Centerset faucet with mountable spout

Information

  • Patent Grant
  • 8695625
  • Patent Number
    8,695,625
  • Date Filed
    Thursday, June 25, 2009
    15 years ago
  • Date Issued
    Tuesday, April 15, 2014
    10 years ago
Abstract
A faucet assembly 10 including base 28 configured to be supported by a sink deck 12, a waterway 22 supported by the base 28, and a valve cartridge 18, 20 fluidly coupled to the waterway 112 way 22. A delivery spout 26 is illustratively supported by the base 28 and receives an outlet conduit 46 in fluid communication with the waterway 22.
Description
BACKGROUND AND SUMMARY OF THE INVENTION

The present invention relates to a faucet assembly and, more particularly, to a faucet assembly platform for supporting a non-metallic waterway.


Faucets are typically controlled by either a single handle which utilizes a mixing valve to proportion the flow of hot and cold water to a faucet spout, or two handles which utilize individual valves to separately control the flow of hot water and cold water to the faucet spout. In the case of the standard prior art mixing valve, two inlets are provided, one each for the hot and cold water supplies. For two handle faucets, each valve typically includes only one inlet opening which fluidly communicates with the flow passageway of a valving member. One type of two handle faucet is a centerset faucet where hot and cold water valves are coupled with the spout to a sink deck through a common base.


In an illustrative embodiment of the present disclosure, a faucet assembly includes an insert configured to receive a valve cartridge and including a guide member. A base includes a receiving member supporting the valve cartridge, the base being configured to cooperate with the guide member to resist axial movement of the insert relative to the base, and to resist rotational movement in a first direction of the insert relative to the base. A retainer is coupled to the base and is configured to cooperate with the guide member to resist rotational movement in a second direction opposite the first direction of the insert relative to the base.


According to a further illustrative embodiment of the present disclosure, a faucet assembly includes a base, a waterway supported by the base, and a valve assembly fluidly coupled to the waterway. An energy directing member is supported by one of the base and the waterway and is configured to embed within the other of the waterway and the base to form a seal therebetween.


According to another illustrative embodiment of the present disclosure, a faucet assembly includes a base, a waterway supported by the base and including a receiving port, and a valve assembly fluidly coupled to the waterway. A delivery spout is supported by the base, and a conduit is received within the delivery spout. The conduit includes a first end received within the receiving port and a collar supported proximate the first end. A seal is received within the receiving port and is compressed into sealing engagement with the waterway by the collar of the conduit.


In yet another illustrative embodiment of the present disclosure, a faucet assembly includes a base having a channel, and a waterway supported within the channel of the base. A valve assembly is fluidly coupled to the waterway. An insert is configured to cooperate with the base to secure the waterway to the base. A retainer is coupled to the base, and is configured to cooperate with the guide member to secure the insert to the base.


Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description of the drawings particularly refers to the accompanying figures in which:



FIG. 1 is a perspective view of an illustrative faucet assembly;



FIG. 2 is an exploded perspective view of the faucet assembly of FIG. 1;



FIG. 3 is an exploded perspective view of the base and the waterway of the faucet of FIG. 2;



FIG. 4 is a front exploded perspective view of the base, the waterway, the insert, the retainer, and the valve cartridge of the faucet of FIG. 2;



FIG. 5 is a rear exploded perspective view similar to FIG. 4;



FIG. 6A is a cross-sectional view taken along line 6-6 of FIG. 1;



FIG. 6B is a detail cross-sectional view of FIG. 6A;



FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 1;



FIGS. 8-11 are perspective views showing successive steps of installing and locking the insert within the base by the retainer of FIG. 4, with the waterway removed for clarity; and



FIG. 12 is a bottom perspective view of an illustrative retainer supported by an escutcheon.





DETAILED DESCRIPTION OF THE DRAWINGS

The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to precise forms disclosed. Rather, the embodiment selected for description have been chosen to enable one skilled in the art to practice the invention.


Referring initially to FIGS. 1 and 2, an illustrative embodiment faucet assembly 10 is shown mounted to a mounting deck, illustratively a sink deck 12. The faucet assembly 10 includes hot and cold water handles 14 and 16 operably coupled to hot and cold water control valve cartridges 18 and 20, respectively. A waterway 22 fluidly couples the valve cartridges 18 and 20 upstream to hot and cold water supplies, illustratively valves or stops 19 and 21, and downstream to a mixed water outlet 24. The mixed water outlet 24 is illustratively supported by a delivery spout 26 formed of metal, such as a plated brass. In the illustrative embodiment, the valve cartridges 18 and 20 and cooperating handles 14 and 16, along with the delivery spout 26 are operably coupled to a common base 28 supported above the sink deck 12, thereby defining what is often referred to as a centerset faucet. As is known, rotation of the handles 14 and 16 operate the valve cartridges 18 and 20 to control the flow of hot and cold water, respectively, delivered to the outlet 24.


With reference to FIGS. 2 and 3, the waterway 22 is supported by the base 28 including first and second downwardly extending mounting members or shanks 30 and 32 which receive hot and cold water supply conduits or tubes 36 and 38, respectively. The hot and cold water supply tubes 36 and 38 may be fluidly coupled to the hot and cold water stops 19 and 21, respectively.


The base 28 is illustratively molded from a polymer. In one illustrative embodiment, the base 28 is molded from a glass filled polypropylene, such as Celstran® PP-GF 30-02, available from Ticona of Florence, Kent. Mounting nuts 40 and 42 are threadably received on the mounting shanks 30 and 32 to secure the base 28 to the sink deck 12. The mounting nuts 40 and 42 may be conventional wing nuts molded from a polymer. An escutcheon 44 is received over the base 28 and is illustratively formed of a metal, such as plated brass or zinc. The handles 14 and 16 and the delivery spout 26 are supported above the escutcheon 44. An outlet conduit 46 defines the mixed water outlet 24 and is illustratively received within the delivery spout 26. The outlet conduit 46 is fluidly coupled to the waterway 22.


The waterway 22 includes a hot water coupler 50 and a cold water coupler 52. The hot water coupler 50 includes the hot water supply tube 36 and a hot water outlet tube 54. A connector 56 fluidly couples the hot water supply tube 36 and the hot water outlet tube 54 through the hot water control valve cartridge 18. More particularly, the connector 56 fluidly couples the hot water supply tube 36 to the inlet of the valve cartridge 18, and fluidly couples the outlet of the valve cartridge 18 to the hot water outlet tube 54. Operation of the valve cartridge 18 controls the flow rate of hot water from supply tube 36 to outlet tube 54. In one illustrative embodiment, the hot water supply tube 36 and the hot water outlet tube 54 are formed of a polymer, such as polyethylene, and the connector 56 is an overmold formed of a polymer, such as polyethylene, molded around proximal ends of the tubes 36 and 54. The polyethylene of the connector 56 and the tubes 36 and 54 may be subsequently cross-linked to form cross-linked polyethylene (PEX). In a further illustrative embodiment, the hot water outlet tube 54 is simultaneously molded as part of the connector 56.


The cold water coupler 52 is substantially similar to the hot water coupler 50 as including the cold water supply tube 38 and a cold water outlet tube 58. A connector 60 fluidly couples the cold water supply tube 38 and the cold water outlet tube 58 through the cold water control valve cartridge 20. More particularly, the connector 60 fluidly couples the cold water supply tube 38 to the inlet of the valve cartridge 20, and fluidly couples the outlet of the valve cartridge 20 to the cold water outlet tube 58. Operation of the valve cartridge 20 controls the flow rate of cold water from supply tube 38 to outlet tube 58. Illustratively, the cold water supply tube 38 and the cold water outlet tube 58 are formed of a polymer, such as polyethylene, and the connector 60 is an overmold formed of a polymer, such as polyethylene, molded around the proximal ends of the tubes 38 and 58. The polyethylene of the connector 60 and the tubes 38 and 58 may be subsequently cross-linked to form cross-linked polyethylene (PEX). In a further illustrative embodiment, the cold water outlet tube 58 is simultaneously molded as part of the connector 60.


As further detailed herein, the couplers 50 and 52 illustratively include connectors 56 and 60 formed of a flowable material which are overmolded around proximal ends of supply tubes 36 and 38, respectively. While any suitable material may be used to form connectors 56 and 60, a polymer, including thermoplastics and thermosets, may be utilized in the illustrative embodiment. In one illustrative embodiment, the connectors 56 and 60 are each formed of polyethylene which has been overmolded around the proximal ends of the supply tubes 36 and 38 and subsequently cross-linked to form PEX. It should be noted that in certain illustrative embodiments, reinforcing members, such as glass fibers, may be provided within the polyethylene of the connectors 56 and 60.


Both waterway supply tubes 36 and 38 are flexible such that connecting distal ends 62 and 64 may be moved relative to opposing proximal ends coupled to the respective connectors 56 and 60. Illustratively, the tubes 36 and 38 are formed of a polymer, such as an olefin or a polyethylene. In one illustrative embodiment, the tubes 36 and 38 are formed of a polyethylene which has been cross-linked to form a cross-linked polyethylene (PEX). However, it should be appreciated that other suitable materials may be substituted therefor.


End fittings 66 and 68 are coupled to connecting ends 62 and 64, respectively, to facilitate coupling to conventional hot and cold water stops 19 and 21. Each end fitting 66, 68 illustratively includes a male adapter 70 and a coupling nut 72. In one illustrative embodiment, the end fittings 66 and 68 may be of the type detailed in U.S. patent application Ser. No. 12/233,839, filed Sep. 19, 2008, entitled “Overmolded Fitting Connection with Color Indication.”


The hot water outlet tube 54 of coupler 50 and the cold water outlet tube 58 of coupler 52 are fluidly coupled to an outlet member 74. More particularly, the outlet member 74 includes receiving bores 76 and 78 fluidly coupled to the outlet tubes 54 and 58. O-rings 79 provide seals between the outlet tubes 54 and 58 and receiving bores 76 and 78, respectively, of the outlet member 74. As with the connectors 56 and 60, the outlet member 74 may be formed of a polymer, such as cross-linked polyethylene (PEX).


In further illustrative embodiments, the waterway 22 may be formed such that the hot water coupler 50, the cold water coupler 52, and the outlet member 74 are integral with each other. In one illustrative embodiment, the outlet member 74 may be overmolded around the outlet tubes 54 and 58. More particularly, the outlet member 74 may be formed of a polymer, illustratively polyethylene, which has been overmolded around the ends of the outlet tubes 54 and 58 prior to cross-linking. The assembly of couplers 50 and 52 and outlet member 74 are then subsequently cross-linked to form PEX. In another illustrative embodiment, the connectors 56 and 60 of couplers 50 and 52 and outlet member 74 may be concurrently formed by molding around proximal ends of tubes 36 and 38. The connectors 56 and 60 and outlet member 74 may be formed of a polymer, illustratively polyethylene, which has been overmolded around the proximal ends of tubes 36 and 38 and then subsequently cross-linked to form PEX. Additional details of such an illustrative waterway are disclosed in International Patent Application Serial No. PCT/US09/40207 filed Apr. 10, 2009, entitled “Molded Waterway for a Two Handle Faucet.”


As noted above, the hot water valve cartridge 18 is fluidly coupled to the hot water supply conduit 36, while the cold water valve cartridge 20 is fluidly coupled to the cold water inlet conduit 38. More particularly, the hot water coupler or molded waterway 50 fluidly couples the hot water supply conduit 36 to the hot water valve cartridge 18 through an interface or base 80. Similarly, the cold water coupler or molded waterway 52 fluidly couples the cold water valve cartridge 20 to the cold water supply conduit 38 through an interface or base 81.


With reference to FIG. 3, valve interfaces 80 and 81 each include an upwardly projecting inlet wall 82 extending around an inlet port 83, and an upwardly projecting outlet wall 84 extending around an outlet port 85. With respect to the valve interface 80, the inlet port 83 provides fluid communication between the hot water supply tube 36 and the inlet of the hot water valve cartridge 18, while the outlet port 85 provides fluid communication between the outlet of the hot water valve cartridge 18 and the hot water outlet tube 54. Likewise, in the valve interface 81, the inlet port 83 provides fluid communication between the cold water supply tube 38 and the inlet of the valve cartridge 20, while the outlet port 85 provides fluid communication between the outlet of the cold water cartridge 20 and the cold water outlet tube 58. The inlet and outlet walls 82 and 84 of each valve interface 80 and 81 define a seat, illustratively trench 86, for receiving a resilient gasket 87. The gasket 87 may be formed of an elastomer and provides a seal intermediate the respective valves 18 and 20 and bases 80 and 81 (FIG. 5A). While the supply tubes 36 and 38 are illustrated as having a circular cross-section, it should be noted that the cross-sectional shape of the supply tubes 36 and 38 within the couplers 50 and 52 may vary. For example, the cross-section of the supply tubes 36 and 38 may be oval or D-shaped in order to facilitate material flow during the molding operation for defining an increased and/or substantially consistent thickness of walls 82 and 84.


Operation of the hot water valve cartridge 18 by rotating handle 14 controls the flow of the hot water from the hot water supply conduit 36 through the connector 56 and the outlet tube 54 to the outlet member 74 which is coupled to the outlet conduit 46. Similarly, rotation of the cold water handle 16 controls operation of the cold water valve cartridge 20 to control the flow of cold water from the cold water supply conduit 38 to the connector 60 and the outlet tube 58 through the outlet member 74. The valve cartridges 18 and 20 may be of the type disclosed in further detail in U.S. Provisional Patent Application Ser. No. 61/132,664, filed Jun. 20, 2008, entitled “Valve Assembly For A Two Handle Faucet.”


The waterway 22 is coupled to the base 28 as shown in FIGS. 2-5. The base 28 illustratively includes a channel 88 for receiving the waterway 22. A plurality of flats 90 on the connectors 56 and 60 of the waterway 22 cooperate with flats 92 in the base 28 to thereby key the waterway 22 to the base 28. Inserts 94 and 96 are coupled to receiving members 98 and 100 at opposing ends 102 and 104 of the channel 88 of the base 28, thereby locking the waterway 22 to the base 28. Illustratively, the inserts 94 and 96 are formed of metal, such as brass, however other materials of suitable strength and durability may be substituted therefor. Diametrically opposed notches 106 and 108 may be formed in respective inserts 94 and 96 and are illustratively configured to substantially align with a center line or axis 110 of the base 28 (FIG. 4). The notches 106 and 108 are configured to receive cooperating, diametrically opposed tabs 112 and 114 of the valve cartridges 18 and 20, respectively, thereby rotationally orienting the cartridges 18 and 20 with respect to the base 28.


With reference to FIGS. 4, 5, and 8-11, the inserts 94 and 96 each illustratively include a cylindrical sidewall 116 and radially outwardly extending guide tabs or members 118 and 120. Guide members 118 have different circumferential widths than guide members 120, so as to facilitate assembly of the inserts 94 and 96 to the base 28 in the proper rotational orientation. More particularly, the guide members 118 and 120 of the inserts 94 and 96 are received within respective cooperating channels 122 and 124 formed within the base 28. The channels 122 and 124 each include an axial portion 126 and a circumferential portion 128.


Successive illustrative steps of installing and securing the inserts 94 and 96 are shown in FIGS. 8-11, with the waterway 22 removed for clarity. While insert 94 is shown in FIGS. 8-11, it should be appreciated that insert 96 is substantially similar and cooperates with the base 28 in a similar manner After the waterway 22 is received within the channel 88 of base 28 (FIG. 3), the insert 94, 96 is axially moved toward the base 28 (in the direction of arrow 127 in FIG. 9), such that the guide members 118 and 120 are received within the axial portions 126 of channels 122 and 124. The insert 94, 96 is then rotated counterclockwise (in the direction of arrow 129 in FIG. 10) within the circumferential portions 128 of channels 122 and 124 in a bayonet style connection to provide axial resistance and rotational resistance in a first direction (counter-clockwise in FIGS. 8-11). In other words, the circumferential portions 128 of channels 122 and 124 axially secure the guide members 118 and 120, and also rotationally secure the guide members 118 and 120 in a first direction (away from the respective axial portions 126). More particularly, an upper wall 131 of circumferential portions 128 engage guide members 118, 120 to resist axial movement of the insert 94, 96 relative to the base 28. Similarly, an end wall 133 of circumferential portions 128 engage guide members 118, 120 to resist rotational movement in the first direction of the insert 94, 96 relative to the base 28 (FIG. 8).


Retainers 130 and 132, illustratively clips or rings, each include a plurality of axially extending tabs 134 that are received within the axial portions 126 of channels 122 and 124. The tabs 134 provide rotational resistance to the insert 94, 96 in the remaining second direction (i.e., opposite the first direction and clockwise in FIGS. 8-11). More particularly, the tabs 134 engage guide members 118, 120 to resist rotational movement in the second direction of the insert 94, 96 relative to the base 28 (FIG. 11). As such, the inserts 94 and 96 and the retainers 130 and 132 cooperate to secure the waterway 22 to the base 28 (FIG. 3). The retainers 130 and 132 may be formed of a polymer, illustratively an acetal copolymer, for example Celcon® M90™, available from Ticona of Florence, Kent.


In the illustrative embodiment of FIG. 12, the retainers 130′ and 132′ are integrally formed as part of the escutcheon 44′. More particularly, the tabs 134′ extend downwardly from a lower surface of the escutcheon 44′. The retainers 130′ and 132′ in such an embodiment are formed of the same material as the escutcheon 44′, illustratively a metal, such as brass or zinc.


In the illustrative embodiment, snaps 136 and 138 on the retainers 130 and 132 engage within slots 140 and 142 on the base 28 for holding the inserts 94 and 96 in place and preventing the retaining rings 130 and 132 and the inserts 94 and 96 from becoming inadvertently dislodged (FIG. 11). The valve cartridges 18 and 20 assemble into receiving bores defined by the sidewalls 116 of the inserts 94 and 96, and align and key into the connectors 56 and 60 of the waterway 22 with diametrically opposed tabs 144 and 146 projecting from the respective valve cartridge 18, 20. One tab 144a may be longer than the other tabs 144 and 146 so that the cartridge 18, 20 will only assemble in a single rotational orientation within the respective connector 56, 60 (FIG. 2). Further, the tabs 144 and 146 may include ramped or angled side edges to cooperate with tapered recesses in the connectors 56 and 60 for centering potential misalignment between the valve cartridge 18, 20 and the respective connector 56, 60.


Escutcheon 44 is received over the base 28 and the waterway 22 and helps hold the retainers 130 and 132 in place. An annular spacer 152, illustratively a gasket which may be formed of a thermoplastic vulcanizate is received over each insert 94 and 96. In one illustrative embodiment, the spacer 152 is formed of Santoprene™ available from Exxon Mobile Chemical Company of Houston, Tex. A bonnet nut 154, illustratively formed of a metal such as brass, threadably receives an externally threaded upper end of each insert 94 and 96 to hold the valve cartridges 18 and 20 in place. The spacer 152 is illustratively received between the bonnet nut 154 and the escutcheon 44 for providing a downward load to the escutcheon 44 while sealing it from water that might drip onto an outer surface 155 of the escutcheon 44. Keys or tabs 112 and 114 in the cartridges 18 and 20 key into slots or notches 106 and 108 in the inserts 94 and 96 to provide rotational alignment and torque resistance to the cartridges 18 and 20.


With reference to FIGS. 3, 6A, 6B, and 8, energy directors 156 are illustratively formed in the base 28 to provide a seal between the base 28 and the waterway 22. More particularly, the energy directors 156 illustratively include annular ridges 158 molded within the base 28 and surrounding the openings 160 extending through the mounting shanks 30 and 32 and receiving the supply conduits 36 and 38. The base 28 is illustratively formed of a material harder than that of the waterway 22 such that the energy director 156 will deform and embed into the waterway 22. Illustratively, the annular ridges 158 include a pointed or blade edge 161 to facilitate sealing with the connectors 56 and 60 of the waterway 22 (FIG. 6B). In the illustrative embodiment, the base 28 may be formed of a glass filled polymer, while the waterway 22 may be formed a cross-linked polyethylene (PEX) containing no glass fibers. Engagement of the energy directors 156 with the waterway 22 will force any water to the top of the base 28 where it can be directed to drip over the edge of the base 28 and under the escutcheon 44 rather than under the sink deck 12. Slots 162 are formed in the base 28 for use with alternative spout mounting arrangements. Moreover, the base 28 may be used with a variety of different styles and designs of escutcheons 44 and delivery spouts 26.


With reference to FIGS. 2 and 7, the delivery spout 26 mounts above the escutcheon 44 through a mounting member 164. The mounting member 164 is illustratively formed of an acetal copolymer, for example Celcon® M90™. The outlet conduit 46 is received within the spout 26 and illustratively formed of a polymer, thereby providing a non-metallic waterway. An aerator 166 threads into threads 168 at the spout outlet 170 and forces a face seal, illustratively gasket 172, to seal between the aerator 166 and an adapter or flange 174 formed at the end of the outlet conduit 46. Illustratively, the flange 174 is a polymer overmold. In one illustrative embodiment, the outlet conduit 46 and the flange 174 may be formed of polyethylene which is cross-linked following the overmold operation, thereby forming cross-lined polyethylene (PEX). The outlet bore 176 of the spout 26 has an inner diameter large enough such that the aerator o-ring 178 does not seal against its inner surface 180 (FIG. 7). As such, should a leak develop, water will tend to go out the spout outlet bore 176 and not down the spout 26 toward the escutcheon 44 and below the sink deck 12.


With further reference to FIGS. 2 and 7, a shoulder 182 is illustratively supported by the inlet end of the outlet conduit 46 and forces an o-ring 184 into sealing engagement with a receiving bore 186 formed in the outlet member 74 of the waterway 22. The conduit 46 projects into the receiving bore 186, thereby providing support to the outlet conduit 46. The waterway 22 is thus fluidly coupled to the outlet conduit 46 and is sealed off at the o-ring 184. The spout 26 is coupled to the base 28 and retained thereto by the use of fasteners 188 extending through bosses 190 molded as part of the base 28 and through openings 191 formed within the mounting member 164. The bottom surface 192 of the mounting member 164 provides downward force to the shoulder 182 and a retainer ring 193, illustratively formed of polypropylene, to maintain a seal within the o-ring 184. Axial movement of the outlet conduit 46 is restrained by the mounting member 164.


More particularly, the outlet conduit 46 can only move upwardly away from the waterway 22 until the shoulder 182 molded on the conduit 46 contacts the bottom surface 192 of the mounting member 164.


A lift rod 196 illustratively assembles through a hole 198 in the spout 26 to provide access to a drain pop-up assembly (not shown). To facilitate manufacturing flexibility, the base 28 is formed as thin as possible. For faucets requiring taller escutcheons, a spacer 200, illustratively formed of polypropylene, is coupled to the base 28 to accommodate the difference in height. Illustratively, the spacer 200 includes a plurality of releasable retainers, such as snaps 202, configured to engage the base 28 within notches 204 (FIG. 2). A gasket 206, illustratively formed of a foam such as polyethylene, may be assembled onto the base 28 to provide a seal between the base 28 and the holes in the sink deck 12. As such, any potential leak or water collection will tend to flow underneath the edge of the escutcheon 44 as opposed to through the holes and below the sink deck 12.


Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.

Claims
  • 1. A faucet assembly comprising: an insert configured to receive a valve cartridge and including a radially outwardly extending guide member;a base including a receiving member supporting the valve cartridge, the base including a channel including an axial portion and a circumferential portion, the circumferential portion configured to cooperate with the guide member to resist axial movement of the insert relative to the base, and to resist rotational movement in a first direction of the insert relative to the base; anda retainer coupled to the base and including an axially extending locking tab received within the axial portion of the channel, the locking tab extending into the circumferential portion to cooperate with the guide member to resist rotational movement in a second direction opposite the first direction of the insert relative to the base.
  • 2. The faucet assembly of claim 1, wherein the insert is formed of a first material and the base is formed of a second material.
  • 3. The faucet assembly of claim 2, wherein the insert is formed of a metal and the base is formed of a polymer.
  • 4. The faucet assembly of claim 1, further comprising a waterway supported by the base and configured to fluidly couple the valve cartridge to a water supply, the insert securing the waterway to the base.
  • 5. The faucet assembly of claim 4, further comprising an energy directing member supported by one of the base and the waterway and configured to embed within the other of the waterway and the base to form a seal therebetween.
  • 6. The faucet assembly of claim 4, further comprising: a delivery spout supported by the base;a conduit received within the delivery spout and including an end, the conduit further including a collar supported proximate the end;the waterway including a receiving port receiving the end of the conduit; anda seal received within the receiving port and compressed into sealing engagement with the base by the collar of the conduit.
  • 7. The faucet assembly of claim 1, wherein the retainer includes an annular body supporting an axially extending locking tab.
  • 8. The faucet assembly of claim 7, wherein the base includes a catch, and the retainer includes a snap to engage the catch on the base.
  • 9. A faucet assembly comprising: a base;a waterway supported by the base;a valve assembly fluidly coupled to the waterway; andan energy directing member supported by one of the base and the waterway and configured to embed within the other of the waterway and the base to form a seal therebetween.
  • 10. The faucet assembly of claim 9, wherein the energy directing member comprises an annular lip formed within the base.
  • 11. The faucet assembly of claim 10, wherein the base is formed of a material harder than the material of the waterway.
  • 12. The faucet assembly of claim 11, wherein the base is formed of a glass-filled polymer and the waterway is formed of a polymer.
  • 13. The faucet assembly of claim 9, wherein the waterway includes a water conduit extending through an opening formed in the base, and the energy directing member extends around the opening.
  • 14. The faucet assembly of claim 13, wherein the base is configured to be positioned above a sink deck, and an escutcheon is supported above the base.
  • 15. The faucet assembly of claim 9, further comprising: a delivery spout supported by the base;a conduit received within the delivery spout and including an end, the conduit further including a flange supported on the end;an aerator coupled to an end of the delivery spout; anda face seal positioned intermediate the flange of the conduit and the aerator.
  • 16. The faucet assembly of claim 9, further comprising: a delivery spout supported by the base;a conduit received within the delivery spout and including an end, the conduit further including a collar supported proximate the end;the waterway including a receiving port receiving the end of the conduit; anda seal received within the receiving port and compressed into sealing engagement with the base by the collar of the conduit.
  • 17. The faucet assembly of claim 9, further comprising: an insert configured to receive a valve assembly and including a guide member;a base including a receiving member supporting the valve assembly, the base configured to cooperate with the guide member to resist axial movement of the insert relative to the base, and to resist rotational movement in a first direction of the insert relative to the base; anda retainer coupled to the base and configured to cooperate with the guide member to resist rotational movement in a second direction opposite the first direction of the insert relative to the base.
  • 18. A faucet assembly comprising: a base;a waterway supported by the base and including a receiving port;a valve assembly fluidly coupled to the waterway;a delivery spout supported by the base;a conduit received within the delivery spout, the conduit including a first end received within the receiving port, and an outwardly extending collar supported proximate the first end;a mounting member securing the delivery spout to the base; anda seal received within the receiving port, wherein the collar of the conduit is positioned intermediate the mounting member and the waterway.
  • 19. The faucet assembly of claim 18, further comprising: a flange supported on a second end of the conduit;an aerator coupled to an end of the delivery spout; anda face seal positioned intermediate the flange of the conduit and the aerator.
  • 20. The faucet assembly of claim 18, further comprising: an insert configured to receive the valve assembly and including a guide member;a base including a receiving member supporting the valve assembly, the base configured to cooperate with the guide member to resist axial movement of the insert relative to the base, and to resist rotational movement in a first direction of the insert relative to the base; anda retainer coupled to the base and configured to cooperate with the guide member to resist rotational movement in a second direction opposite the first direction of the insert relative to the base.
  • 21. The faucet assembly of claim 18, further comprising an energy directing member supported by one of the base and the waterway and configured to embed within the other of the waterway and the base to form a seal therebetween.
  • 22. A faucet assembly comprising: a base including a channel;a waterway supported within the channel of the base;a valve assembly fluidly coupled to the waterway;an insert configured to cooperate with the base to secure the waterway to the base, the insert including a guide member configured to resist axial movement of the insert relative to the base and to resist rotational movement in a first direction of the insert relative to the base; anda retainer coupled to the base and configured to cooperate with the guide member to secure the insert to the base, the retainer configured to cooperate with the guide member to resist rotational movement in a second direction opposite the first direction of the insert relative to the base.
  • 23. The faucet assembly of claim 22, wherein the insert includes an annular body receiving the valve assembly.
  • 24. The faucet assembly of claim 22, further comprising an energy directing member supported by one of the base and the waterway and configured to embed within the other of the waterway and the base to form a seal therebetween.
  • 25. The faucet assembly of claim 22, further comprising: a delivery spout supported by the base;a conduit received within the delivery spout and including an end, the conduit further including a collar supported proximate the end;the waterway including a receiving port receiving the end of the conduit; anda seal received within the receiving port and compressed into sealing engagement with the base by the collar of the conduit.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a national phase filing of PCT International Application Serial No. PCT/US2009/048657, filed Jun. 25, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/133,030, filed Jun. 25, 2008, the disclosures of which are expressly incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/048657 6/25/2009 WO 00 11/30/2010
Publishing Document Publishing Date Country Kind
WO2009/158497 12/30/2009 WO A
US Referenced Citations (277)
Number Name Date Kind
2200091 Kovach May 1940 A
2219471 Davis Oct 1940 A
2546327 Young Mar 1951 A
2548933 Barnett Apr 1951 A
2781786 Young Feb 1957 A
2884007 Green Apr 1959 A
3229710 Keller, III Jan 1966 A
3422849 Manoogian Jan 1969 A
3448768 Keller Jun 1969 A
3505098 Miller et al. Apr 1970 A
3520325 Stuart Jul 1970 A
3580289 James et al. May 1971 A
3590876 Young Jul 1971 A
3600723 Mongerson et al. Aug 1971 A
3635405 Shames et al. Jan 1972 A
3714958 Johnson et al. Feb 1973 A
3736959 Parkison Jun 1973 A
3757824 Parkhurst et al. Sep 1973 A
3770004 Johnson et al. Nov 1973 A
3788601 Schmitt Jan 1974 A
3796380 Johnson et al. Mar 1974 A
3807453 Dom et al. Apr 1974 A
3810602 Parkinson May 1974 A
3834416 Parkison Sep 1974 A
3854493 Farrell Dec 1974 A
3960016 Symmons Jun 1976 A
3965936 Lyon Jun 1976 A
3989787 Scott, Jr. et al. Nov 1976 A
3998240 Liautaud Dec 1976 A
4026328 Nelson May 1977 A
4058289 Hicks Nov 1977 A
4076279 Klotz et al. Feb 1978 A
4103709 Fischer Aug 1978 A
4130136 Garnier et al. Dec 1978 A
4221338 Shames et al. Sep 1980 A
4316870 Rowley Feb 1982 A
4337795 Argyris et al. Jul 1982 A
4356574 Johnson Nov 1982 A
4357957 Bisonaya et al. Nov 1982 A
4387738 Bisonaya et al. Jun 1983 A
4397330 Hayman Aug 1983 A
4415389 Medford et al. Nov 1983 A
4446084 Rowley May 1984 A
4453567 MacDonald Jun 1984 A
4458839 MacDonald Jul 1984 A
4465259 Allen et al. Aug 1984 A
4484600 Peterson et al. Nov 1984 A
4502507 Hayman Mar 1985 A
4513769 Purcell Apr 1985 A
4525136 Rowley Jun 1985 A
4552171 Farrell et al. Nov 1985 A
4577835 Holycross et al. Mar 1986 A
4580601 Schlotman et al. Apr 1986 A
4592388 Wilcox Jun 1986 A
4604202 Movshovitz Aug 1986 A
4607659 Cole Aug 1986 A
4610429 Arnold et al. Sep 1986 A
4626005 Stifter Dec 1986 A
4635673 Gerdes Jan 1987 A
4649958 Purcell Mar 1987 A
4651770 Denham et al. Mar 1987 A
4652263 Herweck et al. Mar 1987 A
4664423 Rowley May 1987 A
4667987 Knebel May 1987 A
4671316 Botnick Jun 1987 A
4687025 Kahle et al. Aug 1987 A
4700928 Marty Oct 1987 A
4708172 Riis Nov 1987 A
4749003 Leason Jun 1988 A
4754783 Knapp Jul 1988 A
4754993 Kraynick Jul 1988 A
4760871 Vijay Aug 1988 A
4762143 Botnick Aug 1988 A
4773348 Rowley Sep 1988 A
4783303 Imgram Nov 1988 A
4793375 Marty Dec 1988 A
4803033 Rowley Feb 1989 A
4838304 Knapp Jun 1989 A
4853164 Kiang et al. Aug 1989 A
4877660 Overbergh et al. Oct 1989 A
4887642 Bernat Dec 1989 A
4942644 Rowley Jul 1990 A
4957135 Knapp Sep 1990 A
4971112 Knapp Nov 1990 A
4979530 Breda Dec 1990 A
4981156 Nicklas et al. Jan 1991 A
5001008 Tokita et al. Mar 1991 A
5006207 Peterman et al. Apr 1991 A
5024419 Mulvey Jun 1991 A
5027851 Drees et al. Jul 1991 A
5053097 Johansson et al. Oct 1991 A
5090062 Hochstrasser Feb 1992 A
5095554 Gloor Mar 1992 A
5100565 Fujiwara et al. Mar 1992 A
5110044 Bergmann May 1992 A
5127814 Johnson et al. Jul 1992 A
5131428 Bory Jul 1992 A
5148837 Ågren et al. Sep 1992 A
5150922 Nakashiba et al. Sep 1992 A
5174324 Chrysler Dec 1992 A
5219185 Oddenino Jun 1993 A
5279333 Lawrence Jan 1994 A
5340018 Macdonald et al. Aug 1994 A
5355906 Marty et al. Oct 1994 A
5364135 Anderson Nov 1994 A
5366253 Nakashiba et al. Nov 1994 A
5375889 Nakashiba et al. Dec 1994 A
5397102 Kingman Mar 1995 A
5402827 Gonzalez Apr 1995 A
5417242 Goncze May 1995 A
5437345 Schmidt et al. Aug 1995 A
5493873 Donselman et al. Feb 1996 A
5494259 Peterson Feb 1996 A
5518027 Saiki et al. May 1996 A
5527503 Rowley Jun 1996 A
5553935 Burnham et al. Sep 1996 A
5555912 Saadi et al. Sep 1996 A
5558128 Pawelzik et al. Sep 1996 A
5566707 Ching et al. Oct 1996 A
5573037 Cole et al. Nov 1996 A
5577393 Donselman et al. Nov 1996 A
5579808 Mikol et al. Dec 1996 A
5582438 Wilkins et al. Dec 1996 A
5586746 Humpert et al. Dec 1996 A
5611093 Barnum et al. Mar 1997 A
5615709 Knapp Apr 1997 A
5622210 Crisman et al. Apr 1997 A
5622670 Rowley Apr 1997 A
5642755 Mark et al. Jul 1997 A
5660692 Nesburn et al. Aug 1997 A
5669407 Bailey Sep 1997 A
5669417 Lian-Jie Sep 1997 A
5669595 Bytheway Sep 1997 A
5685341 Chrysler et al. Nov 1997 A
5687952 Arnold et al. Nov 1997 A
5692536 Tokarz Dec 1997 A
5695094 Burnham et al. Dec 1997 A
5725008 Johnson Mar 1998 A
5725010 Marty et al. Mar 1998 A
5730173 Sponheimer Mar 1998 A
5741458 Rowley Apr 1998 A
5746244 Woolley, Sr. et al. May 1998 A
5756023 Stachowiak May 1998 A
5758690 Humpert et al. Jun 1998 A
5775587 Davis Jul 1998 A
5803120 Bertoli Sep 1998 A
5813435 Knapp Sep 1998 A
5832952 Cook et al. Nov 1998 A
5833279 Rowley Nov 1998 A
5850855 Kerschbaumer et al. Dec 1998 A
5857489 Chang Jan 1999 A
5861200 Rowley Jan 1999 A
5865473 Semchuchk et al. Feb 1999 A
5875809 Barrom Mar 1999 A
5893387 Paterson et al. Apr 1999 A
5895695 Rowley Apr 1999 A
5916647 Weinstein Jun 1999 A
5924451 Kuo Jul 1999 A
5927333 Grassberger Jul 1999 A
5931374 Knapp Aug 1999 A
5934325 Brattoli et al. Aug 1999 A
5937892 Meisner et al. Aug 1999 A
5944225 Kawolics Aug 1999 A
5950663 Bloomfield Sep 1999 A
5960490 Pitsch Oct 1999 A
5965077 Rowley et al. Oct 1999 A
5975143 Järvenkylä et al. Nov 1999 A
5979489 Pitsch Nov 1999 A
6013382 Coltrinari et al. Jan 2000 A
6023796 Pitch Feb 2000 A
6029860 Donselman et al. Feb 2000 A
6029948 Shafer Feb 2000 A
6044859 Davis Apr 2000 A
6053214 Sjoberg et al. Apr 2000 A
6062251 Pitch May 2000 A
6070614 Holzheimer et al. Jun 2000 A
6070916 Rowley Jun 2000 A
6073972 Rivera Jun 2000 A
6079447 Holzheimer et al. Jun 2000 A
6082407 Paterson et al. Jul 2000 A
6082780 Rowley et al. Jul 2000 A
6085784 Bloom et al. Jul 2000 A
6116884 Rowley Sep 2000 A
6123232 Donselman et al. Sep 2000 A
6131600 Chang Oct 2000 A
6138296 Baker Oct 2000 A
6155297 MacAusland et al. Dec 2000 A
6161230 Pitsch Dec 2000 A
6170098 Pitsch Jan 2001 B1
6177516 Hudak Jan 2001 B1
6202686 Pitsch et al. Mar 2001 B1
6227464 Allmendinger et al. May 2001 B1
6238575 Patil May 2001 B1
6256810 Baker Jul 2001 B1
6270125 Rowley et al. Aug 2001 B1
6286808 Slothower et al. Sep 2001 B1
6287501 Rowley Sep 2001 B1
6293336 Emerick, Sr. et al. Sep 2001 B1
6296017 Kimizuka Oct 2001 B2
6305407 Selby Oct 2001 B1
6315715 Taylor et al. Nov 2001 B1
6328059 Testori et al. Dec 2001 B1
6334466 Jani et al. Jan 2002 B1
6341617 Wilson Jan 2002 B1
6349733 Smith Feb 2002 B1
6378790 Paterson et al. Apr 2002 B1
6381776 Wang May 2002 B1
6385794 Miedzius et al. May 2002 B1
6439581 Chang Aug 2002 B1
6462167 Nodera et al. Oct 2002 B1
6464266 O'Neill et al. Oct 2002 B1
6485666 Rowley Nov 2002 B1
6517006 Knapp Feb 2003 B1
6557907 Rowley May 2003 B2
6609732 Souvatzidis et al. Aug 2003 B1
6635334 Jackson et al. Oct 2003 B1
6640357 Chang Nov 2003 B1
6732543 Jenkins, Jr. et al. May 2004 B2
6770376 Chen Aug 2004 B2
6770384 Chen Aug 2004 B2
6783160 Rowley Aug 2004 B2
6803133 Chen Oct 2004 B2
6817379 Perla Nov 2004 B2
6835777 Botros Dec 2004 B2
6838041 Rowley Jan 2005 B2
6848719 Rowley Feb 2005 B2
6860523 O'Neill et al. Mar 2005 B2
6860524 Rowley Mar 2005 B1
6877172 Malek et al. Apr 2005 B2
6880573 Berkman et al. Apr 2005 B2
6894115 Botros May 2005 B2
6902210 Rowley Jun 2005 B1
6920899 Haenlein et al. Jul 2005 B2
6959729 Graber Nov 2005 B2
6959736 Järvenkylä Nov 2005 B2
6962168 McDaniel et al. Nov 2005 B2
6978795 Perrin Dec 2005 B2
7055545 Mascari et al. Jun 2006 B2
7063105 Chen Jun 2006 B1
7111640 Rhodes Sep 2006 B2
7118138 Rowley et al. Oct 2006 B1
7124776 Hwang Oct 2006 B1
7134452 Hiroshi et al. Nov 2006 B2
7140390 Berkman et al. Nov 2006 B2
7225828 Giagni et al. Jun 2007 B2
7231936 Chang Jun 2007 B2
7406980 Pinette Aug 2008 B2
7766043 Thomas et al. Aug 2010 B2
7793677 Pinette Sep 2010 B2
7828013 Lin Nov 2010 B2
8240326 Kacik et al. Aug 2012 B2
20020100139 Rowley Aug 2002 A1
20020100510 Otelli Aug 2002 A1
20020167171 Becker et al. Nov 2002 A1
20030183286 Yang Oct 2003 A1
20040007278 Williams Jan 2004 A1
20040021120 Turnau, III et al. Feb 2004 A1
20040060608 Angus Apr 2004 A1
20040117906 Baker et al. Jun 2004 A1
20040150132 Rowley Aug 2004 A1
20040176503 Czayka et al. Sep 2004 A1
20050005989 Roloff Jan 2005 A1
20050194051 Pinette Sep 2005 A1
20060108705 Rowley May 2006 A1
20060118185 Nobili Jun 2006 A1
20060124183 Kuo Jun 2006 A1
20060130908 Marty et al. Jun 2006 A1
20060170134 Rowley et al. Aug 2006 A1
20060174955 Huang Aug 2006 A1
20060191580 Sponheimer et al. Aug 2006 A1
20060200904 Vogel et al. Sep 2006 A1
20060202142 Marty et al. Sep 2006 A1
20070044852 Pinette Mar 2007 A1
20070137714 Meehan et al. Jun 2007 A1
20070137718 Rushlander et al. Jun 2007 A1
20070271695 Thomas et al. Nov 2007 A1
20090078322 Thomas et al. Mar 2009 A1
Foreign Referenced Citations (14)
Number Date Country
10133041 Jan 2003 DE
0 632 220 Jan 1995 EP
0 808 952 Nov 1997 EP
1 072 830 Sep 2004 EP
3094877 Apr 1991 JP
200132343 Jun 2001 JP
WO 9105191 Apr 1991 WO
WO 0061831 Oct 2000 WO
WO 0225022 Mar 2002 WO
WO 2005108829 Nov 2005 WO
WO 2006099273 Sep 2006 WO
WO 2009126887 Oct 2009 WO
WO 2009155529 Dec 2009 WO
WO 2009158498 Dec 2009 WO
Non-Patent Literature Citations (12)
Entry
Dadex Polydex—PPR Pipe System for Hot and Cold Water Supply and Distribution, 2005, 2 pgs.
Dadex Polydex, 2005, 1 pg.
Dow, Plastic Pipes Europe, Middle East & Africa, Hot and Cold Water Pipes, 2007, 1 pg.
Dow, Plastic Pipes Europe, Middle East, & Africa, Dowlex PE-RT, 2007, 2 pgs.
Kerox, Ceramic Mixing Cartridge, Conventional Single-Lever Type, Model K-28, 2005, 2 pgs.
Kerox, Standard Cartridges, 2005, 3 pgs.
Noveon, Inc.; Processing with TempRite® PEX Ensures Quality Piping, www.tempritepex.com/processingInstallation/processing.asp, at least as early as Jun. 7, 2005, 2 pgs.
PEX Association, What is PE-X?, at least as early as Jan. 31, 2007, 7 pgs.
PPI Plastics Pipe Institute, Crosslinked Polyethylene (PEX) Tubing, TN-17/2001, www.plasticpipe.org/pdf/pubs/notes/tn17-01.pdf, Jun. 2001, 7 pgs.
SpecialChem S.A., Silane Crosslinking Agents Center, Crosslinking Mechanism, www.specialchem4polymers.com/tc/silane-crosslinking-agents/index.aspx?id=mechanism, at least as early as Jun. 7, 2005, 2 pgs.
Ticona Engineering Polymers, Engineering Polymers for Innovative Applications catalog, Mar. 2006, 16 pgs.
International Search Report and Written Opinion for PCT Application No. PCT/US2009/048657, issued Aug. 14, 2009, 14 pgs.
Related Publications (1)
Number Date Country
20110079307 A1 Apr 2011 US
Provisional Applications (1)
Number Date Country
61133030 Jun 2008 US