1. Field of the Invention
The present invention relates to an in-feed type centerless grinding apparatus.
2. Description of the Related Art
For example, the centerless grinding apparatuses used for manufacturing the rollers of rolling bearings are classified into an in-feed type, a through-feed type and a tangential-type.
According to the in-feed type, a work is ground in a predetermined shape by radially feeding a grinding wheel or a regulating wheel in a state where the work is set in a grinding space between the rotating grinding wheel and the rotating regulating wheel.
Conventionally, the outer diameter surface and the end surface of a work are ground by separate grinding apparatuses, respectively, in a manner that the work subjected to the heat treatment is first ground at its outer diameter surface and then ground at its end surface. Further, as to a work required for a high accuracy, in order to obtain the sufficient accuracy of the end surface serving as the reference at the time of grinding the outer diameter surface, the end surface is ground after grinding the outer diameter surface and further the outer diameter surface is subjected to the finish grinding.
JP-B-62-58870 and Japanese Patent No 2678144 disclose a technique for simultaneously grinding the outer diameter surface and the inner diameter surface of an annular work.
JP-A-6-339842 discloses an apparatus for grinding the inner diameter surface and the end surface of an annular work. This apparatus is arranged in a manner that a grinding wheel for grinding the inner diameter surface is disposed at a first grinding processing position and a grinding wheel for grinding the end surface is disposed at a second grinding processing position, whereby a work is sequentially indexed at the two grinding processing positions thereby to sequentially grind the inner diameter surface and the end surface.
There has been desired a grinding apparatus which can simultaneously grind the outer diameter surface and the end surface of a work so that the rollers of a rolling bearing etc. can be ground quickly.
None of JP-B-62-58870 and Japanese Patent No 2678144 discloses a technique for grinding the end surface of a work.
According to the apparatus described in JP-A-6-339842, although both the inner diameter surface and the end surface of the work can be processed with one-time chucking, it is impossible to simultaneously grind both the outer diameter surface and the end surface of the work since a chuck interferes with the grinding wheel.
Accordingly, the invention has been made in view of the aforesaid circumstance of the conventional techniques and an object of the invention is to provide a centerless grinding apparatus and a centerless grinding method which can simultaneously grind the outer diameter surface and the end surface of a substantially cylindrical work despite of a relatively simple configuration of the apparatus.
The object of the invention can be attained by the following configuration.
In the aforesaid configuration, at the time of grinding the outer diameter surface of the work by the outer diameter surface grinding wheel while supporting the outer diameter surface of the work by the outer diameter surface grinding wheel and the regulating wheel, the end surface grinding of the work is carried out by utilizing that the movement of the work in the axial direction thereof is suppressed. Thus, the outer diameter surface and the end surface of the work can be ground simultaneously without changing the positions for grasping the work or indexing the work to different grinding processing positions. According to the invention, the configuration of the apparatus can be simplified, a time period required for the grinding process can be shortened and the processing cost can be reduced. Further, it becomes possible to process with a higher accuracy.
There are a conical roller of a rolling bearing, a self-aligning roller, for example, as a work of a substantially cylindrical shape.
The embodiment of the invention will be explained with reference to the accompanying drawings.
The centerless grinding apparatus 10 according to the embodiment includes a second grinding mechanism for grinding the end surface of the work 1 (the large diameter side end surface of the conical roller in this case), which has a cup grinding wheel 21 serving as an end surface grinding wheel, an end surface cutting table 23 for approaching and separating the cup grinding wheel 21 to and from the end surface of the work 1, respectively, and a dressing device 26 for the cup grinding wheel 21.
The outer peripheral surface of the outer diameter surface grinding wheel 11 is formed in a conical shape so as to be slightly slanted with respect to the rotation axis of the outer diameter surface grinding wheel 11 so that the extended line of the rotation axis of the work 1 crosses at a desired distance with the extended line of the rotation axis of the cup grinding wheel 21 for grinding the end surface as described later. According to the embodiment, the rotation axis of the outer diameter surface grinding wheel 11 is directed to the horizontal direction (a direction in parallel to the installation surface of the apparatus).
The outer periphery of the regulating wheel 12 is formed in a cylindrical shape in parallel to the rotation axis of the regulating wheel 12. The outer diameter surface cutting table 13 is moved substantially linearly as shown by an arrow A in
The work 1 is disposed between the outer periphery of the outer diameter surface grinding wheel 11 and the outer periphery of the regulating wheel 12. In this case, the conical roller 1 is sandwiched between the outer periphery of the outer diameter surface grinding wheel 11 and the outer periphery of the regulating wheel 12 so that the large diameter side end surface of the conical roller 1 slightly protrudes from the large diameter side end surface of the outer diameter surface grinding wheel 11. In this state, the outer diameter surface of the conical roller 1 is ground by the outer diameter surface grinding wheel 11.
According to the embodiment, the second grinding mechanism is disposed on a side where the large diameter side end surface of the work 1 is disposed on the outer diameter surface cutting table 13. The extended line of the rotation axis of the cup grinding wheel 21 crosses with the extended line of the rotation axis of the work 1 (with a crossing angle θ) in a state of being sandwiched between the outer diameter surface grinding wheel 11 and the regulating wheel 12. The crossing angle θ is set in a manner that a distance from the crossing point to the end surface of the work 1 coincides with a desired curvature radius of the end surface. The second grinding mechanism for grinding the end surface is disposed on the outer diameter surface cutting table like a work rest, so that even when the diameter of the outer diameter surface grinding wheel 11 or the regulating wheel 12 changes by the dressing operation, the similar end surface grinding can be realized without changing the positional relation with the work 1.
The end surface cutting table 23 is moved linearly as shown by an arrow B in
The cup grinding wheel 21 can be dressed by the dressing device 26 in a state that the cup grinding wheel 21 is separated from the respective large diameter side end surfaces of the work 1 and the outer diameter surface grinding wheel 11. The dressing device 26 includes a grinding wheel dressing slide 26a and a grinding wheel dressing diamond 26b provided at the tip end of an arm on the grinding wheel dressing slide 26a. The grinding wheel dressing slide 26a is moved linearly as shown by an arrow C in
Although not shown, the dressing operations of the outer diameter surface grinding wheel 11 and the regulating wheel 12 are performed like the usual in-field centerless grinding machine.
The cup grinding wheel 21 abuts against a portion closer to the outer diameter surface grinding wheel 11 of the large diameter side end surface of the work 1, and in this state, each of the work 1 and the cup grinding wheel 21 rotates thereby to grind the end surface of the work 1.
On the other hand, an end surface stopper 17 abuts against a portion closer to the regulating wheel 12 of the large diameter side end surface of the work 1 thereby to support the end surface of the work 1. The regulating wheel 12 having the rotation axis slanted (that is, skewed) with respect to the rotation axis of the work 1 applies to the work 1 a thrust force in the axial direction directed toward the end surface stopper 17 side thereby to urge the work 1 against the end surface stopper 17. In this state, the cup grinding wheel 21 grinds the end surface of the work 1.
According to the embodiment, since the cup grinding wheel 21 is disposed in a manner that the extended line of the rotation axis thereof crosses with the extended line of the rotation axis of the work 1 in a sandwiched state between the outer diameter surface grinding wheel 11 and the regulating wheel 12, so that the end surface of the work 1 can be ground in a spherical shape. The curvature radius of the end surface of the work 1 can be adjusted by adjusting the crossing angle θ between the extended line of the rotation axis of the cup grinding wheel 21 and the extended line of the rotation axis of the work 1 (that is, by changing the slanted angle of the conical-shaped outer periphery of the outer diameter surface grinding wheel 11).
As shown in an enlarged manner in
The clearance is obtained as represented by the following expression when taking a margin due to sag in the vicinity of the edge of the outer diameter surface grinding wheel 11 into consideration:
clearance=chamfer−D/2 sinθ−margin of the grinding stone edge
, where D represents the large diameter side end surface of the work 1.
At the time of grinding the end surface, since the work 1 is required to be clamped between the outer diameter surface grinding wheel 11 and the regulating wheel 12, the grinding process is set as shown in
The grinding process is set such that the end surface grinding is terminated before the termination of the grinding-of the outer diameter surface. In each of the outer diameter surface grinding and the end surface grinding, a finish cutting process is carried out after the rough cutting process. In this respect, the grinding force differs between the finish cutting process and the rough cutting process. It is desirable to set the grinding condition in a manner that the rough cutting process for the end surface grinding is terminated before the termination of the rough cutting process for the outer diameter surface grinding. That is, it is desirable to start the finish cutting process for the outer diameter surface grinding after the lapse of a predetermined time from the start of the finish cutting process for the end surface grinding.
Further, it is desirable to terminate the finish cutting process for the outer diameter surface grinding after the lapse of a predetermined time from the termination of the finish cutting process for the end surface grinding.
As shown in
The centerless grinding apparatus 10 is provided with a loading mechanism 30. The loading mechanism 30 includes a loader rail 31 extended in the horizontal direction, an elevational arm 33 which is moved in the horizontal direction on the loader rail 31 and moves hands 32 upward and downward, an inshoot 34 and an outshoot 35. The loading mechanism 30 further includes a guide 37 as shown in
As shown in
First, one of the hands 32 (the left side hand in the drawing) takes out the work 1 from the inshoot 34 and places the work on the guide rail 37a, and simultaneously the other hand 32 (the right side hand in the drawing) clamps the work 1 having been ground and placed on the supporting blade 16. Thereafter, the hand is moved upward thereby to place the work 1 having been ground on the outshoot 35. After the hands 32, 32 are moved upward, the pusher 37b sets the work 1 placed on the guide rail 37a to a grinding position on the supporting blade 16. At this time, the regulating wheel 12 is moved away in advance. When the work 1 is pushed out to the grinding position and placed in a stable state, the grinding operation is started. Together with the grinding operation, the one hand 32 clamps the work 1 on the inshoot 34 side for the preparation of the next loading, and waits for the termination of the grinding operation.
Next, a centerless grinding apparatus 40 according to the second embodiment of the invention will be explained based on
The extended line of the rotation axis of the work 1 crosses with the extended line of the rotation axis of the cup grinding wheel 21 in a state that the work 1 is supported by the outer diameter surface grinding wheel 41 and the regulating wheel 42. That is, the work 1 is sandwiched between the outer diameter surface grinding wheel 41 and the regulating wheel 42 in a state that the work 1 is slanted with respect to the horizontal direction such that the large diameter side end surface side of the work is disposed at a higher-position, whereby the lower side portion of the large diameter side end surface of the work 1 is ground by the cup grinding wheel 21. The end surface stopper 47 supports the upper side portion of the large diameter side end surface of the work 1.
When seen from the side direction as shown in
clearance=chamfer+D/2 sinθ−margin of the grinding stone edge−D/2 sinθ=the chamfer−the margin of the grinding stone edge
Thus, a sufficient clearance can be secured between the outer diameter surface grinding wheel 41 and the cup grinding wheel 21.
A grinding portion abutting against the outer diameter surface grinding wheel 41 of the work 1 does not coincide with the mother line of the outer diameter surface of the work (the contour line of the outer diameter surface of the work in a projection view). Thus, the mother line shape of the outer diameter surface of the work 1 cannot be made linear by using the outer diameter surface grinding wheel having a linear mother line shape, and hence the outer diameter surface of the work 1 is configured in such a shape that its center portion is concave. In such a case, in order to make the outer diameter surface shape of the work 1 conical, the outer periphery of the outer diameter surface grinding wheel 41 is dressed so as to be configured in a hourglass-shape as shown in
Next, a centerless grinding apparatus 50 according to the third embodiment of the invention will be explained based on
In this embodiment, also when the regulating wheel 12 is skewed, the regulating wheel applies to the work 1 a thrust force in the axial direction directed toward the end surface stopper 17 side thereby to urge the work 1 against the end surface stopper 17. In this state, the cup grinding wheel 21 grinds the end surface of the work 1.
Although the outer diameter surface grinding wheel 51 is required to contact with the entire surface of the work 1 which outer diameter surface is required to be ground, the regulating wheel 12 can be made narrow as long as the posture of the work 1 is made stable and a suitable driving force can be obtained. Thus, according to the embodiment, a clearance between the regulating wheel 12 and the cup grinding wheel 21 can be made large easily.
Usually, since the outer diameter surface grinding wheel 51 rotates in a downward posture and the work 1 also rotates in a downward posture. Thus, in the third embodiment, an upward friction force occurs on the end surface stopper 17, and this friction force serves to float the work 1 from the supporting blade. However, such a phenomenon does not raise any problem as long as the grinding condition is selected suitably.
Although the friction force becomes downward when the rotation directions of the work 1 and the outer diameter surface grinding wheel 51 are reversed, the operations change in such a manner that the grinding force becomes upward or the entering way of coolant to the grinding point changes.
Next, a centerless grinding apparatus 60 according to the fourth embodiment of the invention will be explained based on
According to the embodiment, the extended line of the rotation axis of the regulating wheel 62 also crosses with the crossing point between the extended line of the rotation axis of a cup grinding wheel 21 and the extended line of the rotation axis of a work 1. When the regulating wheel 62 rotates around its rotation axis, the cup grinding wheel 21 can be dressed in a spherical shape by the grinding wheel dressing diamond 66.
Next, a centerless grinding apparatus 70 according to the fifth embodiment of the invention will be explained based on
The invention is not limited to the aforesaid embodiments and suitable modification and improvement etc. may be performed.
Further, in place of loading the work from the inner side of the supporting blade 16 as shown in
The grinding condition may be selected so that the dressing of the cup grinding wheel for the end surface grinding can be eliminated, that is, the grinding wheel performs the autogenesis function. In this case, since the working surface position of the grinding wheel can not be detected mechanically, the constant-pressure grinding method or the grinding method based on the contact detection between the grinding wheel and the work is required.
The constant-pressure grinding method can be carried out in the following manner. That is, the work is ground in a manner that the grinding wheel is pressed against the work for a predetermined time period by using a cutting table with a grinding wheel spindle as a spring support so that the grinding wheel moves away from the work when a force of a predetermined pressure or more is applied to the grinding wheel. According to such a configuration, a desired grinding machining allowance or stock amount can be removed from the work based on the pressing force and the grinding time regardless of the position of the surface (operation surface) of the grinding wheel. The grinding force at this time is required to be selected to be smaller than the thrust force for pressing the work to the stopper.
The grinding method based on the contact detection between the grinding wheel and the work can be carried out in the following manner. That is, a contact detection means between the grinding wheel and the work is provided, and after the contact is detected during the cutting operation by the contact detection means, a predetermined amount is cut. Thus, even if the surface of the grinding wheel is uneven or the position of the grinding wheel is unknown, a desired grinding machining allowance can be removed from the work.
As described above, according to the invention, it is possible to provide the centerless grinding apparatus and a centerless grinding method which can simultaneously grind the outer diameter surface and the end surface of a substantially cylindrical work despite of a relatively simple configuration of the apparatus.
Number | Date | Country | Kind |
---|---|---|---|
P.2002-101281 | Apr 2002 | JP | national |
This application is a divisional of Ser. No. 10/405,503 filed 3 Apr. 2003, now U.S. Pat. No. 6,986,702, and claims foreign priority of Japanese Patent document P.2002-101281, filed 3 Apr. 2002.
Number | Name | Date | Kind |
---|---|---|---|
3874128 | Ishii | Apr 1975 | A |
4107881 | Jessup | Aug 1978 | A |
4497138 | Schreiber | Feb 1985 | A |
4616448 | Nagata | Oct 1986 | A |
6986702 | Kamamura et al. | Jan 2006 | B2 |
20020115391 | Yamaguchi et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
1299729 | Jun 2001 | CN |
548 957 | Jun 1993 | EP |
62-58870 | Dec 1987 | JP |
6-339842 | Dec 1994 | JP |
8-197391 | Aug 1996 | JP |
2678144 | Jul 1997 | JP |
9-267242 | Oct 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20040209552 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10405503 | Apr 2003 | US |
Child | 10840290 | US |