Vehicles are equipped with airbags. In the event of an impact, an inflator activates and provides inflation medium to the airbags, and the airbags pressurize and act as cushions for occupants during the impact. The airbags are located at various fixed positions in passenger cabins of vehicles. Vehicles typically include a driver airbag mounted in the steering wheel, a passenger airbag mounted in the dashboard in a vehicle-forward direction from the front passenger seat, and side air curtains mounted in the roof rails.
A restraint system includes a center console and an airbag inflatable upwardly from the center console. The airbag includes an internal panel defining two chambers. The internal panel includes a plurality of tubes, and each tube includes an opening at which that tube terminates. The openings are proximate a top of the airbag and open to the chambers.
The center console may define a forward direction, and the internal panel may extend along the forward direction from a front of the airbag to a rear of the airbag.
The plurality of tubes may include at least three tubes.
The tubes may be parallel to each other when the airbag is in an inflated position.
The internal panel may extend upwardly to a top edge proximate the top of the airbag when the airbag is in an inflated position. The openings of the tubes may be at the top edge of the internal panel.
The restraint system may further include an inflator fluidly connected to the tubes, and the chambers may be fluidly connected to the inflator only via the tubes.
The tubes may be spaced from each other. The internal panel may include at least one uninflatable region between the tubes. The center console may define a forward direction, the internal panel may include a front uninflatable region between a forwardmost tube of the tubes and a front of the airbag, and the internal panel may include a rear uninflatable region between a rearmost tube of the tubes and a rear of the airbag.
The internal panel may include two sheets sewn together parallel to each other, and the two sheets may define the tubes. The internal panel may include stitching sewing the two sheets together and defining the tubes.
The center console may define a forward direction, the sheets may be inner sheets, the airbag may include two outer sheets, and the two outer sheets and the two inner sheets may be sewn together along a front of the airbag and along a rear of the airbag. The two outer sheets and the two inner sheets may be sewn together along a bottom of the airbag.
The center console may include two hinged doors openable from a closed position, and the doors in the closed position may conceal the airbag in an uninflated position. The center console may include a seam between edges of the doors in the closed position. The seam may extend in a longitudinal direction relative to the center console.
The restraint system may further include two seats positioned laterally relative to the center console, and the doors may be openable to an open position in which each door contacts one of the seats.
The center console may include a lid, and the airbag in an uninflated position may be disposed in the lid. The center console may include a storage compartment, and the lid may be rotatable between a closed position covering the storage compartment and an open position revealing the storage compartment.
A restraint system 30 for a vehicle 32 includes a center console 34 and an airbag 36 inflatable upwardly from the center console 34. The airbag 36 includes an internal panel 38 defining two chambers 40. The internal panel 38 includes a plurality of tubes 42, and each tube 42 includes an opening 44 at which that tube 42 terminates. The openings 44 are proximate a top 46 of the airbag 36 and open to the chambers 40.
The restraint system 30 provides for quick deployment and protection of occupants during a side impact. Sending the inflation medium through the tubes 42 causes the airbag 36 to expand vertically more quickly, allowing the airbag 36 to be in the proper position for an impact. The position of the airbag 36 can protect occupants from impacting each other. Furthermore, the restraint system 30 provides for convenient packaging, with the airbag 36 stored in the center console 34 when uninflated.
With reference to
Each front seat 50 may include a seat back 52, a seat bottom 54, and a headrest 56. The headrest 56 may be supported by the seat back 52 and may be stationary or movable relative to the seat back 52. The seat back 52 may be supported by the seat bottom 54 and may be stationary or movable relative to the seat bottom 54. The seat back 52, the seat bottom 54, and/or the headrest 56 may be adjustable in multiple degrees of freedom. Specifically, the seat back 52, the seat bottom 54, and/or the headrest 56 may themselves be adjustable, in other words, adjustable components within the seat back 52, the seat bottom 54, and/or the headrest 56, and/or may be adjustable relative to each other.
The center console 34 is disposed between two front seats 50. The center console 34 is adjacent each of the front seats 50, i.e., nothing is disposed between each of the front seats 50 and the center console 34. The center console 34 defines a forward direction. The forward direction is the direction of forward travel of the vehicle 32. The front seats 50 face in the forward direction.
With reference to
The center console 34 includes a storage compartment 62 and a lid 64. The storage compartment 62 is accessible to occupants for placing items inside. The storage compartment 62 may be disposed inside the fixed portion 58 and enclosed above by the lid 64. The lid 64 is rotatable between a closed position covering the storage compartment 62 and an open position revealing the storage compartment 62. The lid 64 may be rotatable about a lid hinge 66. The lid hinge 66 connects the lid 64 and the fixed portion 58. The lid hinge 66 may define an axis of rotation in a cross-vehicle direction. The lid 64 may rotate up and backwards about the axis of rotation from the closed position to the open position.
With reference to
With reference to
An inflator 76 may be supported by the bottom panel 70 of the lid 64 and connected to the airbag 36. Upon receiving a signal from, e.g., a controller 78, the inflator 76 may inflate the airbag 36 with an inflatable medium, such as a gas. The inflator 76 may be, for example, a pyrotechnic inflator that uses a chemical reaction to drive inflation medium to the airbag 36. The inflator 76 may be of any suitable type, for example, a cold-gas inflator.
With reference to
With reference to
The airbag 36 includes the internal panel 38. The internal panel 38 extends along the forward direction from the front 80 of the airbag 36 to the rear 82 of the airbag 36. The internal panel 38 extends from the bottom 84 of the airbag 36 to a top edge 86 proximate the top 46 of the airbag 36. The top edge 86 is spaced from the top 46 of the airbag 36. The internal panel 38 is internal to the airbag 36; in other words, the internal panel 38 extends through a volume enclosed by the airbag 36.
The internal panel 38 defines the two chambers 40; in other words, the internal panel 38 separates the volume inside the airbag 36 in the inflated position into the two chambers 40. The internal panel 38 extends between the chambers 40. The chambers 40 are fluidly connected only above the top edge 86 of the internal panel 38.
With reference to
Each tube 42 is elongated from the connecting portion 88 adjacent the bottom 84 of the airbag 36 to the respective opening 44. The connecting portion 88 is positioned to receive inflation medium from the inflator 76. Each tube 42 terminates at the respective opening 44. The openings 44 are at the top edge 86 of the internal panel 38 and are proximate the top 46 of the airbag 36. The openings 44 are open to the chambers 40.
With reference to
With reference to
With reference to
The sheets 96, 98 of the airbag 36 may be formed of any suitable airbag material, for example, a woven polymer. For example, the sheets 96, 98 may be formed of woven nylon yarn, for example, nylon 6-6. Other suitable examples include polyether ether ketone (PEEK), polyetherketoneketone (PEKK), polyester, or any other suitable polymer. The woven polymer may include a coating, such as silicone, neoprene, urethane, and so on. For example, the coating may be polyorgano siloxane.
With reference to
The controller 78 is a microprocessor-based controller. The controller 78 includes a processor, memory, etc. The memory of the controller 78 includes memory for storing instructions executable by the processor as well as for electronically storing data and/or databases. For example, the controller 78 may be a restraint control module that may control other airbags, pretensioners for seatbelts, etc.
The controller 78 may transmit and receive data through a communications network 104 such as a controller area network (CAN) bus, Ethernet, WiFi, Local Interconnect Network (LIN), onboard diagnostics connector (OBD-II), and/or by any other wired or wireless communications network. The controller 78 may be communicatively coupled to the inflator 76, the impact sensor 102, and other components via the communications network 104.
The controller 78 may be programmed to activate the inflator 76 in response to an impact to the vehicle 32. Activating the inflator 76 may be based on an angle of the impact. For example, the controller 78 may be programmed to activate the inflator 76 in response to a side impact and to maintain the airbag 36 in the uninflated position in response to a frontal impact or an oblique impact.
In the event of a side impact to the vehicle 32, the impact sensor 102 may detect the impact and transmit a signal through the communications network 104 to the controller 78. The controller 78 may transmit a signal through the communications network 104 to the inflator 76. The inflator 76 may discharge and send inflation medium into the connecting portion 88 of the airbag 36. The inflation medium travels through the connecting portion 88 and then through the tubes 42, which extends the airbag 36 vertically between occupants of the front seats 50. The vertical inflation of the airbag 36 pushes open the doors 68 against the seat backs 52 of the front seats 50. Because the combined cross-sectional area of the tubes 42 is less than the cross-sectional area of the airbag 36, as best seen in
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
3843150 | Harada | Oct 1974 | A |
4076277 | Kuwakado | Feb 1978 | A |
5542695 | Hanson | Aug 1996 | A |
5570900 | Brown | Nov 1996 | A |
6260877 | Rasmussen, Sr. | Jul 2001 | B1 |
6966576 | Greenstein | Nov 2005 | B1 |
8181988 | Adachi | May 2012 | B2 |
8267424 | Tomitaka | Sep 2012 | B2 |
8360469 | Wiik | Jan 2013 | B2 |
8414018 | Choi et al. | Apr 2013 | B2 |
8480123 | Choi et al. | Jul 2013 | B2 |
9592788 | Wiik | Mar 2017 | B2 |
10266145 | Paxton | Apr 2019 | B2 |
20080129024 | Suzuki | Jun 2008 | A1 |
20080203710 | Kalliske | Aug 2008 | A1 |
20090001695 | Suzuki | Jan 2009 | A1 |
20100140909 | Jang | Jun 2010 | A1 |
20100283230 | Tomitaka | Nov 2010 | A1 |
20100295280 | Tomitaka | Nov 2010 | A1 |
20110278826 | Fukawatase | Nov 2011 | A1 |
20110309603 | Choi | Dec 2011 | A1 |
20120119475 | Choi | May 2012 | A1 |
20130106080 | Jarboe | May 2013 | A1 |
20150091278 | Yasuoka | Apr 2015 | A1 |
20150203065 | Egusa | Jul 2015 | A1 |
20150298639 | Mihm | Oct 2015 | A1 |
20170036636 | Masuda | Feb 2017 | A1 |
20180043853 | Taguchi | Feb 2018 | A1 |
20190023213 | Faruque | Jan 2019 | A1 |
20190152422 | Deng | May 2019 | A1 |
Number | Date | Country |
---|---|---|
10007343 | Aug 2001 | DE |
10040075 | Jan 2002 | DE |
102018002853 | Oct 2018 | DE |
2008155904 | Jul 2008 | JP |
2010052619 | Mar 2010 | JP |
2014076703 | May 2014 | JP |
2014181014 | Sep 2014 | JP |