Centering mechanisms for a surgical access assembly

Information

  • Patent Grant
  • 11432843
  • Patent Number
    11,432,843
  • Date Filed
    Monday, September 9, 2019
    5 years ago
  • Date Issued
    Tuesday, September 6, 2022
    2 years ago
Abstract
An access assembly includes an instrument valve housing defining a cavity, and a valve assembly. The valve assembly includes a flange seal member, a seal assembly, a centering mechanism, and a retainer frame assembly. The flange seal member includes an arcuate portion configured to adjustably engage first and second surfaces of the instrument valve housing in a sealing relation. The centering mechanism is configured to bias the valve assembly towards a generally centered position within the cavity. The centering mechanism includes a plurality of coils including inner coil portions operatively secured with the seal assembly, and outer coil portions configured to engage the first surface of the instrument valve housing. The retainer frame assembly includes first and second members. The inner coil portion of the centering mechanism is disposed between seal assembly and the second member of the retainer frame assembly.
Description
FIELD

The present disclosure relates to surgical access assemblies for minimally invasive surgery. More particularly, the present disclosure relates to centering mechanisms for use with the surgical access assemblies.


BACKGROUND

In order to facilitate minimally invasive surgery, a working space must be created in the desired surgical space. An insufflation gas, typically CO2, is introduced into the abdomen of the patient to create an inflated state called pneumoperitoneum. Surgical access assemblies are utilized to allow the introduction of surgical instrumentation and endoscopes (or other visualization tools). These surgical access assemblies maintain the pressure for the pneumoperitoneum, as they have one or more seals. Typically, a “zero-seal” in the surgical access assemblies seals a surgical access assembly in the absence of a surgical instrument therein, and an instrument seal seals around a surgical instrument that is inserted through the surgical access assembly.


Surgical procedures require a robust seal capable of adjusting to manipulation of surgical instrumentation extending through the surgical access assemblies without compromising seal integrity. Therefore, it would be beneficial to have a surgical access assembly with improved seal capability and durability.


SUMMARY

In accordance with an embodiment of the present disclosure, an access assembly includes an instrument valve housing defining a cavity, and a valve assembly disposed within the cavity of the instrument valve housing. The valve assembly includes a flange seal member, a seal assembly, a centering mechanism, and a retainer frame assembly. The flange seal member includes an arcuate portion configured to adjustably engage first and second surfaces of the instrument valve housing in a sealing relation. The seal assembly is configured to engage a surgical instrument inserted into the access assembly in a sealing relation. The centering mechanism is configured to bias the valve assembly towards a generally centered position within the cavity of the instrument valve housing. The centering mechanism includes a plurality of coils arranged in a circular configuration and defines a central opening. The plurality of coils includes inner coil portions operatively secured with the seal assembly, and outer coil portions configured to engage the first surface of the instrument valve housing. The retainer frame assembly is configured to couple the centering mechanism, the flange seal member, and the seal assembly as a single construct. The retainer frame assembly includes first and second members. The inner coil portion of the centering mechanism is disposed between seal assembly and the second member of the retainer frame assembly.


In an embodiment, the centering mechanism may have a substantially flat profile.


In another embodiment, the centering mechanism may be formed of a resilient material to transition the centering mechanism between a first state, in which, the central opening of the centering mechanism is disposed in a generally centered position, and a second state, in which, the central opening is radially displaced from the generally centered position.


In yet another embodiment, portions of the centering mechanism may be compressible when the centering mechanism is in the second state.


In an embodiment, each coil of the plurality of coils of the centering mechanism may have a circular profile.


In another embodiment, each coil may extend between the first surface of the instrument valve housing and a gap defined by a pair of adjacent pins of the first member of the retainer frame assembly.


In yet another embodiment, adjacent inner coil portions may define a gap therebetween.


In an embodiment, the first member of the retainer frame assembly may include a plurality of pins, and the second member of the retainer frame assembly may define an annular groove configured to receive the plurality of pins.


In another embodiment, each pin of the plurality of pins of the first member may be at least partially disposed in the gap defined between the adjacent inner coil portions such that at least a portion of each inner coil portion is secured between adjacent pins.


In an embodiment, the outer coil portions of the centering mechanism may be radially outward of the second member of the retainer frame assembly.


In another embodiment, the seal assembly may include a plurality of radial protrusions peripherally arranged about a central opening of the seal assembly. Each radial protrusion of the plurality of radial protrusions may be configured to support a corresponding inner coil portion of the centering mechanism.


In yet another embodiment, the valve assembly may further include a guard assembly configured to be secured with the flange seal member. The guard assembly may be configured to protect the seal assembly during insertion and manipulation of a surgical instrument.


In still yet another embodiment, the flange seal member may include opposing first and second surfaces. The guard assembly may be disposed on the first surface of the flange seal member in a superposed relation, and the seal assembly may be detachably secured with the second surface of the flange seal member.


In accordance with another embodiment of the present disclosure, an access assembly includes an instrument valve housing defining a cavity, and a valve assembly disposed within the cavity of the instrument valve housing. The valve assembly includes a flange seal member, a seal assembly, and a centering mechanism. The flange seal member includes an arcuate portion configured to adjustably engage lateral and distal surfaces of the instrument valve housing in a sealing relation. The seal assembly is configured to engage a surgical instrument inserted into the access assembly in a sealing relation. The centering mechanism is configured to bias the valve assembly towards a generally centered position within the cavity of the instrument valve housing. The centering mechanism includes a mesh having a toroidal shape. The mesh is configured to be interposed between the lateral surface of the instrument valve housing and a portion of the flange seal member.


In an embodiment, the mesh may be disposed distally of the arcuate portion of the flange seal member.


In another embodiment, the mesh may be transitionable between a first state, in which, a central opening defined by the mesh is in a generally centered position, and a second state, in which, the central opening of the mesh is radially displaced.


In an embodiment, the valve assembly may include a retainer frame assembly including first and second members. The retainer frame assembly may be configured to couple the flange mechanism, the flange seal member, and the seal assembly as a single construct.


In another embodiment, the central opening of the mesh may be concentrically disposed with a central opening defined by the seal assembly.


In an embodiment, a portion of the arcuate portion of the flange seal member may be in superposed relation with the mesh.


In another embodiment, the mesh may be radially compressible such that a portion of the arcuate portion of the flange seal member engages the lateral surface of the instrument valve housing when at least a portion of the mesh is compressed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a perspective view of a surgical access assembly in accordance with an embodiment of the present disclosure;



FIG. 2 is a perspective view of an instrument valve housing of the surgical access assembly of FIG. 1;



FIG. 3 is a bottom perspective view of the instrument valve housing of FIG. 2;



FIG. 4. is a top perspective view of a valve assembly of the instrument valve housing of FIG. 2 in accordance with an embodiment of the present disclosure;



FIG. 5 is a bottom perspective view of the valve assembly of FIG. 4;



FIG. 6 is an exploded perspective view of the valve assembly of FIG. 4 with parts separated;



FIG. 7 is a cross-sectional view of the surgical access assembly taken along section line 7-7 of FIG. 1, illustrating the valve assembly in a generally centered position;



FIG. 8 is a cross-sectional view of the surgical access assembly taken along section line 7-7 of FIG. 1, illustrating the valve assembly in a radially displaced position;



FIG. 9 is a cross-sectional view of a surgical access assembly in accordance with another embodiment of the present disclosure;



FIG. 10 is a cross-sectional view of the surgical access assembly of FIG. 9, illustrating radial displacement of a valve assembly of FIG. 9;



FIG. 11 is a perspective view of a centering mechanism of a valve assembly for use with the surgical access assembly of FIG. 1 in accordance with another embodiment of a present disclosure;



FIG. 12 is a perspective view of an instrument valve housing including the centering mechanism of FIG. 11 with portions of the housing removed;



FIG. 13 is a perspective view of a valve assembly of the instrument valve housing of FIG. 12;



FIG. 14 is a cross-sectional view of the valve housing of FIG. 12; and



FIG. 15 is a cross-sectional view of the valve housing of FIG. 14, illustrating radial displacement of the valve housing.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the specific disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals refer to similar or identical elements throughout the description of the figures.


As used herein, the term “distal” refers to that portion of the instrument, or component thereof which is farther from the user while the term “proximal” refers to that portion of the instrument or component thereof which is closer to the user. As used herein, the term “about” means that the numerical value is approximate and small variations would not significantly affect the practice of the disclosed embodiments.


With initial reference now to FIGS. 1-3, a surgical access assembly according to aspects of the present disclosure is shown generally as a cannula assembly 100. The cannula assembly 100 may be utilized during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The cannula assembly 100 includes a cannula 102 and an instrument valve housing 110 detachably secured to the cannula 102. The instrument valve housing 110 defines a longitudinal passage 111 for receipt of a surgical instrument 10. In addition, the instrument valve housing 110 defines a cavity 115 configured to adjustably support a valve assembly 120 therein. The valve assembly 120 is supported within the instrument valve housing 110 to provide sealed passage of the surgical instrument 10 through the cannula assembly 100. In embodiments, the instrument valve housing 110 may include, e.g., knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a clinician.


The cannula assembly 100 may be configured for use with an obturator (not shown) inserted through the instrument valve housing 110 and the cannula 102. The obturator may have a blunt distal end, or a bladed or non-bladed penetrating distal end. The obturator may be used to incise the abdominal wall so that the cannula assembly 100 may be introduced into the abdomen. The handle of the obturator may engage or selectively lock into the instrument valve housing 110 of the cannula assembly 100. For a detailed description of the structure and function of exemplary obturators and cannulas, reference may be made to commonly owned International Patent Publication No. WO 2016/186905 (“the '905 publication”), the entire disclosure of which is hereby incorporated by reference herein.


In addition, the cannula assembly 100 may also include features for securement with a patient. For example, a distal end of the cannula 102 may support a balloon anchor or another expandable member that engages the abdomen from the interior side. A feature on the opposite side of the abdominal wall may be used to further stabilize the cannula assembly 100, such as adhesive tabs or adjustable foam collars. For a detailed description of such features on a cannula assembly, reference may be made to commonly owned U.S. Pat. No. 7,300,448 (“the '448 patent”), the entire disclosure of which is hereby incorporated by reference herein.


With reference now to FIGS. 4-6, the valve assembly 120 in accordance with an embodiment of the present disclosure includes a flange seal member 130, a guard assembly 140, a seal assembly 150, a centering mechanism 160, and a retainer frame assembly 180. The flange seal member 130 includes an annular base 132 and a flange portion 138 extending from the annular base 132 such that the flange seal member 130 defines a recess 135 configured to receive the guard assembly 140 therein. The annular base 132 defines a central opening 132a configured to receive the surgical instrument 10 therethrough, and a plurality of bores 132b circumferentially defined about the central opening 132a. The plurality of bores 132b is configured to receive respective pins 182 of a first member 181 of the retainer frame assembly 180, as will be discussed below.


In particular, the flange portion 138 of the flange seal member 130 includes an arcuate portion 134 extending radially outward. The arcuate portion 134 includes inner and outer segments 134a, 134b defining a gap (not shown) therebetween. Under such a configuration, the arcuate portion 134 is configured to adjustably engage a first surface such as, e.g., a distal surface (not shown), of the instrument valve housing 110 in a sealing relation and maintain such contact during insertion and movement of the surgical instrument 10 in the longitudinal passage 111 (FIG. 2). For example, the distal surface of the instrument valve housing 110 may be orthogonal to a longitudinal axis “L-L” (FIG. 2) defined by the longitudinal passage 111 of the instrument valve housing 110. A conventional base seal member may suffer from buckling or bending during movement thereof, which may result in a loss of sealing contact with the surgical instrument 10 and/or the instrument valve housing. In contrast, the flange seal member 130 engages the instrument valve housing 110 in a sealing relation during movement of the valve assembly 120 within the cavity 115. In particular, the arcuate portion 134 of the flange seal member 130 adjustably engages the distal surface of the instrument valve housing 110 to enable sealing contact during, e.g., radial, movement in the cavity 115.


In addition, the arcuate portion 134 of the flange seal member 130 is configured to adjustably engage a second surface such as, e.g., a lateral surface 110a (FIG. 3), of the instrument valve housing 110 in a sealing relation during an off-centered movement of the seal assembly 120. The lateral surface 110a may be substantially parallel to the longitudinal axis “L-L” (FIG. 2) defined by the longitudinal passage 111 (FIG. 2) of the instrument valve housing 110. Under such a configuration, the arcuate portion 134 may sealingly engage two surfaces that are substantially orthogonal to each other. In particular, the gap defined between the inner and outer segments 134a, 134b of the arcuate portion 134 of the flange seal member 130 enables the arcuate portion 134 to adjustably engage the lateral surface 110a, as well as the distal surface (not shown), of the instrument valve housing 110 in a sealing relation during movement of the valve assembly 120. Specifically, when a portion of the centering mechanism 160 is compressed against the lateral surface 110a of the instrument valve housing 110, the outer segment 134b of the arcuate portion 134 of the flange seal member 130 may deflect radially inward to maintain sealing contact with the instrument valve housing 110. Under such a configuration, the flange seal member 130 may engage the instrument valve assembly 110 at multiple locations and enhance sealing relation with the instrument valve assembly 110. In this manner, the flange seal member 130 is configured to engage at least two surfaces of the instrument valve housing 110 in a sealing relation when the centering mechanism 160 is radially off-center, as will be discussed below.


With particular reference to FIG. 6, the guard assembly 140 is configured to be disposed in the recess 135 defined in the flange seal member 130, in a superposed relation with the annular base 132. The guard assembly 140 is configured to protect the seal assembly 150 during insertion and withdrawal of the surgical instrument 10 into and from the seal assembly 150. The guard assembly 140 includes an annular member 142 and a plurality of petals 144 circumferentially supported on the annular member 142 such that adjacent petals 144 are at least partially overlapped to enable slidable movement therebetween. The plurality of petals 144 defines a central opening 146. The petals 144 also operate to guide and orient the surgical instrument 10 through the seal assembly 150. The central opening 146 is configured for receipt of the surgical instrument 10 therethrough. The annular member 142 defines a circumferentially arranged bores 142a, and a peripheral portion of each petal 144 defines bores (not shown) in alignment with the respective bores of 142a of the annular member 142 to receive the respective pins 182 of the first member of the retainer frame assembly 180, as will be discussed below.


The guard assembly 140 may be formed from, e.g., a sheet of plastic/polymeric material, by stamping with a tool that forms the petals 144. The petals 144 are configured to flex distally (i.e., away from the first member 181 of the retainer frame assembly 180), upon engagement with the surgical instrument 10 to facilitate passage of the surgical instrument 10 through the seal assembly 150, which, in turn, stretches the seal assembly 150 to increase the size of a central opening 151 of the seal assembly 150. The increased size of the central opening 151 of the seal assembly 150 permits receipt of the surgical instrument 10 (FIG. 7) through the valve assembly 120.


It is envisioned that the guard assembly 140 may include any number of petals 144 and the petals 144 may include flap portions of any size or configuration. For a detailed description of a guard assembly, reference may be made to U.S. Pat. Nos. 5,895,377 and 6,569,120, and International Patent Publication No. WO 91/12838, the entire disclosures of which are all hereby incorporated by reference herein, for exemplary guard assemblies.


With continued reference to FIG. 6, the seal assembly 150 of the valve assembly 120 is configured to provide a seal around an outer surface of the surgical instrument 10 passing through the instrument valve housing 110. The seal assembly 150 includes a plurality of seal segments 152 that are stackable to form a seal having a virtual inner circumferential surface defining the central opening 151 to facilitate sealed passage of the surgical instrument 10 through the seal assembly 150. In embodiments, the central opening 151 may be between about 0.025″ and about 0.100″ in diameter.


The seal assembly 150 may defines, e.g., a substantially planar, hexagonal member. The hexagonal shape facilitates assembly of the seal assembly 150, allowing for quick placement of the seal segments 152 in relation to each other, and/or by allowing for a quick visual check of the seal assembly 150 to ensure that the seal segments 152 are properly assembled. By forming the central opening 151 out of multiple seal segments 152, i.e., forming a virtual inner circumferential surface, instead of having a continuous solid opening through a single seal member, the likelihood of the seal assembly 150 tearing during insertion, removal, and/or use of a surgical instrument 10 therethrough is greatly reduced. The seal segments 152 of the seal assembly 150 may be formed of an elastic material, e.g., rubber, polyisoprene, or silicone elastomers. In one embodiment, the seal assembly 150 is formed of liquid silicon rubber (LSR). In embodiments, the seal segments 152 may include one or more fabric layers. Each seal segment 152 of the seal assembly 150 may be substantially wing-shaped and configured to partially overlap an adjacent seal segment 152 when the seal assembly 150 is in the assembled or stacked configuration. Each seal segment 152 includes a base portion 152a and a seal portion 152b extending from the base portion 152a. The base portion 152a and the seal portion 152b may be formed of the same or different material. The base portion 152a of the seal segment 152 defines a plurality of openings 153 to facilitate assembly and retention of the seal assembly 150 in the stacked configuration. More particularly, the plurality of openings 153 are configured to receive pins 182 of the first member of the retainer frame assembly 180, for securing the seal segments 152 relative to each other. In particular, the seal portion 152b of each seal segment 152 of the seal assembly 150 may taper radially inwardly to facilitate reception of the surgical instrument 10 through the seal assembly 150, and/or may enhance sealing about the surgical instrument 10.


In the assembled or stacked configuration, the seal assembly 150 includes a substantially planar body having a substantially uniform thickness. It is envisioned that the aspects of the present disclosure may be modified for use with an access assembly having a substantially conical body. Misalignment of any one of the seal segments of the seal assembly 150 may compromise the integrity of the seal assembly 150. The configuration of the seal assembly 150 permits visual inspection of the seal assembly 150 to determine if the seal assembly 150 is assembled properly.


With reference back to FIGS. 4-6, the centering mechanism 160 in accordance with an embodiment of the present disclosure is configured to bias the valve assembly 120 towards a generally centered position, i.e., concentrically positioned within the cavity 115 (FIG. 3), of the instrument valve housing 110. The centering mechanism 160 permits, e.g., radial, movement of the valve assembly 120 relative to the instrument valve housing 110 when the surgical instrument 10 is received through the valve assembly 120 and manipulated by a clinician. The centering mechanism 160 returns the valve assembly 120 to a generally centered position once the surgical instrument 10 is withdrawn from the instrument valve housing 110 or the radial movement ceases. The centering mechanism 160 is configured to engage various points of the instrument valve housing 110 to bias the centering mechanism 160 to a generally centered position.


Dynamic leaks are common when a clinician manipulates, e.g., a 5 mm surgical instrument through a 15 mm port during bariatric procedures. In order to reduce and inhibit such dynamic leaks, the centering mechanism 160 is compressible when the valve assembly 120 is diametrically displaced within the cavity 115 (FIG. 3) of the instrument valve housing 110, and the centering mechanism 160 is also resilient such that when the surgical instrument 10 is removed from the instrument valve housing 110 the centering mechanism 160 returns the valve assembly 120 back to the generally centered position. In this manner, the centering mechanism 160 may reduce occurrence of a dynamic leak during manipulation of the surgical instrument 10 within the longitudinal passage 111.


The centering mechanism 160 has a substantially flat profile having a plurality of coils 162. The plurality of coils 162 includes an annular body 164 defining a central opening 166. The central opening 166 is dimensioned to receive the surgical instrument 10 therethrough. In particular, the central opening 166 is dimensioned to enable the clinician to manipulate the surgical instrument 10 while providing maximum degree of freedom. The plurality of coils 162 defines a plurality of inner coil portions 162a and outer coil portions 162b. With particular reference to FIG. 5, adjacent inner coil portions 162a define a gap 162c therebetween. The gap 162c is dimensioned to at least partially receive a pin 182 (FIG. 4) of the first member 181 of the retainer frame assembly 180. In this manner, each inner coil portion 162a is supported by an adjacent pair of pins 182 of the first member 181 of the retainer frame assembly 180. The outer coil portion 162b is radially outward from the seal assembly 150 and is configured to engage the lateral surface 110a (FIG. 3) of the instrument valve housing 110. The adjacent pair of pins 182 inhibits inward radial displacement of the corresponding inner coil portion 162a, while enabling radial compression of the outer coil portion 162b. In this manner, the centering mechanism 160 is compressible and resilient to bias the off-centered valve assembly 120 towards a generally centered position within the cavity 115 (FIG. 3) of the instrument valve housing 110. Under such a configuration, once the surgical instrument 10 is withdrawn from the valve assembly 120 that is in an off-centered position, the centering mechanism 160 returns the valve assembly 120 to the generally centered position. The centering mechanism has the advantage of omnidirectional, generally constant centering forces being applied to the seal assembly. The design allows for a mechanism that always or nearly always returns the seal assembly to a central position, as the centering mechanism is always centered in its natural state. The centering mechanism can be made from surgically acceptable metals or appropriate plastics. It can also be made from materials that can be re-sterilized for use in a reusable trocar cannula assembly.


With brief reference back to FIG. 6, the retainer frame member 180 of the valve assembly 120 is configured to couple the guard assembly 140, the flange seal member 130, the seal assembly 150, and the centering mechanism 160 together as a single construct to form the valve assembly 120. The retainer frame member 180 includes the first member 181 and a second member 185. The first member 181 includes a plurality of pins 182 extending from a distal surface of the first member 181. The second member 185 defines an annular groove 185a configured to receive the plurality of the pins 182 of the first member 181 to secure first member 181 thereto. For example, the pins 182 may be frictionally received in the annular groove 189a. Alternatively, the pins 182 may be welded, glued, adhered, bonded or otherwise secured to the annular groove 185a of the second member 185 in order to secure the first and second members 181, 185 together.


The plurality of pins 182 of the first member 181 extends through the respective bores 142a of the guard assembly 140 and the bores 132b of the flange seal member 130. The plurality of pins 182 further extends through the plurality of openings 153 of the seal assembly 150 and into the annular groove 185a of the second member 185. Under such a configuration, the guard assembly 140 is received in the recess 135 of the flange seal member 130, and the seal assembly 150 is interposed between the flange seal member 130 and the second member 185 of the retainer frame assembly 180.


With particular reference back to FIGS. 4 and 5, as discussed hereinabove, each pin 182 of the first member 181 is disposed at least partially within the gap 162c defined by a pair of adjacent inner coil portions 162a of the centering mechanism 160. Under such a configuration, each inner coil portion 162a is supported by a pair of adjacent pins 182. In addition, the plurality of pins 182 is received in the annular groove 185a of the second member 185. In this manner, portions of the inner coil portions 162 are secured between the seal assembly 150 and the second member 185 of the retainer frame assembly 180. In order to further enhance securement of the inner coil portion 162a between the seal assembly 150 and the second member 185, the seal assembly 150 may include radial protrusions 155 peripherally arranged about the central opening 151 to support portions of the inner coil portion 162a of the centering mechanism 160. The outer coil portions 162 engage the lateral surface 110a (FIG. 3) of the instrument valve housing 110 and biases the valve assembly 120 towards a generally centered position in the cavity 115 of the instrument valve housing 110.


With reference to FIGS. 6-8, in use, the valve assembly 120 is initially positioned generally centered in the instrument valve housing 110 in the absence of the surgical instrument 10. The outer coil portions 162b of the centering mechanism 160 engage the lateral surface 110a of the instrument valve housing 110. At this time, the arcuate portion 134 of the flange seal member 130 engages the distal surface of the instrument valve housing 110 in a sealing relation. As the surgical instrument 10 is introduced into the instrument valve housing 110 through the longitudinal passage 111 (FIG. 2) of the instrument valve housing 110, the distal end of the surgical instrument 10 engages the petals 144 of the guard assembly 140 causing the respective petals 144 to flex distally towards the seal assembly 150. Such flexing of the petals 144 causes the central opening 151 of the seal assembly 150 to open to accommodate passage of the surgical instrument 10. In this manner, the guard assembly 140 protects the seal assembly 150 from tearing or other damage as the surgical instrument 10 is received through and withdrawn from the seal assembly 150.


When the surgical instrument 10 is disposed within the longitudinal passage 111 without any radial forces applied to the surgical instrument 10, the valve assembly 120 may be disposed in a generally centered position as shown in FIG. 7. However, the valve assembly 120 may move within the cavity 115 during a surgical procedure. The clinician may manipulate the surgical instrument 10 such that the valve assembly 120 may be radially displaced, which, in turn, causes some of the outer coil portions 162b of the centering mechanism 160 to be compressed (FIG. 8). At this time, the arcuate portion 134 (FIG. 6) of the flange seal member 130 may engage the lateral surface 110a (FIG. 3), as well as the distal surface, of the instrument valve housing 110 in a sealing relation. Once the surgical instrument 10 is withdrawn from the instrument valve housing 110, the centering mechanism 160 returns the valve assembly 120 to a generally centered position (FIG. 7), while the arcuate portion 134 maintains sealing relation with the distal surface 112a of the upper housing section 112.


It is envisioned that the centering mechanism 160 may include coils having different shapes and configurations. With reference to FIGS. 9 and 10, a centering mechanism 260 may include a plurality of coils 262 circumferentially arranged about the centering mechanism 260. In particular, each coil 262 may have a circular profile such that a single circular coil extends between the lateral surface 110a and a gap defined by a pair of adjacent pins 182. As discussed hereinabove, each circular coil 262 may be compressed to, e.g., an oblong shape, during manipulation of the surgical instrument 10 by the clinician, and may spring back to the circular shape when the valve assembly 120 returns to the generally centered position.


With reference now to FIGS. 11 and 12, a centering mechanism in accordance with another embodiment of the present disclosure is generally shown as a centering mechanism 360. The centering mechanism 360 is configured for use with the valve assembly 120 (FIG. 6). Portions of the centering mechanism 360 substantially identical to the centering mechanisms 160, 260 will not be described herein to avoid obscuring the present disclosure in unnecessary detail. The centering mechanism 360 may have, e.g., a toroidal or donut shape, including a mesh or a plurality of coils 362. In particular, the centering mechanism 360 is dimensioned to be in the cavity 115 of the instrument valve housing 110. The centering mechanism 360 is disposed distal of the arcuate portion 134 (FIG. 6) of the flange seal member 130. Moreover, the centering mechanism 360 is configured to engage the lateral surface 110a of the instrument valve housing 110 when the valve assembly 320 is in a generally centered position. Under such a configuration, when the valve assembly 320 is radially displaced, portions of the centering mechanism 360 are compressed during manipulation of a surgical instrument extending through the valve assembly 320. At this time, the arcuate portion 134 of the of the flange seal member 130 may engage the lateral surface 110a of the instrument valve housing 110 in a sealing relation. With reference to FIG. 13, the centering mechanism 360 defines a central opening 366 dimensioned to receive the second member 185 of the retainer frame assembly 180 such that the centering mechanism 360 is interposed between the lateral surface 110a and the second member 185 in an uncompressed state, i.e., when the valve assembly 320 is in a normally biased or a generally centered position.


With reference to FIGS. 14 and 15, the valve assembly 320 may be radially displaced from a normally biased or a generally centered position such that portions of the centering mechanism 360 are compressed against the lateral wall 110a of the instrument valve housing 110 and portions of the centering mechanism 360 diametrically opposing the compressed portions are disengaged from the lateral wall 110a, as shown in FIG. 15. In the absence of any radial force applied to the surgical instrument, the valve assembly 320 returns to the generally centered position. The use of the centering mechanism 360 is substantially identical to the use of the centering mechanism 160, and thus will not be described herein.


While various embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that these embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the present disclosure. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims
  • 1. An access assembly comprising: an instrument valve housing defining a cavity; anda valve assembly disposed within the cavity of the instrument valve housing, the valve assembly including: a flange seal member including an arcuate portion configured to adjustably engage a lateral surface of the instrument valve housing in a sealing relation;a seal assembly configured to engage a surgical instrument inserted into the access assembly in a sealing relation;a centering mechanism configured to bias the valve assembly towards a generally centered position within the cavity of the instrument valve housing, the centering mechanism including a plurality of coils arranged in a circular configuration and defining a central opening, the plurality of coils including inner coil portions operatively secured with the seal assembly, and outer coil portions configured to engage the lateral surface of the instrument valve housing; anda retainer frame assembly configured to couple the centering mechanism, the flange seal member, and the seal assembly as a single construct, the retainer frame assembly including first and second members, the inner coil portions of the centering mechanism being disposed between the seal assembly and the second member of the retainer frame assembly.
  • 2. The access assembly according to claim 1, wherein the centering mechanism has a substantially flat profile.
  • 3. The access assembly according to claim 1, wherein the centering mechanism is formed of a resilient material to transition the centering mechanism between a first state, in which, the central opening of the centering mechanism is disposed in a generally centered position, and a second state, in which, the central opening is radially displaced from the generally centered position.
  • 4. The access assembly according to claim 3, wherein portions of the centering mechanism are compressible when the centering mechanism is in the second state.
  • 5. The access assembly according to claim 1, wherein each coil of the plurality of coils of the centering mechanism has a circular profile.
  • 6. The access assembly according to claim 5, wherein a gap is defined between adjacent pins of the first member of the retainer frame assembly and at least one coil of the plurality of coils extends between the lateral surface of the instrument valve housing and the gap.
  • 7. The access assembly according to claim 1, wherein adjacent inner coil portions define a gap therebetween.
  • 8. The access assembly according to claim 7, wherein the first member of the retainer frame assembly includes a plurality of pins and the second member of the retainer frame assembly defines an annular groove configured to receive the plurality of pins.
  • 9. The access assembly according to claim 8, wherein each pin of the plurality of pins of the first member is at least partially disposed in the gap defined between the adjacent inner coil portions such that at least a portion of each inner coil portion is secured between adjacent pins.
  • 10. The access assembly according to claim 8, wherein the outer coil portions of the centering mechanism are disposed radially outward of the second member of the retainer frame assembly.
  • 11. The access assembly according to claim 1, wherein the seal assembly includes a plurality of radial protrusions peripherally arranged about a central opening of the seal assembly, each radial protrusion of the plurality of radial protrusions configured to support a corresponding inner coil portion of the centering mechanism.
  • 12. The access assembly according to claim 1, wherein the valve assembly further includes a guard assembly configured to be secured with the flange seal member, the guard assembly configured to protect the seal assembly during insertion and manipulation of the surgical instrument.
  • 13. The access assembly according to claim 12, wherein the flange seal member includes opposing first and second surfaces, the guard assembly disposed on the first surface of the flange seal member in a superposed relation and the seal assembly detachably secured with the second surface of the flange seal member.
  • 14. An access assembly comprising: an instrument valve housing defining a cavity; anda valve assembly disposed within the cavity of the instrument valve housing, the valve assembly including: a flange seal member including an arcuate portion configured to adjustably engage a lateral surface of the instrument valve housing in a sealing relation;a seal assembly configured to engage a surgical instrument inserted into the access assembly in a sealing relation;a centering mechanism configured to bias the valve assembly towards a generally centered position within the cavity of the instrument valve housing, the centering mechanism including a mesh having a toroidal shape, the mesh configured to be interposed between the lateral surface of the instrument valve housing and the flange seal member.
  • 15. The access assembly according to claim 14, wherein the mesh is disposed distally of the arcuate portion of the flange seal member.
  • 16. The access assembly according to claim 14, wherein the mesh defines a central opening and is transitionable between a first state, in which, the central opening of the mesh is in a generally centered position, and a second state, in which, the central opening of the mesh is radially displaced.
  • 17. The access assembly according to claim 15, wherein the valve assembly includes a retainer frame assembly including first and second members, the retainer frame assembly configured to couple the flange mechanism, the flange seal member, and the seal assembly as a single construct.
  • 18. The access assembly according to claim 16, wherein the central opening of the mesh is concentrically disposed with a central opening defined by the seal assembly.
  • 19. The access assembly according to claim 15, wherein a portion of the arcuate portion of the flange seal member is in superposed relation with the mesh.
  • 20. The access assembly according to claim 15, wherein the mesh is radially compressible such that a portion of the arcuate portion of the flange seal member engages the lateral surface of the instrument valve housing when at least a portion of the mesh is compressed.
US Referenced Citations (474)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5226426 Yoon Jul 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5364372 Danks Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5584850 Hart Dec 1996 A
5601581 Fogarty et al. Feb 1997 A
5624399 Ackerman Apr 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5752970 Yoon May 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485410 Loy Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6684405 Lezdey Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8021296 Bonadio et al. Sep 2011 B2
8025670 Sharp et al. Sep 2011 B2
8038652 Morrison et al. Oct 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8241209 Shelton, IV et al. Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8403889 Richard Mar 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
20010037053 Bonadio et al. Nov 2001 A1
20020013542 Bonadio Jan 2002 A1
20020055714 Rothschild May 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030187376 Rambo Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040059297 Racenet et al. Mar 2004 A1
20040064100 Smith Apr 2004 A1
20040068232 Hart Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050059934 Wenchell Mar 2005 A1
20050070935 Ortiz Mar 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060212063 Wilk Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100063452 Edelman et al. Mar 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110118553 Stopek May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Man et al. Oct 2011 A1
20110313250 Kleyman Dec 2011 A1
20120059640 Roy et al. Mar 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Altieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20150025477 Evans Jan 2015 A1
Foreign Referenced Citations (79)
Number Date Country
2702419 Nov 2010 CA
0226026 Jun 1987 EP
0538060 Apr 1993 EP
0577400 Jan 1994 EP
0630660 Dec 1994 EP
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1188415 Mar 2002 EP
1312318 May 2003 EP
1774918 Apr 2007 EP
1932485 Jun 2008 EP
1994896 Nov 2008 EP
1994896 Nov 2008 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
2080494 Jul 2009 EP
2095781 Sep 2009 EP
2098182 Sep 2009 EP
2138117 Dec 2009 EP
2138118 Dec 2009 EP
2181657 May 2010 EP
2226025 Sep 2010 EP
2229900 Sep 2010 EP
2238924 Oct 2010 EP
2238925 Oct 2010 EP
2238926 Oct 2010 EP
2238933 Oct 2010 EP
2248478 Nov 2010 EP
2248482 Nov 2010 EP
2253283 Nov 2010 EP
2272450 Jan 2011 EP
2277464 Jan 2011 EP
2289438 Mar 2011 EP
2292165 Mar 2011 EP
2343019 Jul 2011 EP
2432408 Mar 2012 EP
2664290 Nov 2013 EP
2469083 Apr 2009 GB
8401512 Apr 1984 WO
9314801 Aug 1993 WO
9404067 Mar 1994 WO
9610963 Apr 1996 WO
9636283 Nov 1996 WO
9733520 Sep 1997 WO
9742889 Nov 1997 WO
9916368 Apr 1999 WO
9922804 May 1999 WO
9929250 Jun 1999 WO
0032116 Jun 2000 WO
0032120 Jun 2000 WO
0054675 Sep 2000 WO
0108581 Feb 2001 WO
0149363 Jul 2001 WO
0207611 Jan 2002 WO
03034908 May 2003 WO
03071926 Sep 2003 WO
03077726 Sep 2003 WO
2004043275 May 2004 WO
2004054456 Jul 2004 WO
2004075741 Sep 2004 WO
2004075930 Sep 2004 WO
2005058409 Jun 2005 WO
2006019723 Feb 2006 WO
2006100658 Sep 2006 WO
2006110733 Oct 2006 WO
2007018458 Feb 2007 WO
2007095703 Aug 2007 WO
2007143200 Dec 2007 WO
2008015566 Feb 2008 WO
2008042005 Apr 2008 WO
2008077080 Jun 2008 WO
2008093313 Aug 2008 WO
2008103151 Aug 2008 WO
2008121294 Oct 2008 WO
2008147644 Dec 2008 WO
2009036343 Mar 2009 WO
2010000047 Jan 2010 WO
2010141409 Dec 2010 WO
2010141673 Dec 2010 WO
Non-Patent Literature Citations (3)
Entry
Extended European Search Report issued in EP Application No. 20194861.9, dated Feb. 4, 2021.
U.S. Appl. No. 16/394,043, filed Apr. 25, 2019, inventor Lorenzo Vaccarella.
U.S. Appl. No. 16/238,823, filed Jan. 3, 2019, inventor Garrett Ebersole.
Related Publications (1)
Number Date Country
20210068796 A1 Mar 2021 US