Field of Invention
The present invention relates mining machinery, and more particularly to a center pillar and full face vertical shaft drilling machine.
Description of Related Arts
Existing shaft sinking methods has experienced long-term development. The method of shaft sinking mainly includes drilling and blasting, shaft boring and etc. The construction technology has matured. The shaft sinking equipment also experienced the same development and the equipment technology has matured also. Follow the traditional construction method makes it very difficult to realize automation, and it is very difficult for parallel operation while the labor requirement is great. After numerous improvements, the shaft sinking equipment technology of our nation has matured. It is very difficult to further improve the construction efficiency through the advancement of one single equipment, thus a brand new equipment is urgently needed to increase the construction efficiency.
An objective of the present invention is to overcome the problems of existing devices and provide a center pillar and full face vertical shaft drilling machine which has high level of automation and mechanization for vertical shaft construction, thereby the construction time is fast and safe, the vertical shaft construction for a large diameter and a great depth can be achieved and the construction cost is relatively low.
In order to solve the above problem, the technological solution is provided as follows:
In one aspect of the present invention, it provides a center pillar and full face vertical shaft drilling machine which comprises a center pillar, a device platform, a derrick, a boring system, a transportation system for people and materials, a support system for wall reinforcement system, a safety system and a control room, characterized in that, a derrick is provided at a shaft head on which the control room is located, the center pillar extended from a shaft bottom to the shaft head directly while connecting to a sliding frame of the derrick, the boring system is installed at a front end of the center pillar, and on the center pillar sequentially from a rear end to the front end installed a plurality of device platforms, a transportation system for people and materials, and the safety system is installed on the device platform located a rear end of the boring system and the ground surface, the support system for wall reinforcement system is installed on the device platform located at the rear end of the boring system and its surrounding.
The center pillar comprises a plurality segments of main body, each having a hollow columnar structure, connected through flanges and fastening members to form the center pillar, wherein a primary hoist rail, a secondary hoist rail, a cable, a compressed air pipe, a concrete pipe, a clean water pipe, a pipe for slurry outflow, a pipe for slurry inflow and a mounting base for stabilizer are arranged along the peripheral edges of the main body of the center pillar, the hollow portion of the center pillar defines a passage for a ventilation and water passage module of the safety system, the safety system comprises a fan installed directly at an inner side of the center pillar.
The device platform comprises a fixed platform; and a retractable platform which is installed in a segment of module lining of the center pillar, wherein the retractable platform comprises a base platform, a small platform, a retractable cylinder and a seal member, wherein the base platform is fixedly connected to the center pillar and the retractable cylinder is fixedly provided around a peripheral edge portion of the base platform horizontally, wherein the retractable cylinder comprises a piston shaft and is connected to the small platform through one end of the piston shaft, wherein the small platform has an outer portion at which the seal member is provided, wherein the seal member has an outer end which is in contact with the module lining of the center pillar.
The derrick comprises a main body of derrick, a sliding frame, an pillar for sliding frame, a lifting cylinder, a movement arrangement, a crane for pillar, a manipulator for pillar, a power station and a muck chute; wherein the main body of derrick has a lower portion at which the movement arrangement is provided and an upper portion at which the pillar for sliding frame and the power station are installed, wherein the pillar for sliding frame guides a sliding movement of the sliding frame, wherein the lifting cylinder has one end connected to the sliding frame and another end connected to a bottom end of the pillar for sliding frame, wherein the crane for pillar is installed on the upper portion of the main body of derrick, wherein the manipulator for pillar and the muck chute are inclined and installed at the lower portion of the main body of derrick.
The boring system for the vertical shaft drilling comprises a cutter head with rear mounting construction, a retractable shield, a shield positioning ring, a main driver, a shield cylinder, a guiding pillar, a propulsion cylinder, a gripper sliding ring, a gripper and a gripper cylinder; wherein the cutter head is connected to the main driver, the main driver has an upper portion connecting to the guiding pillar, the guiding pillar has a upper portion connecting to the center pillar, the main driver is connected to the shield positioning ring, the shield positioning ring is connected to the retractable shield through telescopic structure and the shield cylinder to form a ring-shaped retractable shield, the guiding pillar has a key structure and has a sliding connection with the gripper sliding ring while both the guiding pillar and the gripper sliding ring are connected through the plurality of propulsion cylinders provided around all sides, the gripper is connected to the gripper sliding ring through telescopic structure and the gripper cylinder, the control station is installed on an upper portion the gripper.
The transportation system for people and materials comprises a slurry pump, a slurry inflow pipe, a slurry outflow pipe, a primary vibrating screen, a secondary vibrating screen, a tertiary vibrating screen, a primary hydrocyclone device, a secondary hydrocyclone device, a muck storage, a slurry storage tank, a rapid feeding device, a bucket, a main hoist, an auxiliary hoist, a slurry return pipe, a transportation pump, a slurry output pipe, a slurry input pipe, a primary slurry pump, a secondary slurry pump, a primary slurry tank, a secondary slurry tank and a cage; wherein the slurry pump is installed inside the main driver, the slurry inflow pipe is extended to inside the cutter head, the slurry outflow pipe has an inlet connected to the slurry pump and an outlet connected to the primary vibrating screen, the primary vibrating screen has a slag outlet corresponding to the muck storage, an slag outlet of the muck storage is connected to the primary slurry tank, the primary slurry tank is thoroughly connected to the secondary slurry tank, the secondary slurry tank has a bottom portion connecting to the primary slurry pump, the primary slurry pump has an inlet connecting to the secondary slurry tank and an outlet connecting to the primary hydrocyclone device, the primary hydrocyclone device has a slag outlet connecting to the secondary vibrating screen and a slurry outlet connecting to the secondary slurry tank and the slurry storage tank respectively, the secondary vibrating screen has a slag outlet corresponding to the muck storage and a slurry outlet connecting to the secondary slurry tank; the slurry storage tank has a bottom portion connecting to the secondary slurry pump, the secondary slurry pump has an inlet connecting to the slurry storage tank and an outlet connecting to the secondary hydrocyclone device, the secondary hydrocyclone device has a slag outlet connecting to the tertiary vibrating screen and a slurry outlet connecting to the slurry storage tank, the tertiary vibrating screen has a slag outlet corresponding to the muck storage and a slurry outlet corresponding to the slurry storage tank; the slurry input pipe is extended to the ground surface through the center pillar and connected to a slurry tank on the ground surface and has a bottom portion connecting to the slurry return pipe, while the slurry return pipe is connected to the slurry storage tank, the slurry return pipe has an outlet terminal arranged on a work surface of the cutter head; the slurry storage tank has a bottom portion connected to the transportation pump, the transportation pump is connected to the slurry output pipe, the slurry output pipe is connected to the pipe for slurry outflow installed on the center pillar and has an outlet arranged on the shaft opening and connected to external slurry treatment station; the muck storage has a bottom portion at which the rapid feeding device is arranged, the bucket and the cage are installed on the center pillar, the main hoist and the auxiliary hoist are installed on the upper portion of the derrick.
The support system for wall reinforcement comprises a module building system and an anchoring system, wherein the module building system comprises an auxiliary crane, a module board, a transportation concrete pipe, a buffer, a concrete mixing tank in shaft bottom, a concrete pump, a grouting pipe, and a concrete sealing ring, the anchoring system comprises a rig vehicle, a rig rail, a lifting cylinder, a multi-functional rig, a shotcreting manipulator and a material hoist; the auxiliary crane of the module building system is installed on a rear side of the device platform for inverted transportation of the module board, the entire module board and the concrete sealing ring forms a casting cavity, the buffer with multi-level is installed on the transportation concrete pipe, the transportation concrete pipe has a bottom end connected to concrete mixing tank, the concrete mixing tank has a bottom portion at which the concrete pump is installed, the concrete pump has an outlet connected to a grouting opening of the entire module board through the grouting pipe; the rig rail of the anchoring system is connected to the sliding ring through the lifting cylinder and has sliding connection with the guiding pillar, the rig vehicle is installed on the rig rail, the multi-functional rig is installed on the rig vehicle, the shotcreting manipulator is also installed on the rig rail, the material hoist is installed at a lower portion of the device platform which is position at a higher position function as an operation platform for steel binding.
The safety system comprises a sinking pump, a power and control module, a ventilation and water passage module, a stabilizer, a stabilizing vehicle for sinking pump, a flat car for shaft cover and a spare pillar, wherein the power control module comprises a main control room, an oil pump, an electrical cabinets, a transformer, an air compressor, a pumping station, a power cable, a communication cables and a cable reel, the ventilation and water passage module comprises a fan, an air duct formed from an inner side of the hollow portion of the center pillar and a clean water pipe, the sinking pump is hanged directly at a bottom portion of the machine through the stabilizing vehicle for sinking pump at the upper portion of the derrick, the sinking pump has a water inlet which penetrates through the retractable shield of the boring system to the slurry storage of the cutter head, the power and control modules are distributed and installed on different device platforms and the ground surface, the stabilizer is installed in the mounting base for stabilizer of the center pillar, the flat car for shaft cover is installed independently on an independent rail on the ground surface, the spare pillar is arranged on a side of the machine for backup.
The entire module board is formed by assembling a plurality groups of individual module board unit and is secured directly onto all sides of the wall of the shaft.
The support system for wall reinforcement further comprises an advanced grouting system and a concrete additives filling apparatus, the advanced grouting system is formed by the multi-functional rig and the grouting pump, the grouting pump is installed on the device platform at a rear position.
The advantageous effect of the present invention are:
1. Structurally, the center pillar and full face vertical shaft drilling machine according to the present invention includes a center pillar, a device platform, a derrick, a boring system, a transportation system for people and materials, a support system for wall reinforcement, a safety system, and a control room, the machine utilizes a new method of shafting sinking and is mainly used for shaft sinking of different kinds of vertical shaft to achieve a full face and high efficient construction for vertical shaft drilling. The present invention is an integrated and complete equipment which integrated all functions of boring, tapping, support, drainage, ventilation, advanced detection together. Thus, parallel operation of shafting sinking, support and slag removal can be realized, high degree of automation and mechanization is achieved, while construction efficiency for vertical shaft drilling is increased and the construction cycle of shafting sinking and boring is shortened. The cost of shaft construction is dramatically lowered and the initial investment of mining site is lowered.
2. Structurally, the center pillar of the present invention is formed by connecting a plurality segments of main body with hollow columnar structure. The center pillar has one end connected to the main driver and another end connecting to the sliding frame of the derrick located on the ground surface. The passage for slag removal, the secondary hoist rail, the cable, the compressed air pipe, the concrete pipe, the clean water pipe, the pipe for slurry outflow, the pipe for slurry inflow and the stabilizer are arranged in the peripheral edges of the center pillar and are passage through from the bottom of the shaft to the ground surface. The use of center pillar can eliminate the use of winch in traditional construction method. The equipment weight is supported by the center pillar. The gravitation force of the cutter head in the bottom of the shaft is controlled through the lifting cylinder located on the ground surface to control the propulsion force of the cutter head such that the propulsion equipment is simplified and the overall structure is simplified. The equipment and the different types of pipelines from the ground surface are attached to the center pillar such that the pipeline extension from the ground surface is achieved, thereby the pipelines extension is much more convenience, the pipelines in the bottom is avoided, and the slag removal of the main hoist is greatly increased. The lifting device employs rigid track element and is attached to the center pillar, which replaces the traditional guide rope design, that the rigid track element is much safer and the speed of lifting is much faster, thus the transportation speed of materials is much faster. The center pillar has a hollow construction and functions as an air dryer, that this internal fan design can quickly discharge the polluted gas from the bottom of the shaft to outside and ensure the air quality in the bottom of the shaft.
3. Structurally, the retractable platform of the present invention includes a base platform, a small platform, a retractable cylinder and a seal member. The structure is simple, which can fulfill the requirement of passage of the module board, seal the gap in the shaft quickly, and prevent personal injury accidents caused by falling objects. The design is simple but reliable.
4. Structurally, the boring system includes components such as a cutter head, a main driver, a retractable shield and a shield cylinder for full face vertical shaft drilling. The boring system also includes a cylinder for directional adjustment in which one end of the shaft of the cylinder is connected to the shield positioning ring through sliding engagement and the barrel is fixed connected to the main driver, thereby the position of the main driver is adjusted through the controlling the cylinder for directional adjustment, hence the adjustment of drilling direction is realized. The center pillar has one end installed onto the main driver and another end connected to the derrick on the ground surface, thus through the sliding frame of the derrick to control the applied pressure to the equipment, speedy excavation under different stratum conditions can be achieved and the operation is convenience.
5. Structurally, the transportation system for people and materials according to the present invention includes a main hoist and an auxiliary hoist, a bucket, a cage, slurry pipes, slag pumps, arrangements for multi-level slurry treatment, and etc. to realize transportation of objects and materials such as personnel, slag and steel materials between the ground surface and the shaft. Personnel and material transportation between the shaft surface and the shaft bottom are realized by the auxiliary hoist. The slag transportation are divided into two parts. First, the slurry pump transports the slag carried by the slurry through the slurry outflow pipe to the slurry treatment devices, screening the large size sediments to the muck storage, then through the rapid feeding device positioned at the bottom portion of the muck storage to load the sediments into the bucket, and through the sliding groove member 309 of the derrick to load into the slag vehicle to transport to a predetermined location. The slurry is processed through multi-level screening and separation. Through treatment by the hydrocyclone devices, the slurry is transported to the slurry storage tank, then backflows to operation site through the slurry return pipe for recycling use. The highly concentrated slurry deposited on the bottom of the slurry storage tank is guided to flow to the transportation pump, the transportation pump is arranged to pump the highly concentrated slurry to flow through the slurry output pipe to the ground surface. The quality slurry from the ground surface is transported to the shaft bottom through the slurry input pipe. The above system works together to complete the transportation from the ground surface to the shaft bottom for personnel, materials, slag and slurry. The entire transportation system has an overall reasonable structural design. The transport of personnel, materials, slag and slurry can be operate at the same time. The equipment utility rate is increased and the work efficiency is increased.
6. Structurally, the support system for wall reinforcement according to the present invention includes a module board, a transportation concrete pipe, a buffer, a piston pump, a grouting pump, a multi-functional rig, a shotcreting manipulator and etc. for the immediate support of the shaft wall. Furthermore, the rig vehicle can be used. The rig hydraulically controls the multi-functional rig for operation of anchoring, advanced detection and advanced grouting. Accordingly, the support system for wall reinforcement is capable of providing a number of operation platform for different tasks such as anchoring, casting and advanced grouting, that the support system provides reliable support while is capable of meeting the need of construction under different stratum conditions.
7. Structurally, the safety system of the present invention comprises power arrangement, control arrangement, ventilation arrangement, water passage arrangement and etc. such that the need to safeguard the operation of equipment and the live of worker in the shaft is provide, and the normal operation of equipment and workers are ensured. The main hoist rail, the secondary hoist rail, the cable, the compressed air pipe, the concrete pipe, the clean water pipe, the pipe for slurry outflow, the pipe for slurry inflow and the stabilizer are all arranged on the center pillar and are extended downwardly together with the equipment. After the particular stroke of one center pillar and its pipelines is completed, the flat car is utilized to lock the flange of the center pillar, remove the connecting bolts, move the sliding frame at an upward position and disconnect the center pillar, then the spare pillar is lifted rapidly through the crane for pillar and the connection of the pillars are completed precisely through the control of the manipulator for pillar for the extension process of the center pillar without the need of pipe transportation to the bottom of the shaft. The process is fully mechanized, simple and convenience, fast and has low level of labor requirement, thus the equipment efficiency is increased.
8. Structurally, according to the present invention, the entire module board employs groups of individual module board units which are constructed and casted together, thus continuous casting can be achieved. The concreting time of the wall is long, the module board can be dissembled and transported conveniently, and the efficiency and quality of the wall casting is increased.
9. In additional, the center pillar and full face vertical shaft drilling machine according to the present invention is applicable to vertical shaft sinking for different constructions, which includes tunnel excavation, hydropower, nuclear power and underground engineering construction, that the underground construction channel can be open and fast and safe underground construction can be realized. The applicability is wide and is suitable for implementation promotion.
10. Accordingly, the center pillar and full face vertical shaft drilling machine according to the present invention solves the construction problem of large-scale shaft sinking for coalmines, realizes the parallel operation for construction with automated, mechanized and integrated sets of equipment which includes serial functions of boring and propulsion, slag removal, support and protection, water passage and ventilation. The installation and disassembly process is convenience, the preparation time is saved, the construction efficiency is increased, the construction cost is lowered, and the construction safety is increased while the applicable area is wide. Therefore, very suitable for implementation promotion.
The following is a brief description of the preferred embodiments of the present invention with accompanying drawings, wherein:
The numerical references in the drawings:
1. Center pillar; 101. Main pillar; 102. Primary hoist rail; 103 secondary hoist rail; 104. Cable; 105. Compressed air pipe; 106. Concrete pipe; 107 clean water pipe; 108. Pipe for slurry outflow; 109. Pipe for slurry inflow; 110. Mounting base for stabilizer; 2. Device platform; 201. Fixed platform; 202. Retractable platform; 202-1. Base platform; 202-2. Small platform; 202-3. Retractable cylinder; 202-4. Seal member; 3. Derrick; 301. Main body of derrick; 302. Sliding frame; 303. Pillar for sliding frame; 304. Lifting cylinder; 305. Movement arrangement; 306. Crane for pillar; 307. Manipulator for pillar; 308. Power station; 309. Muck chute; 4. Boring system; 401. Cutter head; 402. Retractable shield; 403. Shield positioning ring; 404. Main driver; 405. Operation station; 406. Shield cylinder; 407. Guiding pillar; 408. Propulsion cylinder; 409. Gripper sliding ring; 410. Gripper; 411. Gripper cylinder; 5. Transportation system for people and materials; 501. Slurry pump; 502. Slurry inflow pipe; 503. Slurry outflow pipe; 504. Primary vibrating screen; 505. Secondary vibrating screen; 506. Tertiary vibrating screen; 507. Primary hydrocyclone device; 508. Secondary hydrocyclone device; 509. Muck storage; 510. Slurry storage tank; 511. Rapid feeding device; 512. Bucket; 513. Main hoist; 514. Auxiliary hoist; 515. Slurry return pipe; 516. Transportation pump; 517. Slurry output pipe; 518. Slurry input pipe; 519. Primary slurry pump; 520. Secondary slurry pump; 521. Primary slurry tank; 525. Secondary slurry tank; 523. Cage; 6. Support system for wall reinforcement; 601. Auxiliary crane; 602. Module board; 603. Transportation concrete pipe; 604. Buffer; 605. Concrete mixing tank in the shaft bottom; 606. Concrete pump; 607. Grouting pipe; 608. Concrete sealing ring; 609. Rig vehicle; 610. Rig rail; 611. Lifting cylinder; 612. multi-functional rig; 613. Shotcreting manipulator; 614. Material hoist; 615. Grouting pump; 7. Safety system; 701. Sinking pump; 702. Power control module; 703. Ventilation and water passage module; 704. Stabilizer; 705. Stabilizing vehicle for sinking pump; 706. Flat car for shaft cover; 707. Spare pillar; 8. Control room.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The process of the present invention is as follows:
The main equipment is hanging onto the derrick 3 which is mounted on the ground surface through the center pillar 1. Through the lifting cylinder 304, the sliding frame 302 and the pillar for sliding frame 303 of the derrick, the upward and downward movement of the entire machine is controlled, and the lifting or forward excavation process of the equipment is realized. During excavation, the retractable shield 402 is firmly secured to the wall through gripping by the shield cylinder 406 to stabilize the cutter head 401 and provide anti-torque to other equipment. The gripper cylinder 411 provides gripping force to the gripper 410 to secure onto the wall, thus providing auxiliary anti-torque to the retractable shield to prevent rotational movement of equipment during the excavation process. The main driver 404 is started to drive the cutter head 401 to process excavation and rock breaking and the lifting cylinder 304 on the ground surface is used to control the applied pressure of the cutter head 401 to realize high efficient excavation process. The rock fragment resulted from cutting action of the cutter head 401 is carried by the high speed flowing slurry and is transported by the slurry pump 501 through pumping to the slurry treatment station. Through the primary vibrating screen, 504, the secondary vibrating screen 505, the tertiary vibrating screen 506, the primary hydrocyclone device 507 and the secondary hydrocyclone device 508, slag and slurry are separated and are arranged to store inside the muck storage 509 and the slurry storage tank 510 respectively. The slag inside the muck storage 509 is loaded into the bucket 512 rapidly through the rapid feeding device 511 at its bottom portion, transported outside to the ground surface through the main hoist 513, and then loaded to a vehicle through the muck chute 309 to transport to a predetermined location. The slurry stored inside the slurry storage tank 510 is backflow to the cutter head through the slurry return pipe 515 for carrying out another cycle, thus a continuous slag removal process is achieved. The highly concentrated slurry deposited on the bottom of the slurry storage tank 510 is transported to the treatment station on the ground surface through the transportation pump 516. The deterioration of slurry after a long period of usage in the shaft bottom will occur and require a replacement of new and quality slurry, which is transported through the pipe for slurry inflow 109 of the center pillar and the slurry input pipe 518 to the slurry storage tank. The slurry after deterioration is pumped out through the transportation pump 516. Thus the replacement of slurry is completed to meet the construction need.
During the excavation process of the equipment, construction steps such as manual binding of steel, anchoring, spraying and casting steps are processed at the same time. The auxiliary hoist 514 is used to transport the materials required for wall support downward to the shaft. The material hoist 614 is used to distribute the materials to different construction sites. The multifunctional rig 612 is utilized for anchoring construction, manual binding is carried out for steel binding to construct the steel arch, then the shotcreting manipulator 613 is employed for carrying spraying for wall support such that incidences such as wall collapse is prevented. In the rear portion of the equipment, process secondary binding of steel and install the concrete sealing ring 608, transport the module board 602 by utilizing the auxiliary crane 601 and process casting. Then, connect the grouting pipe 607, transport concrete from the ground surface through the concrete pipe 106, the transportation concrete pipe 603 and the buffer 604 to the concrete mixing tank 605 in the shaft. Thereafter, the concrete is pumped through the concrete pump 606 to transport to an inner portion of the module board to complete the wall casting process.
During the construction process, advanced geological survey is conducted by utilizing the multi-functional rig 612. If special strata is encountered, the multi-functional rig 612 and the grouting pump 615 are used to carrying out grouting reinforcement for the sides of the wall and the front of the machine. The geological condition is improved and the construction safety is ensured.
As the equipment is processing excavation continuous at a downward direction, after the particular stroke of the lifting cylinder 304, the center pillar 1 and the auxiliary pipelines is completed, an extension process of the center pillar is required. Utilize the flat car for shaft cover 706 to lock the flange of the center pillar, remove the connecting bolts, move the sliding frame 302 at a upward position, disconnect the center pillar 1, hoist the spare pillar 707 rapidly through the crane for pillar 306 and utilize the manipulator for pillar 307 to precisely control and complete the docking of pillars. Thus, the extension of the center pillar 1 and other pipelines is processed. There is no need to transport the pipelines to the bottom of the shaft, the operation is convenience and highly efficient.
The center pillar and full face vertical shaft drilling machine according to the preferred embodiment of the present invention realizes the simultaneous operation of shaft drilling, support reinforcement and slag removal steps, thereby increasing the construction efficiency of shaft excavation, providing widespread applicability and construction safety. The construction time is shortened, the construction cost is lowered and has great significance for large-scale promotion.
One skilled in the art will understand that the embodiments of the present invention as shown in the drawings and described above are exemplary only and should not be limited as such. The embodiments have been shown and described for the purposes of illustrating the functional and structural principles of the present invention and is subject to change without departure from such principles.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0068510 | Feb 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/093409 | 12/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/127808 | 9/3/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4629014 | Swisher | Dec 1986 | A |
20120318581 | Webb | Dec 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20160369629 A1 | Dec 2016 | US |