Cementitious panel with reinforced edges

Information

  • Patent Grant
  • 6187409
  • Patent Number
    6,187,409
  • Date Filed
    Monday, March 30, 1998
    26 years ago
  • Date Issued
    Tuesday, February 13, 2001
    24 years ago
Abstract
A cementitious panel comprising a cementitious core which is fabric-reinforced at the surface thereof and whose longitudinal edges are reinforced by a network of fibers. A panel may be obtained wherein the surface edge reinforcement layers are relatively strong and hard such that a nail or screw may be driven through the edge of panel without pre-drilling and without breaking, even when nailed or screwed almost at the very limit of the edge of the panel. Such a panel may provide a long lasting substrate for humid or wet areas such as shower rooms and bath rooms.
Description




The present invention relates to reinforced cementitious panels or boards comprising a cementitious core, the boards or panels being fabric-reinforced at the surface thereof. More particularly, it relates to panels or boards whose opposed broad faces are reinforced by a network of fibers which may be adhered at a surface thereof e.g. be adhered to or embedded at or just below the cementitious surfaces thereof. Still more particularly, the present invention relates to a cementitious board whose longitudinal edges are reinforced by a network of fibers. Such a cementitious panel or board may, for example, be a light-weight concrete panel, a tile backerboard panel, or the like.




The word “cementitious” as used herein is to be understood as referring to any material, substance or composition containing or derived from a hydraulic cement such as for example, portland cement (see below). The term “slurry” is to be understood as referring to a flowable mixture, e.g. a flowable mixture of water and a hydraulic cement. The term “core” is to be understood as referring to a mixture of a hydraulic cement, water and aggregate (such as sand, expanded shale or clay, expanded polystyrene beads, slag and similar materials—see below), as well as, if desired or necessary, additional additives such as foaming agents, modifiers and the like.




The term “slurry pervious reinforcing mesh” is to be understood as characterizing a mesh as being suitable for use in the preparation of a concrete panel by having openings sufficiently large to permit penetration of a cementitious slurry or a slurry component of a core mix into and through the openings so as to permit (mechanical) bonding of the mesh to the core either by for example by being cemented to the core or by being embedded in a face or surface of the core of a panel.




The expression “slurry impervious mesh” is to be understood as characterizing a mesh as being water impervious or as being able to filter out or inhibit the penetration of slurry solids therein so as to inhibit (mechanical) bonding of the mesh to the core by the cementitious material.




It is to be understood herein that the expression “adhered to” in relation to a reinforcing mesh component (e.g. mesh, mat, fabric, tissue, etc.) means that the mesh component may be adhered for example to a face or surface by any suitable means such as by an adhesive, by a cement, or by being embedded in, at or immediately beneath the surface of a respective face or surface such that the mesh component is effectively bonded to the core, i.e. a hardened or set cementitious material extends through the interstices of the fibrous layers.




Keeping the above immediate definition in mind, it is to be understood herein that the expression “adhered to said core at” in relation to a reinforcing mesh component (e.g. mesh, mat, fabric, tissue, etc.) means that the mesh component does not extend beyond the specified face, area, region, or the like, i.e. it is restricted to the specified face region etc.. Thus for example in relation to a broad face reinforcing mesh indicated as being adhered to a core at a broad face means that the mesh is restricted to being adhered to the broad face.




The word “woven” as used herein is to be understood as characterizing a material such as a reinforcing mesh (e.g. mat, fabric, tissue or the like) as comprising fibers or filaments which are oriented; oriented fibers or filaments being disposed in an organized fashion.




The word “non-woven” as used herein is to be understood as characterizing a material such as a reinforcing mesh (e.g. mat, fabric, tissue or the like) as comprising fibers or filaments which are oriented (as described above) or which are non-oriented; non-oriented fibers or filaments being disposed in random fashion.




In general, a reinforced cementitious panel or board may be fastened to a wall frame for the construction of a wall and particularly for the construction of a wall where high moisture conditions are to be encountered. Such a wall panel may provide a long lasting substrate for humid or wet areas such as shower rooms and bath rooms and provide high impact resistance where there is high number of people circulating. For example, such a reinforced cementitious panel or board may be used as a substrate for ceramic tile in bath rooms, shower rooms, locker rooms, swimming pool rooms and other areas where the wall are subject to frequent splashing of water and high humidity. Once the panel is affixed to a wall frame a wall facing material may, as desired or necessary, in turn be affixed thereto such as, for example, ceramic tile, thin brick, thin marble panels, stucco or the like. Reinforced cementitious panels or boards having cores formed of a cementitious composition with the faces being reinforced with a layer of fabric bonded thereto are known; see for example U.S. Pat. No. 1,439,954, U.S. Pat. No. 3,284,980, U.S. Pat. No. 4,450,022, U.S. Pat. No. 4,916,604, etc.




Various processes for the preparation of such cementitious boards or panels are also known. British Patent application No. 2,053,779 for example discloses a method for the continuous production of a building board which comprises advancing a pervious fabric on a lower support surface, depositing a slurry of cementitious material onto the advancing fabric, contacting the exposed face of the slurry with a second fabric such that the slurry penetrates through the fabric to form a thin, continuous film on the outer faces of the fabric.




Because of its cementitious nature, a cement board may have a tendency to be relatively brittle.




Cementitious wall board or panels are often attached at their marginal edges to the building framework with for example fasteners such as nails, screws and the like. When fasteners for example such as screws or nails are installed near the edge (less than ½), it is highly desirable that the edge be able to retain sufficient structural integrity such that the panel remains attached to a wall member, i.e. that the panel have a relatively high fastener pull resistance such that the fastener will not laterally pull through or break through the board edge.




It is known to augment the strength of the border edge regions by wrapping the fabric covering one broad face of the board around the edge so as to overlay the fabric on the other opposite broad side thereof.




U.S. Pat. No. 4,916,004, for example, discloses a cement board having a woven mesh of glass fibers immediately below each face thereof, the mesh in one broad face continuing under the surface of both longitudinal edge faces, with the two meshes in an abutting or an overlapping relation along the longitudinal margins of the opposite face. Please also see U.S. Pat. Nos. 5,221,386 and 5,350,554.




U.S. Pat. No. 4,504,533, for example, discloses a gypsum board in which a composite web of a non-woven fiberglass felt and a woven fiberglass mat covers the upper and lower faces of a gypsum core while only the lower non-woven fiberglass felt is wrapped around the longitudinal edges of the gypsum core so that the non-woven fiberglass felt extends partially inward on the upper face of the core such that the border edge regions are covered only by non-woven fiberglass felt.




U.S. Pat. No. 1,787,163 on the other hand discloses a gypsum board in which side edge portions include a separate strip of U-shaped fabric extending from one broad face across the edge to the other broad face; the fabric legs of this separate strip each extend into the plaster core body beneath a respective sheet of fibrous material covering a respective broad face, i.e. the legs are submerged below the broad face and in particular below the broad face reinforcement means.




The problem common to all methods of production of fiber mesh reinforced cementitious panels still remains as to how to effectively reinforce longitudinal edges of cementitious panels. The problem is particularly difficult when the economics of continuous production are desired. Glass fiber mesh, is a common reinforcing fabric and is used in the form of a fibreglass scrim. The open fibreglass scrim may be relatively easily damaged and commonly has openings sized such that the core material can pass through when sufficient force is applied, thus reducing the integrity of the board. Therefore, its edges may be particularly fragile such that special care is needed when manipulating or installing such a cementitious board or panel.




It would be advantageous to be able to have an alternate manner of making an alternative type panel configured such that when a nail, screw or like shaft fastener is inserted close to the edge of a panel the mesh reinforced edge may minimize edge break out by the nail or screw or like shaft fastener of edge and thus provide secure attachment of the panel to a framing support.




It would for example be advantageous to be able to customize the reinforcement characteristics of the longitudinal edge area of a panel by being able to choose a desired reinforcement mesh component which is different from the mesh used for the broad faces of a wall panel core and being able to choose a desired attachment technique to the longitudinal edge. It would be advantageous for example too be able to have a panel or board wherein the edge reinforcing mesh may be different from the broad face reinforcing mesh (e.g. of a different substance, of different mesh openings, of non-oriented fibers or filaments rather than oriented fibers or filaments).




It would be advantageous to be able to have a panel wherein the longitudinal edge face of the panel may be more or less free of cementitious material so as to allow the longitudinal edge face to be used as a support substrate for a visual indicia such as colour, images, symbols, words, etc., i.e. such that an indica would not be covered up during the manufacturing process by cementitious material.




It would be advantageous to be able to have a means of treating the side edges of the board in the course of manufacture in such a manner as to enhance its structural qualities and its use for the purposes intended. It in particular would be advantageous to be able to have a means of manufacturing the edges of the board in such a manner that it will have impact resistant edges and be able to be constructed so as to be able to offer a relatively higher lateral fastener pull resistance in the edge area than in the central core area.




STATEMENT OF INVENTION




The present invention in an aspect provides a cementitious panel comprising a longitudinal side edge face, a pair of opposed broad faces, a longitudinal marginal edge, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, and a first edge reinforcing mesh component,




each broad face comprising a marginal area bordering said longitudinal edge face




said longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and said longitudinal side edge face,




said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face,




said first edge reinforcing mesh component comprising an edge strip member being adhered to said core at a marginal area of said longitudinal marginal edge,




said first and second broad face reinforcing meshes and said first edge reinforcing mesh being configured and disposed such that said strip member overlaps one of said first and second reinforcing meshes in a respective marginal area of said longitudinal marginal edge.




In accordance with the present invention the reinforcing mesh overlaped by said strip member may be is offset inwardly relative to the longitudinal side edge face of said longitudinal marginal edge.




In accordance with another aspect the present invention provides a cementitious panel comprising a longitudinal side edge face, a pair of opposed broad faces, a longitudinal marginal edge, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, and a first edge reinforcing mesh component,




each broad face comprising a marginal area bordering said longitudinal edge face




said longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and said longitudinal side edge face,




said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face,




said first edge reinforcing mesh component comprising first and second edge strip members being adhered to said core at respective opposed marginal areas of said longitudinal marginal edge,




said first and second broad face reinforcing meshes and said first edge reinforcing mesh being configured and disposed such that said first and second strip members respectively overlap the first and second reinforcing meshes in the marginal areas of said longitudinal marginal edge.




In accordance with the present invention the first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge face of said longitudinal marginal edge.




In accordance with the present invention there is provided a cementitious panel comprising a longitudinal side edge face, a pair of opposed broad faces, a longitudinal marginal edge, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, and a first U-shaped edge reinforcing mesh component,




each broad face comprising a marginal area bordering said longitudinal edge face




said longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and said longitudinal side edge face,




said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face,




said first U-shaped edge reinforcing mesh component comprising first and second edge strip members and a bridging member connecting said first and second edge strip members, said first and second edge strip members being adhered to said core at respective opposed marginal areas of said longitudinal marginal edge,




said first and second broad face reinforcing meshes and said first U-shaped edge reinforcing mesh being configured and disposed such that said first and second strip members respectively overlap the first and second reinforcing meshes in the marginal areas of said longitudinal marginal edge.




In accordance with the present invention the first and second broad face reinforcing meshes may as mentioned above be offset inwardly relative to the longitudinal side edge face of said longitudinal marginal edge.




In accordance with the present invention the bridge member may be non-adhered to said core at said longitudinal side edge face.




In accordance with the present invention the first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge face of said longitudinal marginal edge and a bridge member may be non-adhered to said core at said longitudinal side edge face.




In accordance with the present invention marginal area(s) may comprise an adhesion region and a non-adhesion region, said non-adhesion region(s) bordering said longitudinal side edge face(s) and the first and second edge strip members may be non-adhered to said core at respective non-adhesion regions; may be non-embedded; may be abutting appropriate faces, etc.




In accordance with a further aspect the present invention. provides a cementitious panel comprising a pair of opposed longitudinal side edge faces, a pair of opposed broad faces, a pair of opposed longitudinal marginal edges, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, a first U-shaped edge reinforcing mesh component and a second U-shaped edge reinforcing mesh component,




each broad face comprising a marginal area bordering each longitudinal edge face




each longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and a respective longitudinal side edge face,




said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face,




said first and second U-shaped edge reinforcing mesh components each comprising first and second edge strip members and a bridging member connecting said first and second edge strip members, said first and second edge strip members being adhered to said core at respective opposed marginal areas of a respective longitudinal marginal edge,




said first and second broad face reinforcing mesh components and said first and second U-shaped edge reinforcing mesh components being configured and disposed such that said first and second strip members respectively overlap the first and second reinforcing meshes in the marginal areas of a respective longitudinal marginal edge.




In accordance with the present invention, as mentioned above, the first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges.




In accordance with the present invention as mentioned above a bridge member(s) may be non-adhered to said core at respective longitudinal side edge face(s).




In accordance with the present invention as mentioned above the first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges and bridge members may be non-adhered to said core at respective longitudinal side edge faces.




In accordance with the present invention as mentioned above marginal areas may comprise an adhesion region and a non-adhesion region, said non-adhesion regions bordering said longitudinal side edge faces and first and second edge strip members may be non-adhered to said core at respective non-adhesion regions.




In accordance with the present invention the first and second broad face reinforcing mesh components may each be embedded in a respective broad face of said core and first and second edge strip members may be cemented to said core at respective opposed marginal areas of a respective longitudinal marginal edge.




In accordance with the present invention as mentioned first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges and bridge members may be non-adhered to said core at respective longitudinal side edge faces.




In accordance with the present invention a bridge member(s) may be are non-adhered to said core at respective longitudinal side edge face(s).




In accordance with the present invention as mentioned first and second broad face reinforcing meshes may be offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges, bridge members may be non-adhered to said core at respective longitudinal side edge faces.




In accordance with the present invention as mentioned marginal areas may comprise an adhesion region and a non-adhesion region, said non-adhesion regions bordering said longitudinal side edge faces and first and second edge strip members may be non-adhered to said core at respective non-adhesion region.




In accordance with the present invention a core may have an average unit weight of not more than about 120 pounds per cubic foot




In accordance with the present invention first and second broad face mesh components may be of a non-woven oriented mesh and the U-shaped edge reinforcing mesh component may be of a non-woven non-oriented reinforcing mesh.




In accordance with the present invention a panel may be provided with reinforced broad side face as follows: the web of fabric is deposited onto a supporting web member (e.g., a plastic protective film), a cementitious slurry is fed to the upper surface of the web and then is spread uniformly over the web in controlled amount by means of a doctor (blade, bar or roller) adjustably spaced from the supporting member. The web is drawn out of the slot formed by the doctor and supporting member, thereby applying the desired coating of slurry to the first reinforcing mesh; the core mix is then applied. Then the second web is deposited upon the upper face of the core layer; vibrating the layer of slurry in contact with the fabric or web until slurry penetrates the web and the latter is completely embedded.




In accordance with a different aspect the present invention provides a method for manufacturing a reinforced cementitious panel having a reinforced longitudinal edge comprising:




forming a first slurry comprising a cementitious material and water;




forming a core mix comprising a cementitious material, lightweight aggregate and water




providing a panel forming support substrate;




laying over said panel forming support substrate a band of reinforcing mesh;




laying a first sheet of reinforcing mesh over said panel forming support substrate such that said sheet of reinforcing mesh overlaps said band at an outer marginal portion of said first sheet of reinforcing mesh,




depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




laying a second sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh.




In accordance with another aspect the present invention provides a method for manufacturing a reinforced cementitious panel having a reinforced longitudinal edge comprising:




forming a first slurry comprising a cementitious material and water;




forming a core mix comprising a cementitious material, lightweight aggregate and water




providing a panel forming support substrate;




laying a first sheet of reinforcing mesh over said panel forming support substrate,




depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




laying a second long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh




laying over said upper broad surface a band of reinforcing mesh such that said band overlaps said second sheet of reinforcing mesh band at an outer marginal portion of said panel and first sheet of reinforcing mesh and is embedded in said upper broad surface.




In accordance with an additional aspect the present invention provides a method for manufacturing a reinforced cementitious panel having a reinforced longitudinal edge comprising:




forming a first slurry comprising a cementitious material and water;




forming a core mix comprising a cementitious material, lightweight aggregate and water




providing a panel forming support substrate, said panel forming support substrate being wider than the panel to be made;




laying over said panel forming support substrate a band of reinforcing mesh;




laying a first sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of said first band so as to leave an outer portion of said band uncovered by said first sheet of reinforcing mesh,




depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh,




bending the outer marginal portions of said band upwardly to an upright position,




folding upright portions of said band inwardly so as to overlap said second sheet of reinforcing mesh and such that said band defines a U-shaped edge reinforcing mesh.




In accordance with the present invention a method for the manufacture of a panel wherein said U-shaped edge reinforcing mesh comprises first and second edge strip members and a bridging member connecting said first and second edge strip members, and said bridge member is non-adhered to said core, may be carried out wherein said band has a non adhesion zone for the formation of said bridge member.




In accordance with a further aspect the present invention provides a method for manufacturing a reinforced cementitious panel having reinforced longitudinal edges comprising:




forming a first slurry comprising a cementitious material and water;




forming a core mix comprising a cementitious material, lightweight aggregate and water




providing a panel forming support substrate, said panel forming support substrate being wider than the panel to be made;




laying over said panel forming support substrate, in spaced apart parallel relation, a first band of reinforcing mesh and second band of reinforcing mesh;




laying a first sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of each of said first and second bands so as to leave an outer portion of each band uncovered by said first sheet of reinforcing mesh,




depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh,




bending the outer marginal portions of said first and second bands upwardly to an upright position,




folding upright portions of said first and second bands inwardly so as to overlap said second sheet of reinforcing mesh and such that each of said first and second bands define a U-shaped edge reinforcing mesh.




In accordance with another aspect the present invention provides a method for manufacturing a reinforced cementitious panel having reinforced longitudinal edges comprising:




continuously forming a first slurry comprising a cementitious material and water;




continuously forming a core mix comprising a cementitious material, lightweight aggregate and water




continuously advancing an indefinitely long panel forming support substrate over a support surface, said panel forming support substrate being wider than the panel to be made;




continuously laying over said panel forming support substrate, in spaced apart parallel relation, an indefinitely long first band of reinforcing mesh and an indefinitely long second band of reinforcing mesh;




continuously laying a first indefinitely long sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of each of said first and second bands so as to leave an outer portion of each band uncovered by said first sheet of reinforcing mesh,




continuously depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




continuously depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




continuously laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface so as to leave an outer marginal portion of each of said bands uncovered by said second sheet of reinforcing mesh,




continuously bending the outer marginal portions of said first and second bands upwardly to an upright position,




folding upright portions of said first and second bands inwardly so as to overlap said second indefinitely long sheet of reinforcing mesh and such that each of said first and second bands define a U-shaped edge reinforcing mesh.




In accordance with a different aspect the present invention provides an apparatus for manufacturing a reinforced cementitious panel having reinforced longitudinal edges comprising




means for forming a first slurry comprising a cementitious material and water;




means for forming a core mix comprising a cementitious material, lightweight aggregate and water




means for providing a panel forming support substrate;




means for laying over said panel forming support substrate a band of reinforcing mesh;




means for laying a first sheet of reinforcing mesh over said panel forming support substrate such that said sheet of reinforcing mesh overlaps said band at an outer marginal portion of said first sheet of reinforcing mesh,




means for depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




means for depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




means for laying a second sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh.




In accordance with another aspect the present invention provides a method for manufacturing a reinforced cementitious panel having a reinforced longitudinal edge comprising:




means for forming a first slurry comprising a cementitious material and water;




means for forming a core mix comprising a cementitious material, lightweight aggregate and water




means for providing a panel forming support substrate;




means for laying a first sheet of reinforcing mesh over said panel forming support substrate,




means for depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




means for depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




means for laying a second long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh




means for laying over said upper broad surface a band of reinforcing mesh such that said band overlaps said second sheet of reinforcing mesh band at an outer marginal portion of said panel and first sheet of reinforcing mesh and is embedded in said upper broad surface.




In accordance with an additional aspect the present invention provides an apparatus for manufacturing a reinforced cementitious panel having a reinforced longitudinal edge comprising:




means for forming a first slurry comprising a cementitious material and water;




means for forming a core mix comprising a cementitious material, lightweight aggregate and water




means for providing a panel forming support substrate, said panel forming support substrate being wider than the panel to be made;




means for laying over said panel forming support substrate a band of reinforcing mesh;




means for laying a first sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of said first band so as to leave an outer portion of said band uncovered by said first sheet of reinforcing mesh,




means for depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




means for depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




means for laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh,




means for bending the outer marginal portions of said band upwardly to an upright position,




means for folding upright portions of said band inwardly so as to overlap said second sheet of reinforcing mesh and such that said band defines a U-shaped edge reinforcing mesh.




In accordance with the present invention an for the manufacture of a panel wherein said U-shaped edge reinforcing mesh comprises first and second edge strip members and a bridging member connecting said first and second edge strip members, and said bridge member is non-adhered to said core, may be used wherein the apparatus includes means for applying a non adhesion zone to said band for the formation of said bridge member.




In accordance with a further aspect the present invention provides an apparatus for manufacturing a reinforced cementitious panel having reinforced longitudinal edges comprising:




means for forming a first slurry comprising a cementitious material and water;




means for forming a core mix comprising a cementitious material, lightweight aggregate and water




means for providing a panel forming support substrate, said panel forming support substrate being wider than the panel to be made;




means for laying over said panel forming support substrate, in spaced apart parallel relation, a first band of reinforcing mesh and second band of reinforcing mesh;




means for laying a first sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of each of said first and second bands so as to leave an outer portion of each band uncovered by said first sheet of reinforcing mesh,




means for depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




means for depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




means for laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface and overlies said first sheet of reinforcing mesh,




means for bending the outer marginal portions of said first and second bands upwardly to an upright position,




means for folding upright portions of said first and second bands inwardly so as to overlap said second sheet of reinforcing mesh and such that each of said first and second bands define a U-shaped edge reinforcing mesh.




In accordance with another aspect the present invention provides an apparatus for manufacturing a reinforced cementitious panel having reinforced longitudinal edges comprising:




means for continuously forming a first slurry comprising a cementitious material and water;




means for continuously forming a core mix comprising a cementitious material, lightweight aggregate and water




means for continuously advancing an indefinitely long panel forming support substrate over a support surface, said panel forming support substrate being wider than the panel to be made;




means for continuously laying over said panel forming support substrate, in spaced apart parallel relation, an indefinitely long first band of reinforcing mesh and an indefinitely long second band of reinforcing mesh;




means for continuously laying a first indefinitely long sheet of reinforcing mesh over said panel forming support substrate such that said first sheet of reinforcing mesh overlaps a predetermined portion of each of said first and second bands so as to leave an outer portion of each band uncovered by said first sheet of reinforcing mesh,




means for continuously depositing said first slurry on said first sheet of reinforcing mesh and distributing it across the breadth of said first sheet of reinforcing mesh so as to form a slurried reinforcement layer of predetermined thickness such that the first sheet of reinforcing mesh is embedded in said slurried reinforcement layer;




means for continuously depositing said core mix on said slurried reinforcement layer and distributing the core mix across said first sheet of reinforcing mesh so as to form a core layer of predetermined depth having an upper broad surface




means for continuously laying a second indefinitely long sheet of reinforcing mesh over said core layer such that said second sheet of reinforcing mesh is embedded in said upper broad surface so as to leave an outer marginal portion of each of said bands uncovered by said second sheet of reinforcing mesh,




means for continuously bending the outer marginal portions of said first and second bands upwardly to an upright position,




means for folding upright portions of said first and second bands inwardly so as to overlap said second indefinitely long sheet of reinforcing mesh and such that each of said first and second bands define a U-shaped edge reinforcing mesh.




In accordance with the present invention a bridge member may be non-embedded in a longitudinal side edge face.




In accordance with the present invention a support substrate may comprise a conveyor belt (supported on tab) and a protective film. If desired or necessary the protective film may be dispensed with but in such a case it may be necessary tho coat a particular conveyor belt with agents such as anti-stick agents.




As mentioned above, in accordance with the present invention the first and second edge strip members of a U-shaped edge reinforcing mesh may be adhered to said core at respective marginal areas of a respective longitudinal marginal edge by being cemented thereto or as desired by being embedded in respective broad faces. A bridging member may as desired also be cemented to or as desired be embedded in a respective longitudinal edge face. On the other hand a bridging member need not if desired be adhered to a respective longitudinal edge face but may merely abut such face or as desired be spaced apart therefrom; in this latter case the bridging member may be water impervious such that, for example, cementitious material may not pass into or through the bridging member during the manufacture of a panel such that it is possible to for example provide the exposed side of the bridging member with a desired indica as described above.




A cementitious board or panel of the present invention may be designed to be used as a backerboard for tile, thin brick, thin stones, synthetic or natural stucco, paint, exterior insulation and finish systems or other finishes that can be applied onto concrete. It may be of interior or exterior grade and can be used in such places as kitchens, bath room, shower room, corridors, exterior wall, or any places that require water resistance and impact resistance. It may be used to construct fire resistant partition walls.




As may be understood, in accordance with the present invention a cementitious panel may have a composite or sandwich like construction wherein a cementitious core is bounded on each of its two major or broad faces by a respective reinforcing mesh component of fibrous material; each reinforcing mesh component being adhered to the panel core at a respective major face thereof.




The longitudinal edge faces of a panel may also be covered or closed off by an edge reinforcing mesh component. The edge reinforcing mesh component may be adhered to the longitudinal edge face, merely abut the longitudinal edge face or be spaced apart from the longitudinal face; this type of reinforcing mesh component may, for example take on a U-shaped configuration as discussed herein. Alternatively, if desired, the longitudinal edge face or a part thereof may be open, i.e. not covered by a reinforcing mesh material. In this latter case one or both of the marginal areas adjacent a longitudinal edge on opposite broad faces may be provided with an edge reinforcing member.




A panel in accordance with the present invention may have a longitudinal edge face which may be more or less free of cementitious material so as to allow the longitudinal edge face to be used as a support substrate for a visual indicia such as color, images, symbols, words, etc., i.e. the reinforcing mesh may be configured such that an indica support area would not be covered up during the manufacturing process by cementitious material.




The reinforcing mesh components or members thereof whether for a broad or major face or for a longitudinal edge face may take the form of a woven or non woven fabric or mesh such as a woven mesh or scrim, a non-woven mesh, a non-woven pervious mesh or mat, etc. Suitable fiber filaments may be formed into a woven material by the employment of a suitable method such as knitting or weaving. Suitable fiber filaments may be formed into non-woven material by the employment of a suitable method such as gluing or fusion.




The reinforcing mesh for a broad face may for example take the form of a woven mesh or a non-woven oriented mesh. On the other hand a mesh for a longitudinal edge face may take the form of a non-woven mesh, in particular a non-woven non-oriented mesh.




A woven mesh for a broad face may for example be composed of glass fibers and be in the form of woven or knitted fabric or scrim. When a glass fiber network is used in conjunction with an alkaline cementitious material, for example, a highly alkaline Portland, cementitious composition, the glass fibers may be made from an alkaline resistant glass or have a protective resin coating so that damage which might result from reaction with the alkaline cementitious material, may be minimized; this may be accomplished by coating the fibers with an alkali resistant coating such as an epoxy resin. The reinforcing mesh may, for example, be a fibre-glass scrim, in particular, a woven mesh of vinyl (e.g. polyvinylchloride) coated glass-fibre yarns.




The reinforcing mesh for a broad face may, if desired, alternatively, be in the form of a non-woven oriented fabric or web, bonded with a suitable synthetic resin or by heat. The mesh may be of non-woven oriented glass fibre tissue. A non-woven glass fibre tissue may be of resin-bonded fibers or filaments, for example fibers bonded with urea-formaldehyde and may have a weight of about 2 to 4 oz. per square yard, the fibers may for example have a diameter of e.g. 10 to 20 um.




However, a woven or non-woven oriented mesh of other materials may be used for reinforcing a broad face of a panel. Such a mesh may for example be of an inorganic material such as for example, of a metal (e.g. a steel fibre) of asbestos, of alumina, of zirconia, of carbon and the like. Alternatively, a mesh may be of synthetic material such as for example of organic polymeric fibers, for example, nylon fibers, polyvinylidene chloride fibers, polyester fibre yarns coated with PVC, aramid resin fibers (e.g as sold under the trademark Kevlar), polyolefin fiber, e.g. polyethylene or polypropylene; of fluorinated polyolefin, e.g. polyvinylidene fluoride or polytetrafluoroethylene; or polyamide fibre; or of polyester fibre, e.g. poly(ethylene terephthalate); or of cellulosic fibre and the like.




The mesh size and the fiber diameter for a woven or non-woven oriented mesh used to reinforce the broad or major faces of the core may be selected according to the strength desired in the board and the size of the aggregate in the concrete mix. A mesh for a broad face reinforcement may, for example, have a relatively loose thread or mesh count per inch (warp×fill) such as for example, of from 4×4 to 18×18, of 10×8, etc. for most purposes.




In accordance with the present invention the reinforcement of the edges and margins of a cementitious board or panel may be accomplished by using a separate type of woven or non-woven mesh or mat fabric as compared with the reinforcing mesh used for the broad faces; advantageously, the reinforcing mesh for the edge face may be a non-woven non-oriented mesh. For example, a reinforcing mesh for the longitudinal edges may have relatively tight intercises as compared with a reinforcing mesh for a broad faces—2 to 4 oz. per sq. yd.—; the relatively tight intercises makes attachment of the board to a wall framework with nails or screws more secure, due to of a greater amount of mesh material per unit area than is present for the central portion of the major or broad faces of the panel.




The fibres in a non-woven mesh for reinforcing a longitudinal marginal edge may be either randomly distributed or orientated. In the first case the longitudinal edges of the board will have substantially the same breaking strength in the longitudinal and the transverse directions. In the latter case, the longitudinal edges of the board can have high strength in the transverse direction but a lower strength in the longitudinal direction or vice versa. Thus, by varying the tissue characteristics, the edges may be made stronger in a particular direction, or additional strength can be provided in desired locations, e.g. along the board edges, by using tissues of appropriate fibre distribution.




The mesh size and the fiber diameter for a non-woven oriented mesh used to reinforce the longitudinal marginal edge face adjacent the longitudinal edge face may also be selected according to the strength desired in the longitudinal edge. However, a mesh for a longitudinal edge margin face may for example have a tighter weave or intercices than is used for the broad faces, i.e. for example a thread or mesh count tighter than 10×8. Thus the reinforcing meshes for the marginal edge faces may have relatively small openings such as for example meshes with a 16×10 count per inch may be used so as to secure the desired or necessary penetration of the fabric along the edge margins with the cementitious composition.




The nonwoven mesh for reinforcing a longitudinal marginal edge may for example comprise fleece-like mats or felts of fibers arranged in a non-oriented manner. The nonwoven non oriented mesh reinforcing material may be three dimensional in nature with the fibers thereof defining interconnecting voids. In general, the non-oriented mesh which may be employed in the reinforcement of the longitudinal marginal edges are generally those in which the voids are relatively small in size, i.e. the fibers in the mesh, mat or felt are relatively tightly packed, e.g. of 2 to 4 oz. Per square yard.




A mesh for reinforcing a longitudinal marginal edge may be of a material as described above for the mesh for reinforcing the broad face of a panel. Such a mesh may, for example be of a synthetic material (i.e. polymer) such as described above; it may in particular be of polypropylene or of a polyester. The fibers in the non woven mesh, may be held in place by needle punching or, in the case of fibers derived from synthetic material such as an above describe polymer, by melt bonding or glueing (with a suitable adhesive) of the individual fibers to each other at points of intersection.




Illustrative of the non-woven spatial fabrics which can be employed in preparing the structures of the invention is the material synfab which is described herein below;




If desired the mat may be a mixture of two or more different types of fibre, or two or more mats of different fibrous material may be used.




The fibres in the mat may be multi-filament or monofilament.




It is preferred to use meshes that are flexible, and for this reason it is preferred to use relatively thin mats having a maximum thickness of the order of about 0.5 mm to 1 mm (e.g. up to 0.2 mm) and to use meshes made of relatively thin fibres, e.g. having a fibre diameter of no more than 1 mm in particular no more than 0.2 mm (i.e. 200 microns).




A reinforcing mesh whether for the broad faces or for the longitudinal marginal edges may be bonded to the core in any suitable fashion keeping in mind the reinforcing role that these meshes are to play. A reinforcing mesh may for example be bonded to a core by a cementitious slurry, for example, a portland cement slurry, or may be bonded by a cementitious component of a core mix extending through the openings in the mesh.




In accordance with the present invention a longitudinal edge face of a longitudinal marginal edge (i.e. a minor side face of a panel) need not be reinforced with or be covered with a reinforcing fabric. If, for example, a longitudinal edge margin is reinforced with a U-shaped reinforcement mesh component the bridge member thereof need not, if so desired, be adhered to the longitudinal edge face; on the other hand the bridge member may, if desired, be adhered to a longitudinal face as, for example, by an adhesive, by cementing or by being embedded in the core surface cement material. As may be appreciated from the above a bridge member links or connects a pair of arm members (i.e. edge strip members). These arm members are adhered to a marginal area of a respective broad face. However, such adherence need not be over the entire lateral width thereof. For example, a marginal area may comprise a grip region and an adhesion free region. The adhesion free region may border the longitudinal edge face. In this latter case an arm member may be adhered only to the grip region and not to the adhesion free region such that the cross section of the marginal edge may show that a U-shape surface including the surface of the longitudinal edge is not adhered to the U-shaped reinforcement mesh component, distal end portions only of the arm members are adhered to the marginal edge faces. Keeping in mind that the purpose of the U-shaped reinforcement mesh component is to reinforce the longitudinal edge of a panel the lateral width of a grip region is preferably larger (e.g. substantially larger) the lateral width of an adhesion free region bordering the longitudinal edge face.




The reinforcing mesh of the major faces and a mesh disposed about a longitudinal marginal edge faces may, for example, be held in place in the set product by allowing a cementitious composition to infiltrate intercices of such a mesh such that at least some of the fibers of the mesh may be embedded in the hardened cementitious composition. In this case in order to facilitate such penetration of a mesh by the cementitious composition, the fabrics should comprise a sufficient or. desired degree of voidage so as to allow the unhardened cement composition to penetrate the mesh. In other words, a reinforcing mesh adhered to a broad face of a core and at least the portion of an edge reinforcing mesh adhered to a core along a marginal area thereof may be pervious meshes (i.e. pervious to cementitious slurry); the openings in a mesh, scrim or other fabric in this case are to be sufficiently large to permit passage of the mesh bonding material such as a portland cement slurry, i.e. such that a mesh or scrim is cemented to or embedded in a face or surface.




In accordance with the present invention a cementitious panel may be produced employing a core mix alone or if desired by also employing a cementitious slurry.




By way of example only, a cementitious panel in accordance with the present invention, may be obtained by following the immediately herein below described steps. A first web of reinforcing mesh may first be provided for a core face which during manufacture forms part of the bottom layer of the panel and which is not as wide as the panel width. A marginal section or area of the first web on each side of the centre may be disposed to overlap a portion of an edge reinforcing web or mesh of fabric leaving outer edge portions thereof uncovered thereby; the uncovered portion may be folded over to wrap each of the two edges of the core layer and also to extend over on to the top face of the core layer and overlap the upper broad face reinforcement mesh. A cementitious slurry may first be applied onto the first web so as to embed it therein and may be applied so as to leave uncovered at least an outer portion of the edge reinforcing webs for covering the longitudinally edge faces. The centre section of the first web receives the core layer after the application of the slurry if used and it also may be laid down so as to leave exposed outer marginal portions of the web or mesh to be wrapped about the longitudinal edges. A second web of reinforcing fabric (which forms the top layer of the panel) which is of the same width as the first web may be laid down on top of the core layer so as to overlay it and as desired or necessary is pushed just under the upper surface of the core so as to be embedded in the top surface. Bonding material such as a portland cement slurry may also as desired or necessary is applied to the second web either before or after it is laid down on the core layer.




A core mix may for example comprise water, a cementitious material (i.e. a hydraulic cement which is able to set on hydration such as for example, portland cement, magnesia cement, alumina cement, gypsum, and the like or a blend thereof) and an aggregate component selected from among mineral and/or non-mineral (e.g. organic) aggregate(s). The ratio of mineral aggregate to hydraulic cement may be in ratio of 1:6 to 6:1. The ratio of non-mineral aggregate to hydraulic cement may be in ratio of 1:100 to 6:1.




The particle size distribution of the aggregate may vary over a wide range e.g. up to about ⅓ (e.g. up ¼) of the thickness of the panel or smaller, such as for example from {fraction (1/32)} of an inch to ¼ of an inch.




The core mix may in particular be composed so as to comprise a lightweight mineral and/or non-mineral (e.g. organic) aggregate(s) (e.g. sand, expanded clay, expanded shale, expanded perlite, expanded vermericulite, expanded closed-cell glass beads, closed-cell polystyrene beads and/or the like). Suitable lightweight aggregates, may for example in particular be cellular in nature; a suitable non-mineral lightweight aggregate is for example expanded closed-cell polystyrene beads.




Aggregate for use in the cementitious core mix composition may be selected in accordance with the desired density of the finished panel. Aggregate may, for example, have a density of up to 120 pounds per cubic foot. For example, lightweight aggregates such as obtained from expanded forms of slag, clay, shale, slate, perlite, vermericulite and the like may produce panels having a density of from about 80 to about 115 pounds per cubic foot. On the other hand a material such as closed-cell glass beds or a plastic such as polystyrene beads may be used to obtain a panel having a density of from about 40 to 70 pounds per cubic foot or lower.




A cementitious slurry may for example comprise water and a cementitious material (i.e. a hydraulic cement as described above). A cementitious slurry, such as a portland cement slurry, is strongly basic or alkaline having a pH of at least 11, due to the presence of calcium hydroxide, e.g. a pH of from 11 to 14, such as a pH of 11 to 13, e.g. a pH of 12.5 to 13. Such a slurry tends to react with, or have an affinity for, base-reactive surfaces and consequently have a decided tendency to cling to these surfaces.




As mentioned above a reinforcing mesh is adhered to the face of a panel. It possible in accordance with the present invention for example to embed a mesh in a broad or narrow face of the core such that the mesh is disposed at or near the surface of the board so as to enhance the strength of the board or panel, i.e. the strength of the panel is enhanced if a mesh is adhered at a core face. The embedment of the reinforcing fibers just beneath the surfaces of the core may for example be carried out at a depth of submersion of mesh from for example about 0.5 mm to about 2.0 mm or less, e.g. 0.5 mm or less.




The core mix may be applied in any desired thickness, for example of values so as to be able to obtain a panel having the standard thicknesses of plasterboard. A panel may be produced in varying thickness depending upon end use: e.g. in thicknesses of ¼″, ⅜″, ½″, ⅝″, ¾″, 1″ etc.




In accordance with the present invention a cemetitious core mix composition may be used which when cured has cells present due to entrained or entrapped air. Accordingly a core mix may for example include or comprise a suitable air entrainment or foaming agent in such amounts so as to produce the desired or necessary degree of air entrainment.




As mentioned above the initial side edge meshes and first broad face mesh are laid down on a suitable carrier support web; the carrier support web may for example advantageously be of a non-stick material relative to the cementitious material, i.e. the carrier on which the board is formed may be of a material to which the cementitious slurry does not readily adhere, example material are polyethylene or polypropylene film, 1.0 to 5.0 mils think: polyethylene coated Kraft paper, 30 lbs to 100 lbs of strength.




As mentioned above however it may be desired to provide an edge face mesh which is not adhered to the edge face so as to avoid having the cementitious composition covering up a desired indica which is to appear on the side edge of a panel. This may be achieved for example by providing the above mentioned edge reinforcing web with an at least substantially water impervious outer surface opposite the edge face or with a fibre or filament structure which may filter out any solids at the surface thereof so as to inhibit a mechanical bond on setting of the cementitious material.




The edges reinforcements may, for example extend inwardly from a longitudinal edge face approximately 0.5″ to 2.5″.




As mentioned above polystyrene may be used as lightweight aggregate. Polystyrene should be expanded following manufacturers instruction. Bin and equipment must be of the sufficient size to comply with the production rate and the time/recipe requirements. Polystyrene preferably is expanded to the desired density with a tolerance of 0.1 lb. per cubic foot. Anti-static liquid dispensing equipment may be provided for a free flow of material into measuring bins. Rotary valves will permit the incorporation of the necessary quantity in the core mixer, e.g. to the nearest 0.01 Kg.




As mentioned other agents may be added to the cementitious material for example, an air entraining agent. Air entraining agent works like a soap except it is able to create very small air bubbles that are visible only with a microscope. The air entraining agent is not necessarily used to make the board lighter. A given amount of a specific type of air entraining agent may be chosen to create air bubbles which will inhibit damage that can be caused by freezing and thawing cycles. The bubbles may be so small that water does not have a tendency to penetrate them, so the water absorption of the board is not affected.




A panel in accordance with the present invention may thus comprise relatively thin surface reinforcement elements on the faces thereof so as to provide the panel with a relatively high strength. The panel may also have a core which is relatively readily penetrable by nails, screws and other fasteners. A panel may be obtained wherein the surface edge reinforcement layers are relatively strong and hard such that a nail or screw may be driven through the edge of panel without pre-drilling and without breaking, even when nailed or screwed almost at the very limit of the edge of the panel.











In drawing which illustrate example embodiments of the present invention,





FIGS. 1

to


4


illustrate in schematic cross sectional views steps in the formation of an example panel in accordance with the present invention;





FIG. 5

is a schematic partial cross sectional view of a reinforced edge of a panel made in accordance with the steps illustrated in

FIGS. 1

to


4


;





FIG. 6

is a schematic partial cross sectional view of a reinforced edge of another example panel made in accordance with the present invention wherein only one broad side face includes reinforcing mesh at the marginal edge area thereof





FIGS. 7

to


11


illustrate in schematic cross sectional views steps in the formation of another example panel in accordance with the present invention having a U-shaped edge reinforcing mesh;





FIG. 12

is a schematic partial cross sectional view of a reinforced edge of a panel made in accordance with the steps illustrated in

FIGS. 7

to


11


;





FIGS. 13 and 13



a


each illustrate in schematic partial cross sectional view a step in the formation of additional example panels in accordance with the present invention wherein the bridging member is not adhered to the core;





FIGS. 14 and 14



a


are each schematic partial cross sectional views of a reinforced edge of a panel made in accordance with a process respectively including the step illustrated in

FIGS. 14 and 14



a;







FIG. 15

is a schematic partial cross sectional view of the edge of another example panel in accordance with the present invention;





FIG. 16

is a schematic partial cross sectional view of the edge of a further example panel in accordance with the present invention;





FIG. 17

is a schematic partial cross sectional view of the edge of yet another example panel in accordance with the present invention;





FIG. 18

is a partial schematic perspective view of the forward end of an apparatus in accordance with the present invention for making an edge reinforced panel in accordance with the present invention;





FIG. 19

is a partial schematic perspective view of the central part of the example apparatus for which the forward end is shown in

FIG. 18

;





FIG. 19



a


is a schematic enlarged side view of the crank system for a support member of the first mesh layer alignment component shown in FIG.


19


and which includes dual crank components;





FIG. 19



b


is a schematic enlarged top view of the crank system shown in

FIG. 19



a;







FIG. 19



c


is a schematic enlarged end view of the crank system shown in

FIG. 19



a;







FIG. 20

is a partial schematic perspective view of the rear end of the example apparatus for which the forward end is shown in

FIG. 18

;





FIG. 21

is a partial schematic perspective view of the forward end of an apparatus in accordance with the present invention for making an edge reinforced panel in accordance with the present invention wherein the bridging member is not adhered to the core;





FIG. 22

is a partial schematic perspective view of an example strip feeding mechanism for feeding reinforcing strips to the forward end illustrated in

FIG. 18

;





FIG. 23

illustrates in schematic perspective view an edge strength test for a panel section having an edge reinforcement in accordance with the present invention and a panel section having a known wrap around reinforced edge as illustrated in U.S. Pat. No. 5,221,386 the entire contents of which are incorporated herein by reference (see

FIG. 6

of this patent).











The invention will hereinafter be described in more detail in relation to the drawings by way of example only, in terms of a panel (e.g. wallboard) having a cementitious core comprising a hydraulic cement and aggregate of a lightweight type. The drawings are schematic in nature, are not drawn to scale and in some cases elements are exaggerated for purpose of illustration only.





FIGS. 1

to


4


illustrate in a series of cross-sectional views a sequence of steps in a method for the manufacture of an example edge reinforced panel in accordance with the present invention wherein the longitudinal edge faces are not closed off. In these figures the reference numeral


1


indicate a conveyor belt, i.e. a support member and the reference numeral


2


indicates a protective film which is supported and advanced by the conveyor belt


1


. The protective film


2


is wider than the panel to be made.




In

FIG. 1

a web of a first non-woven oriented glass mesh


3


is shown with a previously applied portland cement slurry


4


deposited thereon across its breadth in a layer. The first non-woven oriented glass mesh


3


has also previously been laid on the protective film


2


such that it overlaps a pair of first bands


5


and


6


of polypropylene non-oriented mesh which were previously laid on the protective film


2


in parallel spaced apart relationship, the first bands


5


and


6


being disposed along margin sections


7


and


8


. As may be seen the margin sections


7


and


8


are covered by the first non-woven oriented glass mesh


3


and by the slurry


4


such that both the first non-woven oriented glass mesh


3


and the first bands


5


and


6


are slurried.




In

FIG. 2

a core mix


10


is shown as having been laid upon the slurried first non-woven oriented glass mesh


3


so as to be deposited across the breadth thereof in a layer.




In

FIG. 3

a second non-woven oriented glass mesh


12


is shown as having been laid upon the upper surface of the core mix


10


across the breadth thereof. This second non-woven oriented glass mesh was laid down under the urging or influence of a vibrating urging means which urged the second non-woven oriented glass mesh


12


into the upper surface of the core mix, i.e. so as to embed the second non-woven oriented glass mesh


12


in the top surface of the core mix


10


.




In

FIG. 3

an additional pair of second bands of polypropylene non-oriented mesh


14


and


15


are also shown in the process of being laid upon the second non-woven oriented glass mesh


12


in respective margin sections


7


and


8


opposite the previously laid down first bands


5


and


6


. These second bands


14


and


15


are likewise laid down under the urging or influence of the vibrating urging means which urges these bands into the upper surface of the core mix on top of the second non-woven oriented glass mesh


12


. The bottom of the core mix


10


is bonded to the mesh


3


by the slurry


4


.




In this manner an edge reinforced panel is formed as shown in FIG.


4


. The edge reinforced panel has a pair of opposed longitudinal edge faces


19


and


20


. Each of the marginal sections


7


and


8


has a pair of marginal areas namely areas


22


and


23


and


24


and


25


which are associated with respective broad faces of the panel.





FIG. 5

shows a schematic partial cross sectional view of a reinforced edge of a panel made in accordance with the steps illustrated in

FIGS. 1

to


4


. It shows for example the longitudinal edge face as not being closed off by for example a mesh bridging member connecting respective first and second bands as shall be discussed with respect to the

FIGS. 7

to


12


. In this case as may be appreciated the longitudinal edge faces of the core are exposed. As may be appreciated from

FIG. 5

a longitudinal edge face and a respective pair of marginal areas


24


and


25


defines a longitudinal marginal edge; similarly for the other opposed side of the panel.





FIG. 6

shows a schematic partial cross sectional view of a reinforced edge of a further panel made in accordance with the steps illustrated in

FIGS. 1

to


4


except that the first bands have been omitted from the procedure such that the panel only has edge reinforcements due to the second bands; accordingly the same reference numerals have been used to designate common elements. It too shows the longitudinal edge face as not being closed off by for example a mesh bridging member such that the longitudinal edge faces of the core are exposed.





FIGS. 7

to


11


illustrate in a series of cross-sectional views a sequence of steps in a method for the manufacture of another example edge reinforced panel in accordance with the present invention wherein the longitudinal edge faces are closed off. In these figures the same reference numerals are used to designate elements common with those shown in

FIGS. 1

to


6


.




In

FIG. 7

a web of a first non-woven oriented glass mesh


3


is shown with a previously applied portland cement slurry


4


deposited thereon across its breadth in a layer. The first non-woven oriented glass mesh


3


has also previously been laid on the protective film


2


such that it overlaps a pair of wide bands


5




a


and


6




a


of polypropylene non-oriented mesh which were previously laid on the protective film


2


in parallel spaced apart relationship. The wide bands


5




a


and


6




a


are disposed along margin sections


7




a


and


8




a


and are only partially covered by the first non-woven oriented glass mesh


3


. As may be seen the margin sections


7




a


and


8




a


are only partially covered by the first non-woven oriented glass mesh


3


and by the slurry


4


such that while the first non-woven oriented glass mesh


3


is totally slurried, the wide bands


5




a


and


6




a


are only partially slurried, i.e. outer portions


30


and


31


of the bands


5




a


and


6




a


are left unslurried. On the other hand, if so desired the slurry may be disposed so as not to cover at all the wide bands


5




a


and


6




a.






In

FIG. 8

a core mix


10


is shown as having been laid upon the slurried first non-woven oriented glass mesh


4


so as to be deposited across the breadth thereof in a layer so as to again leave uncovered outer portions


30


and


31


. Alternatively if so desired the slurry


4


may extend outwardly further over the wide bands


5




a


and


6




a


than the core mix


10


or vice versa. The slurry


4


may for example be extended outwardly further than the core mix in order to facilitate adherence (e.g. cementing) of the bands to the longitudinal edge face of the panel core or even the opposed broad face at a respective longitudinal marginal edge.




In

FIG. 9

a second non-woven oriented glass mesh


12


is shown as having been laid upon the upper surface of the core mix


10


across the breadth thereof, again so as to leave uncovered outer portions


30


and


31


. This second non-woven oriented glass mesh as before is laid down under the urging or influence of a vibrating urging means so as to embed the second non-woven oriented glass mesh


12


in the top surface of the core mix


10


.




In

FIG. 10

the two outer portions


30


and


31


of the wide bands


5




a


and


6




a


are folded upwards to an upright position by suitable guide means.




In

FIG. 11

the outer portions


30


and


31


are bent or folded by suitable means over onto the second glass mesh


12


in respective margin sections


7




a


and


8




a


so as to form respective U-shaped edge reinforcing meshes adhered to the first and second meshes


3


and


12


. The bent over outer portions


30


and


31


are likewise laid down under the urging or influence of the vibrating urging means which urges the distal ends of thereof into the upper surface of the core mix on top of the second non-woven oriented glass mesh


12


.




In this manner an edge reinforced panel is formed as shown in FIG.


11


. The edge reinforced panel has a pair of opposed longitudinal edge faces


19


and


20


. Each of the marginal sections


7


and


8


has a pair of marginal areas namely areas


22


and


23


and


24


and


25


which are associated with respective broad faces of the panel.





FIG. 12

shows a schematic partial cross sectional view of a reinforced edge of a panel made in accordance with the steps illustrated in

FIGS. 7

to


11


. It shows for example the longitudinal edge face as being closed off by a mesh bridging member


36


of the U-shaped edge reinforcing mesh; this bridging member


36


connects respective first and second edge strip members


38


and


39


. In this case as may be appreciated the bridging member may be adhered to the core mix due to infiltration of cementitious material into or through the structure of the bridging member. Also as may be appreciated from

FIG. 12

a longitudinal edge face and a respective pair of marginal areas


24


and


25


defines a longitudinal marginal edge; similarly for the other opposed side of the panel.




As mentioned above an edge reinforced panel in accordance with the present invention may comprise a U-shaped edge reinforcing mesh wherein a bridging member need not be adhered to a respective longitudinal edge face but may merely abut such face or as desired be spaced apart therefrom; in this case the bridging member may for example be provided with a water impervious character such that cementitious material from the. slurry of the core mix may not pass into or through the bridging member during the manufacture of a panel. It is possible for example to provide a wide band such as bands


5




a


and


6




a


with a centrally disposed at least substantially water impervious longitudinally extending zone on the core side thereof. The zone may be provide by means of any mechanism which may render the central zone impervious, e.g. by applying a water tight tape, by applying a suitable paint, by applying a wax material etc, to the central zone. In such case it is possible, for example, to apply to the opposite exposed side of the bridging member a desired indica in the form for example of a colour, words, etc. Suitable materials are as follows: adhering tape: masking tape, translucid shipping tape, electric tape or other self adhering tape; size: 0.5 to 4 inches wide, preferably 1.5 wide; made preferably of: polyethylene, paper, but can also be made of other impervious or semi-impervious material.




Material coatings: acrylic paint, oil paint, varnish, wax, silicone sealant, applied with roller or spray equipment on a width from 0.5 to 4 inches wide, 1 preferably 1.5″ wide. The coating can be impervious or semi-impervious. Material: non adhering film: 1 to 5 mils thick; 0.5 to 4 inches wide, preferably 1.5″ wide; made preferably of: polypropylene, polyethylene, paper, but can also be made of other impervious or semi-impervious material.





FIG. 13

shows a schematic partial cross sectional view similar to

FIG. 7

but wherein the wide band


6




a


is provided with a central longitudinally extending, at least substantially water pervious zone defined by an at least substantially water proof tape


40


which is attached (e.g. glued) to the core side of the band


6




a


. A similar water proof tape may if desired also be applied to wide tape


5




a


. As far the rest of the process as illustrated in

FIGS. 7

to


11


are concerned they stay the same.





FIG. 14

shows a schematic partial cross sectional view of a reinforced edge of a further panel made in accordance with a process as shown in

FIGS. 7

to


11


but with the modification shown in FIG.


13


. As may be seen the panel differs from the panel illustrated in

FIG. 12

in that the waterproof tape


40


abuts the longitudinal side edge of the core and is sandwiched between the core side edge face and the bridge member


36


. The presence of the tape


40


during manufacture inhibits the bridge member from being adhered to the core, by way of cementation or embedding. Since the tape is at least substantially waterproof the outer exposed surface of the bridging member, which in this case is provided with lettering in dotted outline, is not covered with cementitious material and the lettering is exposed to view in the final panel product.




As may be seen from

FIG. 14

, the tape


40


more or less extends only across the breadth of the core side edge face. Alternatively, as desired or as necessary, a substantially water impervious tape may extend into one or both of the adjacent marginal areas of the broad faces. As mentioned above, a marginal area may have a grip region and an adhesion free region. Referring back to

FIG. 14

examples of the position of such adhesive free regions are designated by the reference numerals


42


and


43


; the grip regions occupy the rest of the marginal areas. If a panel is to have one or both adhesion free regions


42


and


43


then the above mentioned process for manufacturing described with respect to

FIGS. 13 and 14

may for example be modified by using a wider water impervious tape.

FIGS. 13



a


and


14




a


relate to such a process for the provision of a panel having such adhesion free zones along both side edges thereof; in

FIGS. 13



a


and


14




a


the same reference numerals have been used as with respect to

FIGS. 13 and 14

to designate common elements. In

FIG. 13



a


the wider water impervious tape is designated by the reference numeral


40




a


. As may be seen from

FIG. 14



a


, the tape


40




a


in the final panel configuration has a U-shape like cross section (if somewhat flattened); i.e. a U-shape surface including the surface of the longitudinal or side edge is not adhered to the U-shaped reinforcement mesh component, distal end portions only of the strip members are adhered to the marginal edge faces in the grip regions. For the configuration shown in

FIG. 14



a


the distal part of the strip members is adhered to the core in the grip regions


45


and


46


.




In

FIGS. 7

to


14




a


the first and second edge strip members


38


and


39


are more or less of equal length. In accordance with the present invention these strip members may as desired or necessary be of different length. The

FIGS. 15

to


17


show schematic partial views of example panels in accordance with the present invention wherein the strip members are of different length.

FIG. 15

shows a strip member


38




a


which is longer than strip member


39




a


;

FIG. 16

shows a strip member


38




b


which is somewhat longer than strip member


39




b


;

FIG. 17

shows a strip member


38




c


which is shorter than strip member


39




c.






For purposes of illustration

FIGS. 7

to


13


and


14


relate to panels wherein the reinforcement mesh for the broad faces more or less extend the full breadth of the broad face of a panel. However, in accordance with the present invention it is advantageous to have panels wherein the side edges of the reinforcement mesh for the broad faces do not extend the full breadth of the broad face of a panel but are somewhat offset from the panel edge such as may be seen in

FIGS. 15

,


16


and


17


. The offset distance may for example be from ⅛ to ¼ of an inch. Other offset distance may also be used keeping in mind however that the edge reinforcement mesh are to still overlap the edges of the broad face meshes in the marginal areas of the broad faces. The offset regions are designated by the reference numerals


41




a


and


41




b


in

FIGS. 15

to


16


. In order to accommodate such offset regions the process steps discussed above with respect to

FIGS. 7

to


13


and


14


may be modified for example by using broad face meshes which are still centered in place as shown in these figures but for which the width at each side edge is shorter by the above mentioned amounts (i.e. shortened by from ⅛ to ¼ of an inch); in this case the core mix would be laid down so as to extend beyond the broad mesh edges for example by the above mentioned offset distances.




Turning now to

FIGS. 18

to


21


, these figures illustrate an apparatus for the preparation of an example panel in accordance with the present invention exploiting an example method of manufacture also in accordance with the present invention.





FIG. 18

illustrates an upstream portion of the example apparatus;

FIG. 19

illustrates a central portion of the example apparatus;

FIG. 20

illustrates a downstream portion of the example apparatus;

FIG. 21

illustrates an alternate upstream portion of the example apparatus which is similar to that shown in

FIG. 18

but which includes a tape application zone; and

FIG. 22

illustrates an upstream band feeding station for feeding a pair of side reinforcement band meshes to the apparatus upstream portion shown in FIG.


18


.




Referring to

FIG. 18

, the apparatus has a conveyor system comprising an endless conveyor belt


50


as well as attendant drive and return rollers; return roller


52


is shown in

FIG. 18

; the drive roller (not shown) is located at the other end of the conveyor belt and is configured in any suitable manner so as to be able to induce movement of the belt such that it travels in a working direction as shown by the arrow. The apparatus also has a support or forming table


54


. The conveyor system and the table


54


are arranged such that the conveyor belt


50


is able to slightingly travel over the surface of the table


54


such that the table is able to support the conveyor belt as well as any material disposed thereon.




The apparatus includes a protective film alignment component for alignment of a protective film


55


onto the conveyor belt. The protective film


55


is feed from a roll of such film (not shown). A protective film


55


is laid onto the belt so as to protect it and avoid the necessity of applying a release agent thereto. The film


55


should be wider than the board's width, for example wider by at least 5″ to 7″ or more. The protective film


55


may for example be made of polyethylene 3.0 to 5.0 mils in thickness.




The protective film alignment component comprises an alignment bar


56


as well as support members


57


and


58


which maintain the alignment bar


56


a predetermined distance above the conveyor belt


50


. The alignment bar


56


is suitably fixed to the support members


57


and


58


(e.g. as by welding, bolting, etc.); the support members


57


and


58


are similarly fixed to the table


54


.




Further downstream the apparatus has a side edge reinforcement deposit station for depositing a pair of spaced apart bands


60


and


62


of reinforcement mesh onto the protective film. The side edge reinforcement deposit station has pair of edge band alignment components


64


and


66


which are releasably slidable along a transverse rail element


67


fixed to side edges of the table by upright support members


68


and


69


such that the rail element


67


is suitably spaced above the conveyor belt. The rail element comprises two parallel spaced apart tracks. These band alignment components are configured so as to be positioned for depositing, onto the protective film, the two parallel bands


60


and


62


of reinforcement mesh in the appropriate marginal positions according to a panel's or board's desired width. The bands


60


and


62


may be of sufficient width (e.g. 4″ to 5″) so as to cover the upper and lower marginal edge areas (2″ to 3″ wide) and provide a 1″ minimum overlap of the upper and lower broad face reinforcement meshes referred to below.




The bands


60


and


62


of reinforcement mesh may for example be made of a synthetic non-woven non-oriented material. These bands


60


and


62


may for example have a thickness of 0.010″ and 0.020″ and a density of 2 to 4 oz per square yard. The bands


60


and


62


may for example be of polypropylene. The bands


60


and


62


may for example be in the form of a roll of a diameter of 20″ to 50″ but preferably 30″, e.g. in order to give a length of 500 to 1000 linear yards.




The band alignment components


64


and


66


each have a rail grip member respectively designated by the reference numbers


71


and


72


for releasably gripping the rail element


67


so as to releasably attach these components to the rail element


67


at a predetermined position thereon. Each band alignment component


64


and


66


comprises an upper support arm (respectively designated by the reference numbers


74


and


75


) and a lower slide bar arm (respectively designated by the reference numbers


76


and


77


) which are attached to an upright support plate (respectively designated by the reference numbers


78


and


79


) which projects from each of the rail grip members


71


and


72


transversely to the longitudinal axis of the rail element


67


. The upper support arms


74


and


75


project more or less at a right angle from a respective plate


78


or


79


to which they are fixed in any suitable fashion (e.g. by welding). The lower slide bar arms


76


and


77


are respectively pivotally attached to plate


78


and


79


by any suitable pivot means


80


and


81


(e.g. a hinge). The band alignment components each respectively have a crescent plate


82


and


83


fixed at the distal ends of upper support arms


74


and


75


; these crescent plates


82


and


83


are each provided with an arc shaped alignment slot


84


or


85


. The distal end of each of the lower slide bar arms


76


and


77


respectively has an upturned threaded end portion which extends upwardly at right angles to the rest of the slide bar arm through a respective slot


84


and


85


. A respective tightening nut


88


or


89


is disposed on a respective threaded end portion above a respective plate


82


or


83


. Just adjacent the underside of each plate


82


and


83


a respective upper end portion has a respective transversely projecting ridge member disposed such that as a respective nut


88


or


89


is screwed downwardly the ridge member can abut the underside of a respective plate


82


or


83


so as to clamp a respective lower slide bar arm


76


or


77


at a predetermined arc position. Loosening the nuts


88


or


89


allows the lower slide arm bar


76


or


77


to be pivoted about the pivot means


80


or


81


to a desired arc position.




Each of the rail grip members


71


and


72


is also configured so as to be able to releasably clamp a respective band alignment component


64


or


66


at a predetermined position on the rail element


67


. The grip members


71


and


72


each have upper clamp plates (respectively designated by the reference numbers


91


and


92


), lower clamp plates (respectively designated by the reference numbers


94


and


95


) and a pair of releasable tightening bolts (respectively designated by the reference numbers


97


and


98


). The upper clamp plates


91


and


92


are provided with unthreaded openings through which the shafts of the bolts


97


and


98


project. On the other hand the lower clamp plates


94


and


95


are provided with threaded openings which are able to engage the corresponding thread of the shafts of the bolts


97


and


98


passing thereinto through the slot between the tracks of the rail element


67


. As may be understood rotation of the bolts


97


or


98


in one direction will tend to tighten a respective clamp plate to the rail element


67


for fixing a respective alignment component


64


or


66


to the rail element


67


while rotation in the opposite direction will tend to loosen the grip of the clamp plates on the rail element


67


so that the alignment component


64


or


66


may be displaced as desired along the rail. The position of the slide bar arms


76


and


77


is thus adjustable.




As is shown in

FIG. 18

, both slide bar arms


76


and


77


are able to be maintained at an angle of 45 degrees with respect to the direction of travel of the conveyor belt such that the bands


60


and


62


being fed thereto at an angle more or less perpendicular to the direction of travel of the conveyor belt


50


are able to change direction and be deposited in parallel spaced relationship onto the protective film


55


. The adjustability of the band alignment components


64


and


66


means that they can also be moved to different positions in order to produce panels of different width (e.g. panels having a width of 32″, 36″ or 48″ wide boards).




The bands


60


and


62


may for example be aligned so that their edges are not outside the edges of the protective film


55


. The distance between the outer edges of the bands


60


and


62


and the outer edges of the protective film


55


may for example be from 0″ to 0.5″.




Referring now to

FIG. 19

the apparatus has a first broad face reinforcement deposit station for depositing a bottom or lower mesh layer onto the protective film


55


and the bands


60


and


62


. The first broad face reinforcement deposit station has a first mesh layer alignment component for depositing the bottom or lower layer of reinforcement mesh


100


onto the protective film


55


so as to overlap portions of each of the above mentioned side edge reinforcement bands


60


and


62


. For the present example apparatus the lower layer of the reinforcement mesh


100


is sized and centred so that the distance between the outer edges of the reinforcement mesh


100


and respective outer edges of the reinforcement bands


60


and


62


are more or less the same. The lower layer of reinforcement mesh


100


may be of fibreglass or polypropylene.




The first mesh layer alignment component comprises an alignment bar


102


as well as support members


104


and


105


which maintain the alignment bar


102


a predetermined desired distance above the conveyor belt


50


. The support members


104


and


105


may be adjustable or non adjustable as desired or necessary.




In

FIG. 19

the support members are shown as being adjustable such that the alignment bar may be displaced upwardly and downwardly as well as forwardly in the direction of travel of the conveyor belt and backwards in the opposite direction. The following description will be given with respect to support member


104


but the same reference numbers will be used to designate the common elements of support element


105


.




Referring to

FIGS. 19

,


19




a


,


19




b


and


19




c


the support member


104


has an upright support element


107


provided at the top thereof with a crown element


108


fixed thereto having a threaded channel. The support member


104


has a first crank


109


provided with a threaded shaft


110


, a crank handle


111


at one end and at the other distal end an abutment head


112


. The threaded shaft


110


is in screw engagement with the threaded channel of the crown element


108


. The abutment head


112


is rotatably attached to a further crank body by fixing the outer shell


115


of a bearing member to the crank body


114


and fixing the inner bearing element


116


which is rotatable with respect to the outer shell


115


, to the abutment head


112


. In this way rotation of the crank


109


in one direction will cause the head


112


to rotate and push against the crank body


114


while rotation in the opposite direction will cause the head


112


to pull the crank body


114


. The support member


104


includes an additional or second crank


117


which is connected in analogous fashion to the crank body


114


and an alignment bar attachment member


119


which in turn is attached to the alignment bar


102


such that rotation of the crank


115


through the crank body


114


either induces the bar


102


to be raised or to be lowered. With respect to the second crank


115


, the same reference numbers are used to designate elements which are common with the first crank


109


.





FIGS. 19



a


,


19




b


and


19




c


show in detail the above described dual crank system for the support member


104


.




The apparatus has a slurry station comprising a pair of slurry edger rail elements


121


and


122


, a slurry scrapper or screed bar element


125


and a slurry delivery system. The purpose of the slurry station is to facilitate adherence of the reinforcement mesh


100


to the core mix by first embedding the mesh


100


in a slurry layer prior to the deposit of the core mix thereon; this slurry layer will also serve to create a smooth side face for the panel. However if desired this slurry station may be omitted. If the slurry station is omitted other steps may have to be taken to ensure that the reinforcing mesh is adhered to the panel surface in the desired or necessary fashion e.g. by being embedded therein. For example, the formulation of the concrete mix may be modified so as to facilitate the embedding of the bottom mesh therein; please see U.S. Pat. No. 5,221,386 column 8 lines 1 to 31 for a description of such a potential core mix; the entire contents of this patent are hereby incorporated by reference.




The slurry edger rail elements


121


and


122


are directly attached to the table


54


by connector elements


128


and


129


and indirectly by elements


130


and


131


attached to legs


134


and


135


of a support structure


137


for supporting a slurry holding container


140


. The edger rail elements


121


and


122


are fixed in place such that the lower edge of each of the edger rail elements


121


and


122


is spaced apart from the table


54


a distance sufficient to allow the conveyor belt


50


, protective film


55


and any desired layer or layers of reinforcing mesh to pass between. This distance however is such that the slurry deposited on the lower mesh


100


is inhibited from spreading laterally beyond these edger rail elements


121


and


122


. The edger rail elements


121


and


122


are also spaced apart a desired predetermined distance so as to assure that a predetermined constant width of slurry is deposited on the lower mesh


100


.




The slurry scrapper or screed bar element


125


is attached to the support structure


137


for the slurry holding container


140


by support arms


142


and


144


such that the lower edge of the screed bar element


125


is spaced apart from the table


54


so as to define a screed distance (i.e. a nip) sufficient to allow the conveyor


50


, a protective film


55


and any desired layer or layers of reinforcing mesh to pass therebetween. This screed distance however is such that the slurry deposited on the lower mesh


100


and which passes under the screed bar element


125


forms a slurry layer of predetermined depth in which the lower mesh


100


is more or less embedded. The screed bar element


125


may be of rubber.




As may be appreciated, the slurry edger rail elements


121


and


122


and the slurry scrapper or screed bar element


125


form a type of U-shaped raised barrier dam structure having lower edges which are spaced apart from the table sufficient above described respective spacing distances. By suitable manipulation and synchronisation of the speed of the conveyor belt


50


and the flow rate of slurry onto the lower mesh


100


more or less at the mouth of the dam, slurry suitably deposited on the lower mesh


100


may be made to backflow and create an upstream slurry pool


145


within the U-shaped barrier dam which may be generally deeper than these spacing distances. In this manner a slurry layer may be continuously laid down in which the lower mesh


100


is embedded. The slurry delivery system comprises the slurry holding container


140


, an agitator


147


and a controllable slurry outlet member indicated generally by the reference number


150


. The slurry holding container


140


is supported by the support structure


137


, the container


140


being attached to the support structure


137


in any suitable fashion e.g. bolting. The agitator is connected to a motor (not shown) for rotation of the agitator. The components of the slurry may be mixed together in a separate container (not shown) and thereafter be delivered to the slurry holding container


140


in any suitable fashion (e.g. through appropriate ducting or manually); once in the slurry holding container


140


the agitator functions to maintain the slurry in a more or less homogenous mixed state prior to its being released onto the lower mesh


100


. Alternatively, if desired or as necessary the slurry components may be delivered in any suitable fashion directly to the slurry holding tank


140


where they may be mixed due to the influence of the rotating agitator


147


. The controllable slurry outlet member


150


may include a valve (not shown), such as a gate valve, which may be (spring) biased in a closed position. The valve may be connected to a solenoid type means whereby in response to an electrical signal the valve may be opened so as to release slurry onto the lower mesh


100


at timed intervals synchronised with the movement of the lower mesh


100


thereunder. The outlet member


147


is disposed such that the slurry deposited on the lower mesh


100


may be maintained within the confines of the above described U-shaped barrier dam and form the above mentioned slurry pool


145


.




The apparatus also has a core mix station which is similar in general makeup to the slurry station. The core mix station comprises a pair of core mix edger rail elements


155


and


156


, a core mix screeding roller component


158


and a core mix delivery system. The purpose of the core mix station is to deposit core mix onto the slurried lower mesh


100


so as to form a core mix layer covering the breadth of the lower mesh.




The core edger rail elements


156




157


are directly attached to the table


54


by connector elements


159


and


160


and indirectly by elements


161


and


162


attached to legs


164


and


165


of a support structure


167


for supporting a screed roller


170


such that the lower edge of each of the rail elements


156


and


157


is spaced apart from the table


54


a distance sufficient to allow the conveyor


50


, protective film


55


and any desired layer or layers of reinforcing mesh to pass therebetween. This distance however is such that the core mix deposited on the slurried lower mesh is inhibited from spreading laterally beyond these edger rail elements


156


and


157


. The edger rail elements


156


and


157


are also spaced apart a desired predetermined distance so as to assure that a constant width of core mix is deposited on a slurried lower mesh. The core edger rail elements


156


and


157


may be of high molecular weight polyethylene.




The core mix screeding roller component comprises a screed roller


170


and the support structure


167


for holding the roller


170


in place. The roller


170


may have a (poly)urethane covered surface. The roller


170


has shaft elements


172


and


174


fixed at opposed ends thereof. These shaft elements


172


and


174


are each engaged in respective bearing means (not shown) provided in the cross members


176


and


178


; these bearing members allow the screed roller


170


to be rotated about a longitudinal axis. The shaft


172


is attached to a motor (not shown) for urging the clockwise rotation of the screed roller


170


; the motor is suitably configured for example to rotate the screed roller


170


clockwise in the same direction as the conveyor belt


50


but at a speed slower than the speed of the conveyor belt


50


.




The screed roller


170


may be fixed in place or be vertically adjustable so as to vary the nip between the roller and the conveyor belt. In

FIG. 19

the screed roller is illustrated as being vertically adjustable.




The cross members are vertically displaceable by a crank system analogous to that shown in

FIGS. 19



a


,


19




b


and


19




c


such that the screed roller


170


may be displaced up and down so that the nip between the roller


170


and the conveyor belt


50


may be set to the desired core mix layer thickness. The crank system includes a single crank component (the cranks being designated by the reference numbers


180


and


181


). The side ends of the cross members


176


and


178


are each provided with key elements slidably engaged in slots on the inside parts of the roller support structure


167


; one of the slots is designated with the reference number


184


.




As may be appreciated, the screed roller


170


and core mix edger rail elements


155


and


156


also form a type of U-shaped raised barrier core mix dam structure having lower edges which are spaced apart from the table


54


sufficient above described respective spacing distances. By suitable manipulation and synchronisation of the speed of the conveyor belt


50


and the flow rate of core mix onto the lower mesh more or less at the mouth of this core mix dam, core mix suitably deposited on a lower mesh may be made to backflow and create an upstream core mix mass


190


within the U-shaped barrier dam which may be generally deeper than these spacing distances, (i.e. in particular deeper than the screed roller nip). In this manner a core mix layer


191


may be continuously laid down over the slurried lower mesh.




The core mix delivery system comprises the core mix holding container


192


, an agitator


193


and a controllable core mix outlet member indicated generally by the reference number


195


. The core mix holding container


192


is supported by the support structure


196


. The agitator


193


is connected to a motor (not shown) for rotation of the agitator. The components of the core mix may be the same as for the slurry but including aggregate and if desired an air entraining agent or other desired or necessary components. The components of the core mix may be mixed together in a separate container (not shown) and thereafter be delivered to the core mix holding container


192


in any suitable fashion (e.g. through appropriate ducting or manually); once in the core mix holding container


192


the agitator functions to maintain the core mix in a more or less homogenous mixed state prior to its being released onto the slurried lower mesh. Alternatively, if desired or as necessary the core mix components may be delivered in any suitable fashion directly to the core mix holding tank


192


where they may be mixed due to the influence of the rotating agitator. The controllable core mix outlet member


195


may include a motorised archimedes screw for delivering core mix onto the slurried lower mesh at timed intervals synchronised with the movement of the slurried lower mesh thereunder; the rotation of the screw may for example be controlled by a timer mechanism which controls the energization and denergization of the screw motor. The outlet member


195


is disposed such that the core mix deposited on the slurried lower mesh may be maintained within the confines of the above described U-shaped barrier core mix dam and form the above mentioned core mix mass.




Turning to

FIG. 20

the apparatus has a second broad face reinforcement deposit station for depositing a bottom or lower mesh layer onto the core mix layer.




The second broad face reinforcement deposit station has a layer alignment component for depositing a top or upper layer of reinforcement mesh


200


onto the core mix. For the present example apparatus the top layer of the reinforcement mesh


200


is sized and centred so that the distance between the outer edges of the top reinforcement mesh


200


and outer edges of the reinforcement bands


60


and


62


are more or less the same as that for the lower layer of reinforcement mesh


100


. The top layer of reinforcement mesh


200


may be of fibreglass or polypropylene.




The top or upper mesh layer alignment component comprises the same type of elements as the above described lower mesh layer alignment component so the same reference numerals designated the common components. Essentially the top or upper mesh layer alignment component comprises an alignment bar


102


as well as a dual crank system as described above for adjusting the position of the bar


102


.




Still referring to

FIG. 20

the apparatus has a finishing station. The finishing station comprises a pair of guide fork elements


211


and


212


, a pair of opposed finishing edge rail elements


214


and


216


, a vibratible floatable screed plate member


220


and a pair of edge compression ski components


222


and


224


.




The guide fork elements


211


and


212


each comprise gibbet like support members and a prong end having a pair of downwardly extending prongs or fingers generally designated by the reference numerals


226


and


227


. The gibbet like support members are attached to the table.




The finishing edger rail elements


214


and


216


each have guide flange ends


230


and


232


which taper in the upstream direction such that the inner face tapers towards the outer face thereof and the top face tapers downwardly. The tip ends (one of which is designated with the reference number


234


) of the guide flange ends


230


and


232


are each disposed more or less just below the prong end of a respective guide fork element


211


and


212


, i.e. just below the gap between the two prongs. The guide fork elements


211


and


212


and the guide flange ends


230


and


234


cooperate to urge marginal mesh regions as well as the marginal regions of the protective film from an initial horizontal position upwardly to a vertically extending position from which distal edges thereof may then be bent inwardly and downwardly under the influence of the vibratable floatable screed plate member


220


.




The finishing edger rail elements


214


and


216


are attached to the table by connector elements


236


,


237


,


238


and


239


such that the lower edge of each of the finishing edger rail elements is spaced apart from the table


54


so as to define a nip sufficient to allow the conveyor belt to pass there. The rail elements are also spaced apart a desired predetermined distance so as to assure that the inner surface thereof may sliding abut respective panel side edges. If desired the finishing edger rail elements


214


and


216


may be fixed in place by the above mentioned connector elements. However, if desired the edger rail elements may be laterally adjustable in order to accommodate panels of different width. For example the connector elements may have outer shell and an inner telescoping member and an adjustment bolt; these elements by way of illustration are designated with respect to connector


237


respectively by numbers


250




251


and


252


. The bolt may be suitably attached in any manner to the back of the outer shell so that rotation of the bolt in one direction will induce the edger rail element


214


to move laterally inward while a reverse rotation will induce a laterally outward displacement of the edger rail element


214


.




The vibratable floatable screed member


220


comprises an elongated plate


260


and a vibrator


265


(e.g. a compressed air turbine vibrator) for inducing the plate


260


to vibrate up and down. The vibrator is connected to a suitable energization source (not shown). The plate


260


extends between the inner surfaces of the finishing edger rail elements


214


and


216


and is sufficiently long so as so as to overlap top marginal regions of the top broad face of the panel being made. The vibratible floatable screed member


220


is made of a relatively light weight material so that it is able to essentially float over the upper top mesh and yet be able to ride over distal parts of the side edge meshes and protective film as the panel passes thereunder, i.e. so as to complete the inward and downward bending of distal edges of the side edge meshes. The plate


260


may for example weigh from 20 to 60 pounds, be 3″ to 9″ wide, and be of aluminum. The vibratible floatable screed member


220


is maintained in position against the movement of the panel there underneath by bumper or stop elements


270


and


271


which may have rubberised tips


272


and


273


. The vibrator


265


may vibrate the plate


260


so as to induce the upper mesh as well as the bent over edge mesh portions overlapping the upper mesh to become embedded in surface of the core mix layer.




As mentioned the protective film and the bands are turned upside-down (folded) along the board's edges; the folded over webs are designated by the reference number


221


. Advantageously, sufficient distance (for example 10 to 20 feet) is provided between the screed roller and the vibrating bars such that the band may be folded naturally, releasing the tension that can cause the band to spring out of the board's surface. The finishing edger rail elements may start for example from 20 to 5 feet before the vibrating plat. These edger rail elements


214


and


216


help the protective film and the bands to be folded without ripples or uneven tension and inhibit the changing of the board dimensions when subject to the aforementioned under vibrations.




The apparatus has a pair of edge compression ski components


222


and


224


for smoothing out the edge regions and providing the edges with an outward taper (please see

FIGS. 15

,


16


and


17


). The edge compression ski components


222


and


224


each comprise a ski shaped engagement element


275


or


276


for riding an edge of the panel. The ski shaped engagement elements


275


and


276


are fastened to a support bar


280


by respective brackets


281


or


282


. The support bar


280


itself is suspended above and fixed to the table


54


on opposite sides of the conveyor belt


50


by upright support elements


285


and


286


.




The ski shaped engagement elements


275


and


276


are each attached to respective brackets by a pair of nut/shaft systems. The following will describe one such nut/shaft system in relation to the component


222


; the other nut/shaft systems are the same.




Referring to component


222


the nut/shaft system comprises a threaded shaft


290


and a pair of nuts; an upper nut being designated by the reference number


291


. The threaded shaft


290


is attached at one end to the ski engagement element


275


and the other distal end engages a threaded channel in bracket


281


; the distal end of shaft


290


extends through the threaded channel and engages the upper nut


291


. The second nut engages the threaded shaft just below the bracket


281


. The nuts may be made to releasably clamp the shaft


290


to the bracket


281


by suitable rotation thereof in opposite directions. By displacing the nuts along the shaft the ski engagement element may be made to exert more or less pressure on the adjacent panel edge. One of the nut/shaft systems of component


222


may be used to vary the pressure of the ski shaped engagement element on the outboard side of the edge and the other nut/shaft system may be used to vary the pressure on the inboard side of the same edge; in general more pressure is applied to the outboard side of the edge than the inboard side thereof so that an edge has a somewhat outwardly tapered shape (please see

FIGS. 15

to


17


). Additionally the ski engagement element


275


is disposed such that the ski like tip thereof is upstream relative to the other end thereof and the longitudinal axis of the ski element is disposed transversely with respect the longitudinal axis of the panel. Although the mechanism for inducing the ski elements to press down on the edges has been described in terms of a nut/shaft system, any other type of biasing means may of course be used, e.g. a spring biased system.




Once past the finishing station the elongated panel product may be sent on the conveyor to any known type of curing station (e.g. a curing oven). After the curing station the panel may then be transferred from the conveyor belt to a cutting station where the panels are cut to size; prior to transferring the panel to the cutting station the protective film may be separated and recovered. Thereafter the cut panels may be sent to a stacking/packaging station where the panels may be moist cured for 3 to 7 days before shipping. The end drive roller for the conveyor belt may be located between the curing and cutting stations.




Referring to

FIG. 21

this figure is the same as

FIG. 18

but it additionally shows an example tape application station for application of an adhesive tape to the core side of the bands


60


and


62


so as to provide a panel in accordance with the present invention wherein the bridging member is not adhered to the core as described above. Since

FIG. 21

is except as noted above the same as

FIG. 18



FIG. 21

will not include all of the reference numbers of FIG.


18


.




The tape application station includes a pair of rolls of tapes


300


and


301


, a threaded tape support rod


302


, a plurality of clamp nuts (each generally designated by the reference number


304


), upright support members


306


and


308


, tape alignment components


310


and


311


, and tape pressure application components


313


and


315


.




The rolls of tape include tape cores through which the tape support rod


302


may be threaded; a tape core is sized such that a roll of tape is freely rotatable about the support rod


302


. A roll of tape (


300


or


301


) is maintained in essentially one predetermined position by being bracketed between adjacent clamp nuts


304


. The upright support members


306


and


308


have upper openings through which the threaded rod


302


extends. The rod


302


is similarly maintained in place by clamp nuts


304


. The alignment components each include a respective arm


320


and


321


which bring the tape to an initial close proximity to a respective underlying band (


60


or


62


) such that a subsequent upstream tape pressure application component


313


or


315


may press down on the tape such that the adhesive thereof causes the tape to be adhered to the band. The tape pressure application components


313


and


315


each respectively includes a contact element


327


or


328


hinged at one side to a respective support arm


322


or


323


; the contact elements are biased by a respective bias spring


325


or


326


such that the side of the contact element opposite the hinged side thereof is biased so as to slide over the tape urging the tape into adhesive contact with the band (


60


or


62


). With the tape in place a panel as discussed with respect to

FIGS. 13

,


13




a


,


14


and


14




a


may be manufactured.




Instead of the above described tape mechanism one could use an analogous paint applicator, wax applicator etc.





FIG. 22

shows an example mechanism for feeding reinforcing strips or bands


60


and


62


to the apparatus forward end illustrated in FIG.


18


. As may be seen rolls of mesh bands


330


and


340


are rotatably attached to shafts


345


and


346


; the attachment may in any suitable fashion so as to be able to let out the bands as necessary. For example the rolls may have central cores


350


and


351


which may be able to slide over the shafts


345


and


346


in the manner of rotatable sleeves. The rolls may be maintained in place by a block arm releasably screwed to a respective shaft


345


or


346


; the block arms inhibiting longitudinal axial movement of the rolls off of the shaft but not rotation movement about the shaft. The mechanism include 45 degree slide arms


360


and


370


for changing the direction of motion of the bands by 90 degrees as well as a base support structure


380


and


381


.





FIG. 23

illustrates in schematic perspective view an edge strength test for a panel section


400


having an edge reinforcement in accordance with the present invention and a panel section


410


having a known wrap around reinforced edge such as illustrated in U.S. Pat. No. 5,221,386 the entire contents of which are incorporated herein by reference (see

FIG. 6

of this patent). Both panels are screwed to spaced wood blocks by screws; screws


411


are shown as being just adjacent to the outer edge of each panel section. As may be seen the prior art panel


410


has edge failure but not the panel


400


of the present invention when applying a screw close to the edge. A panel in accordance with the present invention thus may permit the installation of fasteners close to the edge (0.5″ or less) without damaging them and thus provide superior fastener pull resistance.




As may be appreciated from the above, in accordance with the present invention it is in particular for example, possible to manufacture a cement board having impact resistant edges by applying to the edge area of the board a continuous band of synthetic, alkali-resistant, non-woven fabric of sufficient strength and elasticity to completely cover the edge area of the board with a U-shaped reinforcing mesh without sacrificing the scoring ability of the latter. In accordance with the present invention it is possible, for example to obtain a cementitious board having smooth longitudinal edges which may be impact resistant by the addition of a U-shaped non-woven fabric not embedded nor below the longitudinal minor edge face, i.e. the reinforcing mesh in the region of the minor surface may abut or be alternatively cemented thereto.




As an example of a non-woven non-oriented mesh which may be used herein may be SYNFAB described as a polypropylene, staple fiber, needle punched, nonwoven fabric having the following characteristics:




Mass per unit area: 2.5 oz per sq yd




tensile strength at break: 70 pounds




tensile strength at 15 percent elongation: 15 pounds




Elongation at break: 60 percent




Elongation at 15 lb tensile strength: 15 percent




Trap tear strength: 25 pounds




Mullen burst strength: 175 psi




The following tables give example compositions for the slurry and core mix as well as certain characteristic of a panel made in accordance with the present invention.















SLURRY FORMULATION















Preferred Specific







Generic Formula




formula Percentage






Slurry




Percentage in weight




in weight









Portland cement




Type 1 Portland cement 50-80%




Type 1 Portland







Type 2 Portland cement 50-80%




81% +/− 5%







Type 3 Portland cement 50-80%







Type 4 Portland cement 50-80%






Fly ash




0-30%




0%






Calcium sulfate




0-10%




0%






Calcium




0-10%




0%






carbonate






High alumina




Blaine 4000 to 5000: 2-20%




Blaine 4000 to






cement




Blaine 5000 to 6000: 1-15%




5000 10 +/− 5%






Water




5-20%




8% +/− 2%






Air entraining




0-5%




0%






agent






Plasticizer




0-5%




0.8% +/− 0.2%






Total





100 +/− 5%





























Preferred Specific







Generic Formula




formula Percentage






Core




Percentage in weight




in weight











Portland cement




Type 1 Portland cement 30-50%




Type 1 Portland







Type 2 Portland cement 30-50%




cement 34 +/− 2%







Type 3 Portland cement 30-50%







Type 4 Portland cement 30-50%






High alumina




Blaine 4000 to 5000: 2-20%




Blaine 4000 to






cement




Blaine 5000 to 6000: 1-15%




5000 4% +/− 2%






aggregate




Mortar sand 0-1/16″ 30 to 60%




mortar sand







Concrete sand 0-1/8 30 to 60%




48% +/− 2%







Expanded Clay 15 to 50%







Expanded schist 15 to 50%







Expanded slag 15 to 50%







Expanded vermucilute 2-10%







Expanded perlite 2-10%






Polystyrene




flame retardant 0-1/8″ dia




1% +/− 0.2%






Water




drinkable 10-30%




drinkable 11 +/− 5%






Air entraining




Generic surfactant 0-2%




Generic surfactant







Deceth sulfate 0-2%




0.015% +/− 0.005%







Laureth sulfate 0-2%







Total





100% +/− 5%




























Slurry




























Portland cement




Ciment St-Laurent Lafarge




81% +/− 5%








Ciment Quebec







Accelerator




Lafarge Calcium Alumninate




10 +/− 5%








Lehigh Cement







Water




N/A




8% +/− 2%







Plasticizer




Euclid




0.8% +/0.2%








Master-Builders








Grace








Total





100 +/− 5%


























Board Characteristics













Physical test




Prefered value




Generic value









Unit weight




2.7 lbs/sq. ft




2.5 to 3.3 lb/sq. ft






Water absorption




8.6%




5 to 30%






Humidified deflection




0″




0 to 0.01






Linear variation




0.049%




0 to 0.10






Flexural strength




1100 psi




200 to 2000 psi






Nail pull resistance (wet)




121 lbf




50 to 200 lbf






Nail pull resistance (dry)




164 lbf




50 to 200 lbf






Compressive strength




971 psi




750 to 4000 psi






Joint depth




0.14″




0 to 0.2″






Squaring




0 mm




0 to 0.2″






Freeze/thaw resistance as %




0.32%




0.32%






of loss






Fire resistance




1 hr, 2 hrs




45 minutes, 1 hr, 2 hrs,








3 hrs






Flame spread




0




0-10






Smoke density




0




0-10






Wind Load




75 psf




30 to 100 psf






(½″ × 4 × 8, studs 16″ o.c.)






Bond strength of mortar




58 psi




25 to 300 psi






Sound transmission Class




56* Stc




45 to 65 stc






Indentation resistance




256 lbf




200 to 500 lbf






Bending radius




5′




0.5 to 8 feet






Falling ball impact




8.8″




5 to 16″













Claims
  • 1. A cementitious panel comprising a longitudinal side edge face, a pair of opposed broad faces, a longitudinal marginal edge, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, and a U-shaped edge reinforcing component comprising fibers;each broad face comprising a marginal area bordering said longitudinal edge face; said longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and said longitudinal side edge face; said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face; said U-shaped edge reinforcing component comprising first and second edge strip portions and a bridging portion connecting said first and second edge strip portions, said first and second edge strip portions being adhered to said core at respective opposed marginal areas of said longitudinal marginal edge and said bridging portion being non-adhered to and abutting said longitudinal side edge face; said first and second broad face reinforcing mesh components and said U-shaped edge reinforcing component being configured such that said first and second strip portions are in an overlapping relationship with the respective first and second broad face reinforcing mesh components in the marginal areas of said longitudinal marginal edge.
  • 2. A cementitious panel as defined in claim 1 wherein said first and second broad face reinforcing mesh components are offset inwardly relative to the longitudinal side edge face of said longitudinal marginal edge.
  • 3. A cementitious panel as defined in claim 1 wherein said marginal areas comprise an adhesion region and a non-adhesion region, said non-adhesion regions bordering said longitudinal side edge faces and wherein said first and second edge strip portions are non-adhered to said core at respective non-adhesion regions.
  • 4. A cementitious panel as defined in claim 1 wherein the first and second broad face reinforcing mesh components are of a non-woven oriented mesh.
  • 5. A cementitious panel as defined in claim 1, wherein said light weight cementitious core comprises at least thirty percent by weight Portland cement.
  • 6. A cementitious panel as defined in claim 1, wherein said U-shaped edge reinforcing component comprises polypropylene fibers.
  • 7. A cementitious panel as defined in claim 1, wherein said bridging portion is substantially impervious to water.
  • 8. A cementitious panel as defined in claim 7, wherein said bridging portion comprises a layer of substantially waterproof tape.
  • 9. A cementitious panel as defined in claim 1, wherein said first and second strip portions are disposed outside of said respective first and second broad face reinforcing mesh components, relative to said core.
  • 10. A cementitious panel comprising a pair of opposed longitudinal side edge faces, a pair of opposed broad faces, a pair of opposed longitudinal marginal edges, a light weight cementitious core, a first broad face reinforcing mesh component, a second broad face reinforcing mesh component, a first U-shaped edge reinforcing component and a second U-shaped edge reinforcing component;each broad face comprising a marginal area bordering each longitudinal edge face; each longitudinal marginal edge comprising a marginal area of one of said broad faces, an opposed marginal area of the other of said broad faces and a respective longitudinal side edge face; said first and second broad face reinforcing mesh components each being adhered to said core at a respective broad face; said first and second U-shaped edge reinforcing components each comprising fibers and each comprising first and second edge strip portions and a bridging portion connecting said first and second edge strip portions, said first and second edge strip portions being adhered to said core at respective opposed marginal areas of a respective longitudinal marginal edge and each of said bridging portions being non-adhered to and abutting said respective longitudinal side edge face; said first and second broad face reinforcing mesh components and said first and second U-shaped edge reinforcing mesh components being configured such that said first and second strip portions are in an overlapping relationship with the respective first and second broad face reinforcing mesh components in the marginal areas of a respective longitudinal marginal edge.
  • 11. A cementitious panel as defined in claim 10 wherein said first and second broad face reinforcing mesh components are offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges.
  • 12. A cementitious panel as defined in claim 10 wherein said marginal areas comprise an adhesion region and a non-adhesion region, said non-adhesion regions bordering said longitudinal side edge faces and wherein said first and second edge strip portions are non-adhered to said core at respective non-adhesion regions.
  • 13. A cementitious panel as defined in claim 10 wherein said first and second broad face reinforcing mesh components are each embedded in a respective broad face of said core and wherein said first and second edge strip portions are cemented to said core at respective opposed marginal areas of a respective longitudinal marginal edge.
  • 14. A cementitious panel as defined in claim 13 wherein said first and second broad face reinforcing mesh components are offset inwardly relative to the longitudinal side edge faces of said longitudinal marginal edges.
  • 15. A cementitious panel as defined in claim 14 wherein said marginal areas comprise an adhesion region and a non-adhesion region, said non-adhesion regions bordering said longitudinal side edge faces and wherein said first and second edge strip portions are non-adhered to said core at respective non-adhesion region.
  • 16. A cementitious panel as defined in claim 13 wherein the first and second broad face reinforcing mesh components are of a non-woven oriented mesh.
  • 17. A cementitious panel as defined in claim 10 wherein the first and second broad face reinforcing mesh components are of a non-woven oriented mesh.
  • 18. A cementitious panel as defined in claim 10, wherein said light weight cementitious core comprises at least thirty percent by weight Portland cement.
  • 19. A cementitious panel as defined in claim 10, wherein each of said U-shaped edge reinforcing components comprises polypropylene fibers.
  • 20. A cementitious panel as defined in claim 10, wherein said bridging portion is substantially impervious to water.
  • 21. A cementitious panel as defined in claim 20, wherein said bridging portion comprises a layer of substantially waterproof tape.
  • 22. A cementitious panel as defined in claim 10, wherein said first and second strip portions are disposed outside of said respective first and second broad face reinforcing mesh components, relative to said core.
  • 23. A cementitious panel, comprising:(a) a longitudinal side edge face; (b) first and second opposed broad faces, each comprising a marginal area bordering said longitudinal edge face; (c) a longitudinal marginal edge comprising (i) a marginal area of one of said broad faces, (ii) an opposed marginal area of the other of said broad faces, and (iii) said longitudinal side edge face; (d) a cementitious core comprising at least thirty percent by weight Portland cement; (e) first and second broad face reinforcing mesh components, each comprising an oriented glass mesh adhered to said core at a respective broad face; and (f) a U-shaped edge reinforcing component comprising first and second edge strip portions and a bridging portion connecting said first and second edge strip portions, said first and second edge strip portions being adhered to said core at respective opposed marginal areas of said longitudinal marginal edge, said U-shaped edge reinforcing component comprising non-woven, non-oriented, polypropylene fibers, said bridging portion being substantially impervious to water and non-adhered to and abutting said longitudinal side edge face; wherein said first and second strip portions are in an overlapping relationship with said respective first and second broad face reinforcing mesh components in the marginal areas of said broad faces.
  • 24. A cementitious panel as defined in claim 23, wherein said first and second strip portions are disposed outside of said respective first and second broad face reinforcing mesh components, relative to said core.
  • 25. A cementitious panel, comprising:(a) a longitudinal side edge face; (b) first and second opposed broad faces, each comprising a marginal area bordering said longitudinal edge face; (c) a longitudinal marginal edge comprising (i) a marginal area of one of said broad faces, (ii) an opposed marginal area of the other of said broad faces, and (iii) said longitudinal side edge face; (d) a cementitious core comprising at least thirty percent by weight Portland cement; (e) first and second broad face reinforcing mesh components, each adhered to said core at a respective broad face; and (f) a U-shaped edge reinforcing component comprising fibers and comprising first and second edge strip portions and a bridging portion connecting said first and second edge strip portions, said first and second edge strip portions being adhered to said core at respective opposed marginal areas of said longitudinal marginal edge and said bridging portion being non-adhered to and abutting said longitudinal side edge face; wherein said first and second strip portions are in an overlapping relationship with said respective first and second broad face reinforcing mesh components in the marginal areas of said broad faces.
  • 26. A cementitious panel as defined in claim 25, wherein each of said first and second broad face reinforcing mesh components comprises an oriented glass mesh.
  • 27. A cementitious panel as defined in claim 25, wherein said U-shaped edge reinforcing component comprises oriented fibers.
  • 28. A cementitious panel as defined in claim 25, wherein said U-shaped edge reinforcing component comprises non-oriented fibers.
  • 29. A cementitious panel as defined in claim 28, wherein said U-shaped edge-reinforcing component comprises non-oriented polypropylene fibers.
  • 30. A cementitious panel as defined in claim 25, wherein said bridging portion is substantially impervious to water.
  • 31. A cementitious panel as defined in claim 25, wherein said first and second strip portions are disposed outside of said respective first and second broad face reinforcing mesh components, relative to said core.
Priority Claims (1)
Number Date Country Kind
2211984 Sep 1997 CA
US Referenced Citations (65)
Number Name Date Kind
RE. 32037 Clear Nov 1985
1439954 Emerson Dec 1922
1604707 Mehlhope Oct 1926
1634809 Weiss Jul 1927
1653474 Schumacher Dec 1927
1672097 Schumacher Jun 1928
1719200 Schumacher Jul 1929
1720856 Payne Jul 1929
1747339 Walper Feb 1930
1787163 New Dec 1930
1805840 New May 1931
1808003 New Jun 1931
2314449 Hoggatt Mar 1943
2803575 Riddell et al. Aug 1957
3003290 Lerner Oct 1961
3284980 Dinkel Nov 1966
3849235 Gwynne Nov 1974
4002788 Lott Jan 1977
4159361 Schupack Jun 1979
4195110 Dierks et al. Mar 1980
4203788 Clear May 1980
4229497 Piazza Oct 1980
4265979 Baehr et al. May 1981
4286991 Galer et al. Sep 1981
4286992 Galer et al. Sep 1981
4288263 Delcoigne et al. Sep 1981
4293341 Dudley et al. Oct 1981
4344804 Bijen et al. Aug 1982
4350533 Galer et al. Sep 1982
4351867 Mulvey et al. Sep 1982
4378405 Pilgrim Mar 1983
4407676 Restrepo Oct 1983
4420295 Clear et al. Dec 1983
4434119 Teare Feb 1984
4450022 Gale May 1984
4477300 Pilgrim Oct 1984
4488909 Galet et al. Dec 1984
4488917 Porter et al. Dec 1984
4494990 Harris Jan 1985
4504335 Galer Mar 1985
4504533 Altenhöfer et al. Mar 1985
4528238 Alford Jul 1985
4617219 Schupack Oct 1986
4647496 Lehnert et al. Mar 1987
4752538 Bounini Jun 1988
4793892 Miller et al. Dec 1988
4810569 Lehnert et al. Mar 1989
4816091 Miller Mar 1989
4916004 Ensminger et al. Apr 1990
4948647 Burkard Aug 1990
5030502 Teare Jul 1991
5188889 Nagatomi et al. Feb 1993
5220762 Lehnert et al. Jun 1993
5221386 Ensminger et al. Jun 1993
5225237 Magnani Jul 1993
5319900 Lehnert et al. Jun 1994
5350554 Miller Sep 1994
5371989 Lehnert et al. Dec 1994
5390458 Menchetti Feb 1995
5397631 Green et al. Mar 1995
5473849 Jones, Jr. et al. Dec 1995
5552187 Green et al. Sep 1996
5644880 Lehnert et al. Jul 1997
5704179 Lehnert et al. Jan 1998
5791109 Lehnert et al. Aug 1998
Foreign Referenced Citations (13)
Number Date Country
993779 Jul 1976 CA
1182481 Feb 1985 CA
1290587 Jan 1987 CA
1283666 Apr 1991 CA
2808723 Sep 1979 DE
919092 Feb 1963 GB
1344479 Jan 1974 GB
1489597 Oct 1977 GB
1547369 Jun 1979 GB
1561232 Feb 1980 GB
2053779A Feb 1981 GB
1603112 Nov 1981 GB
WO 9706949 Feb 1997 WO
Non-Patent Literature Citations (3)
Entry
International Search Report for International Application No. PCT/CA98/00851 dated Dec. 23, 1998.
Written Opinion for International Application No. PCT/CA98/00851 dated Jul. 20, 1999.
International Preliminary Examination Report for International Application No. PCT/CA98/00851 dated Dec. 15, 1999.