Center cinch and release of buttress material

Information

  • Patent Grant
  • 11116503
  • Patent Number
    11,116,503
  • Date Filed
    Thursday, May 23, 2019
    4 years ago
  • Date Issued
    Tuesday, September 14, 2021
    2 years ago
Abstract
A buttressed anvil assembly is provided for use with a surgical stapling instrument. The buttressed anvil assembly generally includes an anvil member having a strip of buttress material attached thereto by a pair of sutures. A tensioning mechanism is provided to secure or tension the buttress material to the anvil member prior to use and allow for release of the buttress material after stapling of tissue. The tensioning mechanism includes a cinch track engageable with one of the pair of sutures.
Description
TECHNICAL FIELD

The present disclosure relates to an anvil assembly incorporating a strip of buttress material for use with a surgical stapling instrument. More particularly, the present disclosure relates to a buttress release mechanism for release of the buttress material from the surgical stapling instrument after stapling.


BACKGROUND

During various surgical procedures it is often necessary to join two sides of tissue. This is typically accomplished by approximating two edges of the tissues flush against one another and securing them by stapling, suturing, etc. In some instances, the staple or suture line connecting the tissues may tear or tend to pull through the tissues, particularly, where the tissues are diseased and relatively weak. Additionally, during healing, leakage may occur through the staple or suture lines.


In order to alleviate these problems, a strip of material, called “buttress material” is positioned against the tissues prior to stapling or suturing. The buttress material tends to reinforce the staple or suture line as well as tend to prevent leakage prior to healing.


The buttress material may be attached to the surgical instrument being used. For example, the buttress material is often pre-attached to a staple cartridge or anvil assembly of a surgical stapling instrument. The attachment of the buttress material needs be sufficiently secure to allow the surgical instrument to be inserted into the body of a patient as well as allowing the staple cartridge and anvil to be positioned about specific tissues to be stapled. Furthermore, after stapling of the tissues, the buttress material needs to be attached in a manner which allows easy separation of the buttress material from the associated staple cartridge and/or anvil.


Therefore, it is desirable to provide a cartridge or anvil assembly which is capable of easily releasing the buttress material after tissues have been stapled.


SUMMARY

There is disclosed a buttressed anvil assembly for use with a surgical stapling instrument. The buttressed anvil assembly generally includes an anvil having a strip of buttress material positioned adjacent a bottom side of the anvil. Distal and proximal sutures secure the buttress material to the anvil. A tensioning mechanism is provided at a distal end of the anvil assembly. The tensioning mechanism includes a cinch track engageable with the distal suture to hold a distal end of the strip of buttress material against the anvil. The cinch track is movable between a first vertical position tensioning the distal suture against the strip of buttress material to a second vertical position releasing tension on the distal suture to allow release of the strip of buttress material from the anvil.


A release member is provided in the anvil to move the cinch track between the first vertical position and the second vertical position. The release member includes a wedge engageable within a slot formed in the cinch track. A wedge is movable between a first horizontal position maintaining the cinch track in the first vertical position and a second horizontal position allowing the cinch track to move to the second vertical position. A proximal suture may also be provided to secure a proximal end of the strip of buttress material to a proximal end of the anvil.


Specifically, in a particular embodiment, the anvil assembly generally includes an anvil member having a first side and a second side and a length of suture material passing from the first side of the anvil member to the second side of the anvil member. A cinch track is movably mounted on the first side of the anvil member and is engageable with the length of suture. The cinch track is movable between a first vertical position tensioning the length of suture and a second vertical position releasing tension on the length of suture. A release member is movably mounted on the first side of the anvil member and is movable relative to the cinch track between a first horizontal position and a second horizontal position. The release member maintains the cinch track in the first vertical position when the release member is in the first horizontal position and allows the cinch track to move to the second vertical position when the release member is in the second horizontal position.


The anvil assembly additionally includes a strip of buttress material positioned adjacent the second side of the anvil member. The length of suture includes a backspan and first and second suture sides extending from the backspan. The backspan is engageable with the strip of buttress material to maintain the strip of buttress material adjacent the second side of the anvil member when the cinch track is in the first vertical position.


The anvil member includes first and second holes extending between the first and second sides of the anvil member. The first side of the length of suture material extends through the first hole and the second side of the suture material extends through the second hole. The cinch track includes a first track and the first suture side is secured in the first track. The cinch track also includes a second track and the second suture side is secured in the second track.


The release member includes a wedge and the cinch track includes a slot such that the cinch track is in the first vertical position when the wedge is positioned within the slot and is in the second vertical position when the wedge is out of the slot. The anvil member includes a longitudinally extending slot and the release member includes a guide rib movable within the longitudinally extending slot.


The strip of buttress material includes a perforation line adjacent a distal end of the buttress material to allow separation of the buttress material distally of the anvil slot. The strip of buttress material includes first and second cutouts to accommodate passage of the first and second sides of the length of suture material.


The anvil assembly additionally includes a proximal length of suture material for securing a proximal end of the strip of buttress material to the anvil member. The proximal length of suture material includes a backspan and first and second sides extending from the backspan. The backspan secures a proximal end of the strip of buttress material to the second side of the anvil member. The anvil member includes a pair of slots adjacent the proximal end of the anvil member. The pair of slots is dimensioned to frictionally secure the first and second sides of the proximal length of suture material. The strip of buttress material includes first and second cutouts formed adjacent the proximal end of the strip of buttress material for passage of the first and second sides of the proximal length of suture material.


The anvil assembly further includes a cover affixed to the anvil member. The cover including a distal window providing visualization of the cinch track and a pair of proximal windows providing visualization of the first and second sides of the proximal length of suture material secured within the first and second slots formed in the anvil member.





DESCRIPTION OF THE DRAWINGS

An embodiment of the presently disclosed buttressed anvil assembly is disclosed herein with reference to the drawings, wherein:



FIG. 1 is a perspective view of a surgical stapling instrument incorporating a buttressed anvil assembly;



FIG. 2 is a perspective view, with parts separated, of the buttressed anvil assembly incorporating a strip of buttress material;



FIG. 3 is a perspective view of a cinch track and release bar of the buttressed anvil assembly;



FIG. 3a is a side view, partially shown in section, taken along the line 3a-3a of FIG. 3;



FIG. 4 is a perspective view of the distal end of the buttressed anvil assembly taken from the top;



FIG. 5 is a perspective view of the distal end of the buttressed anvil assembly taken from the bottom;



FIG. 6 is a perspective view similar to FIG. 4 with an anvil cover removed;



FIG. 7 is a side view of the distal end of the buttressed anvil assembly with the anvil cover removed;



FIG. 8 is a side view similar to FIG. 7 during the initial advancement of a knife bar toward the release bar;



FIG. 9 is a side view similar to FIG. 8 illustrating the engagement of the knife bar with the release bar; and



FIG. 10 is a side view similar to FIG. 8 illustrating the knife bar advancing the release bar through the cinch track to release tension on the strip of buttress material.





DETAILED DESCRIPTION

An embodiment of the presently disclosed buttressed anvil assembly will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term ‘proximal” refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term “distal” refers to that part or component further away from the user.


Referring to FIG. 1, there is disclosed a buttressed anvil assembly or anvil assembly 10 for use with a surgical stapling instrument 12. As used herein, “buttress” includes pledgets, staple line reinforcement material, gaskets, and other materials used in conjunction with surgical instruments for joining tissue. Surgical stapling instrument 12 is a type well known in the art and is embodied in U.S. Pat. Nos. 5,762,256; 5,782,396; and 6,032,849, the contents of which are expressly incorporated herein by reference.


Surgical stapling instrument 12 generally includes a pistol grip body portion 14 having an elongate tubular member 16 extending distally from body portion 14. A staple cartridge 18 is mounted on a distal end 20 of elongate tubular member 16. Anvil assembly 10 is movably mounted on a distal end 20 of elongate tubular member 16 and is movable between an open position spaced apart from staple cartridge 18 to a closed position wherein anvil assembly 10 is in close cooperative alignment with staple cartridge 18.


In order to move anvil assembly 10 between the open and closed positions, surgical stapling instrument 12 includes a trigger 22 pivotally mounted to body portion 14. Trigger 22 controls the linear movement of an actuation shaft (not shown) which is mounted within the elongated tubular member 16. The actuation shaft operates to move a drive beam (not shown) distally to initially move the anvil assembly 10 between the open and closed positions. The drive beam also acts to move an actuation sled (not shown) distally through the staple cartridge 18 to eject staples. The drive beam includes a knife blade to cut tissue as the drive beam translates through the staple cartridge 18. A rotation knob 24 is provided to orient anvil assembly 10 and staple cartridge 18 relative to the tissue being stapled.


Although surgical stapling instrument 12 is shown with a single trigger 22 which accomplishes both jaw closure and firing of staples, it is further contemplated that the present buttress release mechanism can also be used with surgical stapling instruments of the type which utilize a clamping mechanism to close the jaws which is separate from the firing mechanism. See, for example, U.S. Pat. No. 5,476,206, the contents of which are expressly incorporated herein by reference.


Referring now to FIG. 2, anvil assembly 10 generally includes an anvil member 26, having a knife slot 28 extending longitudinally partially through anvil member 26, and a length or strip of buttress material 30. Strip of buttress material 30 is secured to anvil member 26 by a first or distal suture 32 and a second or proximal suture 34. Distal and proximal sutures 32 and 34 secure respective distal and proximal ends 36 and 38 of buttress material 30 to anvil member 26 in a manner described in more detail hereinbelow.


Buttress material 30 further includes a pair of distal cutouts 40 and 42 formed adjacent distal end 36 of buttress material 30. Distal cutouts 40 and 42 are provided to accommodate passage of distal suture 32 to secure buttress material 30 to anvil member 26 and prevent any distal movement of buttress material 30 relative to anvil member 26. Similarly, a pair of proximal cutouts 44 and 46 is formed adjacent proximal end 38 of buttress material 30. Proximal cutouts 44 and 46 are provided to receive proximal suture 34 to secure proximal end 38 of buttress material 30 to anvil member 26 and prevent any longitudinal motion of buttress material 30. It should be noted that, during stapling and cutting of tissue, distal end 36 of buttress material 30 is distal of knife slot 28 and thus is not cut. A perforation line 48 may be formed in distal end 36 to facilitate separation of buttress material 30 into two halves after tissue has been stapled and cut.


In order to maintain tension of distal suture 32 against buttress material 30 prior to the cutting of tissue and to allow for the release of tension of distal suture 32 against buttress material 30, anvil assembly 10 further includes a cinch track 50 which is positioned within a distal end 52 of anvil member 26. Cinch track 50 is movable between a first vertical position tensioning distal suture 32 against buttress material 30 and a second vertical position releasing tension of distal suture 32 against buttress material 30. Cinch track 50 is provided to securely engage first and second sides 54 and 56 of first suture 32. The suture can be preformed in a shape defining the first side 54, second side 56, and backspan 58, or can comprise an ordinary suture that is wrapped around the anvil so as to defining the first side 54, second side 56, and backspan 58. The backspan 58 of first suture 32 lies against the distal end 36 of buttress material 30 against anvil member 26.


In order to move cinch track 50 between the first and second vertical positions, a release member 60 is provided and is longitudinally or horizontally movable within anvil member 26 in a manner described in more detail hereinbelow. The release member 60 may be formed as a bar, rod, cable or other member.


As shown, knife slot 28 has a proximal end 62 which is open at proximal end 64 of anvil member 26. A distal end 66 of knife slot 28 terminates proximally of distal end 52 of anvil member 26. As noted herein above, buttress material 30 includes a perforation line 48 to facilitate separation of distal end 36 of buttress material 30 as it is located distally of distal end 66 of knife slot 28.


In order to secure a proximal end 38 of buttress material 30 against anvil member 26, anvil member 26 is provided with a pair of slots 68 and 70 which are configured to securely receive first and second sides 72 and 74 of proximal suture 34. The proximal suture can be preformed in a shape or comprise an ordinary suture wrapped around the anvil member so as to define first side 72, second side 74 and backspan 76. The backspan 76 of proximal suture 34 engages proximal end 38 of buttress material 30 to secure proximal end 38 against anvil member 26.


Anvil assembly 10 additionally includes an anvil cover 78 having a distal cinch window 80 formed in a distal end 82 of anvil cover 78. Distal cinch window 80 is provided to allow the surgeon to visually confirm the engagement of distal suture 32 with cinch track 50. A pair of proximal cinch windows 84 and 86 are provided adjacent proximal end 88 of anvil cover 78 and serve to allow the surgeon to visually confirm the engagement of proximal suture 34, specifically the engagement of first and second sides 72 and 74, with slots 68 and 70 formed in proximal end 64 of anvil member 26.


Anvil cover 78 includes longitudinally extending side cuts 90 and 92 which are configured to engage side walls 94 and 96, formed in anvil member 26, in friction fit fashion to secure anvil cover 78 to anvil member 26. Alternatively, the anvil cover may be attached using welding, adhesives or other means. Mounting structure 98 is provided on proximal end 88 to facilitate attachment of anvil assembly 10 to distal end 20 of elongate tubular member 16 (FIG. 1).


The cinch track generally includes a body portion defining one or more tracks. Referring now to FIGS. 3 and 3a, cinch track 50 has a body portion 100 with first and second tracks 102 and 104. First and second tracks 102 and 104 are dimensioned to pinch or cinch first and second sides 54 and 56, respectively, of suture 32 to secure suture 32 to cinch track 50. Body portion 100 additionally includes a center slot 106 for receipt of release member 60 in a matter discussed in more detail hereinbelow.


As noted herein above, cinch track 50 is positioned within distal end 52 of anvil member 26 and is movable between first and second vertical positions relative to anvil member 26. As specifically shown in FIG. 3, a pair of distal arms 108 and 110 extend distally from body portion 100 while proximal tabs 112 and 114 extend proximally from body portion 100. Distal arms 108 and 110 are positioned against a proximal face 116 formed in distal end 52 of anvil member 26 (FIG. 2). Likewise, proximal tab 112 and proximal tab 114 are configured to loosely engage distal ends 118 and 120 of side walls 94 and 96 formed in anvil member 26 allowing cinch track 50 to move vertically within distal end 52 of anvil member 26 (FIG. 2).


Referring back for the moment to FIG. 2, as noted herein above, release member 60 is provided to move cinch track 50 between the first and second vertical positions. Release member 60 includes a distal wedge 122 which is configured to ride within center slot 106 of cinch track 50 to move cinch track 50 between the first and second vertical positions. A sloped face 124 extends proximally from distal wedge 122. Sides 126 and 128 of distal wedge 122 facilitate guiding distal wedge 122 against cinch track 50. In the embodiment of FIG. 3a, the bottom surface of the cinch track 50 is generally horizontal. However, in other embodiments, one or more surfaces can be shaped to cooperate with the sloped face 124, such as a cam surface, and may correspond to the shape of the sloped face 124.


Referring now to FIG. 3, release member 60 further includes a guide bar 130 extending proximally from distal wedge 122. Guide bar 130 includes a central portion 132 and a proximally extending flanged portion 134. Flanged portion 134 helps align release bar 60 within side walls 94 and 96 of anvil member 26. As shown, a guide rib 136 extends downwardly from guide bar 130 and is configured to ride within knife slot 28 such that release member 60 is movable in a longitudinal or horizontal direction relative to cinch track 50.


With specific reference to FIG. 3a, it can be seen that wedge 122 of release member 60 is configured to move body portion 100 of cinch track 50 vertically. Sloped face 124 of release member 60 facilitates assembly of anvil assembly 10, and specifically, allows for reset of release member 60 to pre-fire and assembly condition. A base stop 138 is provided on distal wedge 122 of release member 62 to prevent pulling wedge 122 completely through center slot 106 of cinch track 50 during assembly.


Referring now to FIGS. 2-7, and initially with regard to FIG. 2, the assembly of a strip of buttress material 30 to anvil member 26 will now be described. Proximal end 38 of strip of buttress material 30 is secured to proximal end 64 of anvil member 26. Specifically, proximal end 38 is positioned against an underside 140 of anvil member 26. Proximal suture 34 is manipulated such that first and second free ends 142 and 144 of first and second sides 72 and 74 pass through cutouts 44 and 46 to bring backspan 76 of proximal suture 34 into engagement with proximal end 38 of strip of buttress material 30.


Thereafter, first and second sides 72 and 74 are positioned within slots 68 and 70 in anvil member 26. During positioning, first and second side 72 and 74 are tensioned so as to secure proximal end 38 of strip of suture material 30 against underside 140 of anvil member 26. As noted herein above, slots 68 and 70 are dimensioned so as to pinch or cinch first and second sides 72 and 74. Once strip of suture material 30 has been secured, the excess material of first and second side 72 and 74 extending beyond slots 68 and 70 may be trimmed off through the cover. It should be noted that, since proximal end 38 of strip of suture material 30 stretches across knife slot 28, there is no need to release the tension on proximal suture 34 as it will be cut by a knife blade (not shown) during the stapling procedure.


With reference to FIGS. 2-7, the assembly of distal end 36 of strip of suture material 30 to anvil member 26 will now be described. Initially, with respect to FIGS. 3 and 3a, release member 60 is in a first or proximal most position. Cinch track 50 is in a first or vertically highest most position due to the passage and engagement of wedge 122 of release member 60 within slot 106 formed in body portion 100 of cinch track 50.


With reference to FIG. 2, distal end 36 of strip of buttress material 30 is positioned flush against underside 140 of anvil member 26. Distal suture 32 is manipulated such that free ends 146 and 148 of first and second sides 54 and 56, respectively, passed through cutouts 40 and 42 formed in distal end 36 of strip of buttress material 30. As shown, distal end 52 of anvil member 26 is provided with a pair of spaced apart holes 150 and 152. Free ends 146 and 148 of distal suture 32 are passed through holes 150 and 152 such that first and second sides 54 and 56 are aligned alongside first and second tracks 102 and 104 of cinch track 50. Vertical tension is applied to free ends 146 and 148 to secure distal end 36 of strip a buttress material 30 against underside 140 of anvil member 26.


First and second sides 54 and 56 are then manipulated such that first side 54 passes within second track 104 and second side 56 passes within first track 102 (see also FIGS. 6 and 7). As noted herein above, first and second tracks 102 and 104 are dimensioned so as to pinch or cinch a suture positioned therein. Thereafter, excess material of first and second sides 54 and 56 of distal suture 32 may be trimmed off. Finally, cover 78 is affixed to anvil member 26 in the manner described herein above.


With reference to FIGS. 4 and 5, in the assembled condition, first and second sides 54 and 56 of distal suture 32 are visible through distal cinch window 80 in cover 78 for verification (FIG. 4). Likewise, backspan 58 of distal suture 32 can be confirmed as extending across perforation line 48 and strip of suture material 30 (FIG. 5).


Referring now to FIGS. 1 and 6-10, the use of anvil assembly 10 will now be described. With reference to FIGS. 6 and 7, and as described herein above, in the initial position release bar 60 is in a first or proximal most position maintaining cinch track 50 in a first or vertically highest position relative to anvil member 26 thereby maintaining tension of backspan 58 of distal suture 32 against distal end 36 of strip of buttress material 30.


In use, with reference to FIG. 1, surgical stapling instrument 12 is manipulated such that anvil assembly 10 and staple cartridge 18 are positioned about the tissue (not shown) to be stapled. Once surgical stapling 12 has been properly positioned, trigger 22 is actuated to move anvil assembly 10 to the closed position about tissue relative to staple cartridge 18. While not specifically shown, anvil pockets are provided on anvil member 26 to clinch staples ejected out of staple cartridge 18 through the subject tissue and through strip of buttress material 30.


Referring back for the moment to FIG. 2, and as noted herein above, backspan 76 of proximal suture 34 extends across knife slot 28. Referring now to FIG. 8, a knife bar 154 is associated with surgical stapling instrument 12 to cut through staple lines formed in the tissue by staple cartridge 18 and anvil assembly 10. As knife bar 154 passes distally through knife slot 28 a blade 156 of knife bar 154 cuts through proximal end 38 of strip of buttress material 30 and severs backspan 76 a proximal suture 34. Continued advancement of knife bar 154 distally through slot 28, causes blade 156 to continue to cut through strip of buttress material 30.


With continued reference to FIG. 8, as knife bar 154 advances distally through anvil member 26, a distal top edge 158 of knife bar 154 approaches a proximal edge 160 of release member 60. As best shown in FIG. 9, as distal edge 158 of knife bar 154 moves distally it engages proximal edge 160 of release member 60, knife bar 154 begins to drive release member 60 distally such that distal wedge 122 of release member 60 is driven distally through slot 106 (FIGS. 2 and 3) formed in cinch track 50.


With specific reference to FIG. 10, as release member 60 is driven to a second or distal most position by a knife bar 54, sloped face 124 of distal wedge 122 clears slot 106 allowing cinch track 50 to drop down to a second or vertically lowest most position relative to anvil member 26. As shown, when cinch track 50 is in the second or vertically lowest position, tension is released on distal suture 32 such that backspan 58 of distal suture 32 drops a substantial distance below underside 140 of anvil member 26. This creates an opening or gap 162 between backspan 58 of distal suture 32 and underside 140 of anvil member 26.


Once knife bar 154 has reached a distal most position, pressure on trigger 22 may be released allowing anvil member 10 to move to the open position relative to staple cartridge 18 (FIG. 1). As anvil assembly 10 is moved to the open position, distal end 36 of strip of buttress material 30, being stapled the tissue, pulls free through gap 162 allowing distal end 36 to separate from anvil member 26. As noted herein above, and as shown in FIG. 2, perforation line 48 is formed in distal end 36 of strip of buttress material 30 allowing strip of buttress material 30 to separate into halves generally along the cut line formed by knife blade 156 through strip of buttress material 30. In this manner, anvil assembly 10 allows for simple and easy assembly of a strip of buttress material 30 to with anvil member 26 and, more importantly, allows for easy release of distal end 36 of a strip of buttress material 30 from anvil member 26.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the release member could be arranged to be pulled proximally to change the position of the cinch track and release the suture and buttress. In other embodiments, the proximally pulled release member, or the release member 60 discussed above, may be connected to a separate actuator on the handle of the surgical instrument, for engagement by the user of the instrument. In another example, the disclosed cinch track may have more or fewer tracks to accommodate more or fewer wraps of a length of suture material. Further, the disclosed tensioning mechanisms, including the suture track and the release bar, may be adapted to be incorporated in a staple cartridge and to function with driving bars in the staple cartridge. Additionally, the disclosed methods and structure for releasing tension on a suture maintaining a strip of buttress material may find use in other forms of surgical staplers such as, for example, circular staplers, etc. In further embodiments, a release member pushes cinch track down vertically to release the tension on the suture and release the buttress. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method for selectively securing a buttress material to an anvil assembly, the method comprising: moving a release member relative to an anvil member of the anvil assembly;moving a track supported on the anvil member in response to movement of the release member; andchanging a tension in a length of suture that secures the buttress material to the anvil member as the track moves relative to the anvil member.
  • 2. The method of claim 1, wherein moving the release member relative to the anvil member includes advancing a knife blade into engagement with the release member.
  • 3. The method of claim 2, wherein advancing the knife blade includes advancing the knife blade through a knife slot defined in the anvil member.
  • 4. The method of claim 1, wherein moving the track supported on the anvil member includes moving the track in a direction transverse to the anvil member.
  • 5. The method of claim 4, wherein moving the release member includes moving the release member in a longitudinal direction along the anvil member.
  • 6. A surgical stapling apparatus, comprising: a staple cartridge and an anvil assembly positioned for relative movement between one another;a suture member;a buttress material secured to the anvil assembly by the suture member; anda track supported on the anvil assembly, the track selectively movable relative to anvil assembly to change a tension in the suture member.
  • 7. The surgical stapling apparatus of claim 6, wherein the track is movable relative to the anvil assembly between a first position tensioning the suture member and a second position releasing the tension in the suture member.
  • 8. The surgical stapling apparatus of claim 7, further comprising a release member movable relative to the anvil assembly to move the track.
  • 9. The surgical stapling apparatus of claim 8, wherein the release member includes a wedge positioned to engage the track.
  • 10. The surgical stapling apparatus of claim 6, wherein the suture member includes a first suture side and a second suture side that are connected to one another by a backspan.
  • 11. The surgical stapling apparatus of claim 10, wherein the track includes a first track and a second track, the first track positioned to receive the first suture side, the second track positioned to receive the second suture side.
  • 12. The surgical stapling apparatus of claim 10, wherein the anvil assembly defines first and second holes, the first suture side extending through the first hole, the second suture side extending through the second hole.
  • 13. The surgical stapling apparatus of claim 6, wherein the buttress material includes a perforation to facilitate separation of at least a portion of the buttress material from the anvil assembly.
  • 14. An anvil assembly, comprising: an anvil member;a suture member;a buttress material secured to the anvil member by the suture member; anda track supported on the anvil member, the track selectively movable relative to the anvil member to change a tension in the suture member.
  • 15. The anvil assembly of claim 14, wherein the track is movable relative to the anvil member between a first position tensioning the suture member and a second position releasing the tension in the suture member.
  • 16. The anvil assembly of claim 14, further comprising a release member movable relative to the anvil member to move the track.
  • 17. The anvil assembly of claim 16, wherein the release member includes a wedge positioned to engage the track.
  • 18. The anvil assembly of claim 14, wherein the suture member includes a first suture side and a second suture side that are connected to one another by a backspan, the backspan extending across the buttress material to support the buttress material adjacent to the anvil member.
  • 19. The anvil assembly of claim 18, wherein the track includes a first track and a second track, the first track positioned to receive the first suture side, the second track positioned to receive the second suture side.
  • 20. The anvil assembly of claim 19, wherein the anvil member defines first and second holes, the first suture side extending through the first hole, the second suture side extending through the second hole.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation Application of U.S. patent application Ser. No. 15/251,773, filed Aug. 30, 2016, now U.S. Pat. No. 10,327,772, which is a Continuation Application of U.S. patent application Ser. No. 13/904,652, filed May 29, 2013, now U.S. Pat. No. 9,445,812, which is a Continuation Application of U.S. patent application Ser. No. 13/545,031, filed Jul. 10, 2012, now U.S. Pat. No. 8,453,909, which is a Continuation Application of U.S. patent application Ser. No. 13/111,050, filed May 19, 2011, now U.S. Pat. No. 8,235,273, which is a Continuation Patent Application which claims priority to, and the benefit of, U.S. patent application Ser. No. 12/414,961 filed on Mar. 31, 2009, now U.S. Pat. No. 7,967,179, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (517)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5476206 Green et al. Dec 1995 A
5503638 Cooper et al. Apr 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6155265 Hammerslag Dec 2000 A
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6568398 Cohen May 2003 B2
6592597 Grant et al. Jul 2003 B2
6610006 Amid et al. Aug 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6773458 Brauker et al. Aug 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6959851 Heinrich Nov 2005 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7594921 Browning Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7967179 Olson Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson Aug 2012 B2
8245901 Stopek Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9328111 Zhou et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9486215 Olson et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9775617 Carter et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
9844378 Casasanta et al. Dec 2017 B2
9931116 Racenet et al. Apr 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10327772 Olson et al. Jun 2019 B2
20020028243 Masters Mar 2002 A1
20020091397 Chen Jul 2002 A1
20020165559 Grant et al. Nov 2002 A1
20030065345 Weadock Apr 2003 A1
20030083676 Wallace May 2003 A1
20030120284 Palacios et al. Jun 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040092912 Jinno et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040131418 Budde et al. Jul 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060025816 Shelton Feb 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060219752 Arad et al. Oct 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080230583 Heinrich Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100016855 Ramstein et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243711 Olson et al. Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20100331859 Omori Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110215132 Aranyi et al. Sep 2011 A1
20110278346 Hull et al. Nov 2011 A1
20110278347 Olson et al. Nov 2011 A1
20120074199 Olson et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120083723 Vitaris et al. Apr 2012 A1
20120145767 Shah et al. Jun 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130181031 Olson et al. Jul 2013 A1
20130193186 (Tarinelli) Racenet et al. Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130221062 Hodgkinson Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi et al. Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130306707 Viola et al. Nov 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20140012317 Orban et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140027490 Marczyk et al. Jan 2014 A1
20140034704 Ingmanson et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140061281 Hodgkinson Mar 2014 A1
20140084042 (Prommersberger) Stopek et al. Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140117066 Aranyi et al. May 2014 A1
20140130330 Olson et al. May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140155916 Hodgkinson et al. Jun 2014 A1
20140158742 Stopek (nee Prommersberger) et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150001276 Hodgkinson et al. Jan 2015 A1
20150041347 Hodgkinson Feb 2015 A1
20150097018 Hodgkinson Apr 2015 A1
20150115015 Prescott et al. Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150164503 Stevenson et al. Jun 2015 A1
20150164506 Carter et al. Jun 2015 A1
20150164507 Carter et al. Jun 2015 A1
20150196297 (Prommersberger) Stopek et al. Jul 2015 A1
20150209033 Hodgkinson Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150209048 Carter et al. Jul 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20160045200 Milliman Feb 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160256166 (Prommersberger) Stopek et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
20170172575 Hodgkinson Jun 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238931 Prescott et al. Aug 2017 A1
20170281328 Hodgkinson et al. Oct 2017 A1
20170296188 Ingmanson et al. Oct 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20180125491 Aranyi May 2018 A1
20180140301 Milliman May 2018 A1
20180168654 Hodgkinson et al. Jun 2018 A1
20180214147 Merchant et al. Aug 2018 A1
Foreign Referenced Citations (72)
Number Date Country
2282761 Sep 1998 CA
2 667 434 May 2008 CA
101310680 Nov 2008 CN
101332110 Dec 2008 CN
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0327022 Aug 1989 EP
0594148 Apr 1994 EP
0667119 Aug 1995 EP
1064883 Jan 2001 EP
1256317 Nov 2002 EP
1256318 Nov 2002 EP
1520525 Apr 2005 EP
1621141 Feb 2006 EP
1702570 Sep 2006 EP
1759640 Mar 2007 EP
1815804 Aug 2007 EP
1825820 Aug 2007 EP
1929958 Jun 2008 EP
1994890 Nov 2008 EP
2005894 Dec 2008 EP
2005895 Dec 2008 EP
2008595 Dec 2008 EP
2039308 Mar 2009 EP
2090231 Aug 2009 EP
2090244 Aug 2009 EP
2090252 Aug 2009 EP
2163211 Mar 2010 EP
2189121 May 2010 EP
2198787 Jun 2010 EP
2236098 Oct 2010 EP
2236099 Oct 2010 EP
2258282 Dec 2010 EP
2292276 Mar 2011 EP
2311386 Apr 2011 EP
2436348 Apr 2012 EP
2462880 Jun 2012 EP
2491867 Aug 2012 EP
2497431 Sep 2012 EP
2517637 Oct 2012 EP
2586380 May 2013 EP
2604195 Jun 2013 EP
2604197 Jun 2013 EP
2620105 Jul 2013 EP
2620106 Jul 2013 EP
2630922 Aug 2013 EP
2644125 Oct 2013 EP
2762091 Aug 2014 EP
2000166933 Jun 2000 JP
2002202213 Jul 2002 JP
2007124166 May 2007 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9622055 Jul 1996 WO
9701989 Jan 1997 WO
9713463 Apr 1997 WO
9817180 Apr 1998 WO
9945849 Sep 1999 WO
03082126 Oct 2003 WO
03088845 Oct 2003 WO
03094743 Nov 2003 WO
03105698 Dec 2003 WO
2005079675 Sep 2005 WO
2006023578 Mar 2006 WO
2006044490 Apr 2006 WO
2006083748 Aug 2006 WO
2007121579 Nov 2007 WO
2008057281 May 2008 WO
2008109125 Sep 2008 WO
2010075298 Jul 2010 WO
2011143183 Nov 2011 WO
2012044848 Apr 2012 WO
Non-Patent Literature Citations (143)
Entry
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017.
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018.
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018.
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018.
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; 3 pages.
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; 3 pages.
European Search Report corresponding to EP 10 25 1437.9, completed Nov. 22, 2010 and dated Dec. 16, 2010; 3 pages.
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; 3 pages.
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; 4 pages.
European Search Report corresponding to EP 11 18 8309.6, completed Dec. 15, 2011 and dated Jan. 12, 2012; 3 pages.
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; 4 pages.
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; 7 pages.
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; 10 pages.
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; 8 pages.
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; 9 pages.
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; 8 pages.
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; 10 pages.
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; 8 pages.
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and dated Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
Chinese Office Action issued in Chinese Application No. 201410449019.4 dated Mar. 30, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2014100284624 dated Mar. 2, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201008 dated May 23, 2017.
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014;(7 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
European Office Action corresponding to counterpart European Appln. No. EP 12 19 4784.0 dated May 29, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-169083 dated May 31, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013213767 dated Jun. 29, 2017.
Australian Examination Report No. 2 corresponding to counterpart Australian Appln. No. AU 2012261752 dated Jul. 7, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013266989 dated Jul. 10, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3609.4 dated Jul. 14, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234418 dated Jul. 14, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3610.2 dated Jul. 17, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200109 dated Jul. 20, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200074 dated Jul. 20, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-250857 dated Aug. 17, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-229471 dated Aug. 17, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200793 dated Sep. 2, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 8528.0 dated Oct. 13, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234420 dated Oct. 24, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-175379 dated Oct. 20, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-147701 dated Oct. 27, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 5656.2 dated Nov. 7, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2014-009738 dated Nov. 14, 2017.
European Office Action corresponding to counterpart European Appln. No. EP 13 17 3986.4 dated Nov. 29, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2017-075975 dated Dec. 4, 2017.
European Office Action corresponding to counterpart European Appln. No. EP 13 19 79585 dated Dec. 11, 2017.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016.
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and dated Feb. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 48145 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report correspponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; 7 pages.
Extended European Search Report correspponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; 8 pages.
Extended European Search Report correspponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; 8 pages.
Extended European Search Report correspponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; 7 pages.
Extended European Search Report correspponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; 8 pages.
Extended European Search Report correspponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; 7 pages.
Extended European Search Report correspponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; 6 pages.
Extended European Search Report correspponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; 7 pages.
European Search Report corresponding to EP 05 02 2585.3, completed Jan. 25, 2006 and dated Feb. 3, 2006; 4 pages.
European Search Report corresponding to EP 06 00 4598, dated Jun. 22, 2006; 2 pages.
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; 10 pages.
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; 8 pages.
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; 1 page.
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; 2 pages.
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; 5 pages.
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; 6 pages.
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; 7 pages.
European Office Action corresponding to counterpart European Appln. No. EP 15 17 4146.9 dated May 15, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-154561 dated May 23, 2017.
Related Publications (1)
Number Date Country
20190274685 A1 Sep 2019 US
Continuations (5)
Number Date Country
Parent 15251773 Aug 2016 US
Child 16420219 US
Parent 13904652 May 2013 US
Child 15251773 US
Parent 13545031 Jul 2012 US
Child 13904652 US
Parent 13111050 May 2011 US
Child 13545031 US
Parent 12414961 Mar 2009 US
Child 13111050 US