Publications (1)
Number Date Country
20040118076 A1 Jun 2004 US