Further aspects and the advantages of the present invention will be better understood from the description below, which is to be considered by way of a non-limiting example with reference to the annexed figures, in which:
Particularly, the lower portion S of the mold is stationary, and houses at least one cutting die M that is arranged with a vertical axis Y. The upper portion S′ is provided with at least one punch P, also aligned on the axis Y, and is vertically movable in a reciprocating manner, such as to bring the punch P to cut the laminate L at the die M.
After each cutting step, the laminate L is fed for a certain tract in the direction F, which is for a new cutting step. In
The die M is fixed to a sleeve C housed within a suitable seat 7 being formed in the portion S of the mold. The sleeve C is pivotable in the seat 7, supported by bearings B. The rotation of the sleeve C is controlled by a motor (not shown) and allows rotating the die M in order to carry out the compensation of the lamination pack 4.
When the compensation of the lamination pack 4 is required, the sleeve C rotates by a preset angle to bring the die M in the desired angular position, prior to each cutting step.
The mold is provided with a centering device 1 according to the present invention, which has the function of locking the die M in the desired position prior to each cutting step.
With reference to
The sleeve C is provided with at least two cavities 9 and 9′ that are formed in the sidewall thereof. The cavities 9 and 9′ have the function of housing at least one conical portion of the wedge-like element 6. In the embodiment shown herein, the cavities 9 and 9′ are diametrically opposite relative to the center O of the sleeve C and die M. Generally, the sleeve C can be provided with a plurality of cavities 9, 9′ being arranged along the periphery thereof (on the same circumference) such as to intercept different angles in the center, which correspond to the desired angular positions for the die M.
The wedge-like element 6 of the device 1 is movable in the direction X, i.e. horizontally and transversally to the axis Y, to be fitted within the seat 7 and intercept a cavity 9 or 9′ of the sleeve C. A motor provides to rotate the sleeve C in order to bring a cavity 9 or 9′ into alignment with the conical element, along the direction X. The wedge-like element 6 is slidably fastened to the mold, in a suitable seat of the portion S, and is driven by a cam 2, which is fastened to the upper portion S′.
The cam 2 is movable parallel to the axis Y, with the portion S′ of the mold. The cam 2 is provided with a shaped portion with an inclined surface 22 having the function of being abutted against a matching inclined portion 61 of the wedge-like element 6. When the upper portion S′ of the mold is lowered to the lower portion S to carry out the cutting of the laminate L, the portion 22 of the cam 2 slides on the inclined surface 61 of the wedge-like element 6, thereby causing the movement of the same towards the sleeve C. In other words, the coupling between the cam 2 and the wedge-like element is such that the reciprocating movement of the cam 2 in the vertical direction determines the reciprocating movement of the wedge-like element 6 in the horizontal direction X.
The device 1 further comprises a counter-element 8, such as a spring, having the function of taking the wedge-like element 6 back to its initial position of disengagement relative to the cavity 9 or 9′, when the cam 2 is raised together with the portion S′ of the mold.
As shown in
The centering device 1 allows optimizing the performance of the mold, thus favoring a high repeatability of the positionings of the sleeve C, and thus of die M, at each cutting cycle. The conical coupling between the wedge-like element 6 and the sleeve C is free of mechanical clearance, and is also effective when the parts in contact are worn. Any positioning errors due to the inaccuracy of the motor rotating the sleeve C are prevented. The die M is always properly positioned within the mold S, both relative to the punch and relative to the laminate L. Thereby, the die M is worn in a uniform manner.
A further advantage of the device 1 is due to the fact that, as shown in
Advantageously, the mold provided with the device 1 may not be provided with pilot columns, which engage a bush fastened to the sleeve C, unlike what is provided in the traditional embodiments. In other words, the device 1 allows the mold structure to be simplified.
Number | Date | Country | Kind |
---|---|---|---|
06010722.4 | May 2006 | EP | regional |