Applicant claims priority under 35 U.S.C. § 119 of European Application No. 03 028 145.5 filed Dec. 5, 2003.
1. Field of the Invention
The present invention relates to a central buffer coupling for coupling a first rail car body with a second, adjacent rail car body of a multiple-unit rail vehicle. The coupling has a coupling head affixed to a linking housing of the rail car body so as to pivot, by means of a coupling shaft, and a pivoting unit for pivoting the coupling shaft. The pivoting unit has a guide that participates in a horizontal pivoting movement of the coupling shaft that runs about a vertical pivot axis. The pivoting unit also has an activation device for positioning the guide, together with the action-connected coupling shaft, in a desired position of the planned pivoting range. The pivoting unit furthermore has pressure surfaces assigned to a pressure device, in each instance, for bringing about horizontal re-centering of the coupling shaft. The pressure devices, in each instance, are supported on the linking housing of the coupling shaft, in order to bias the related pressure surfaces against the guide.
2. The Prior Art
Central buffer couplings of this type are generally known from the state of the art. Generally, in central buffer couplings that can pivot in, the coupling shaft is formed by a rear and a front shaft part. The shaft parts are connected with one another by means of a joint having a vertical pivot axis. In this way, the front shaft part can be horizontally pivoted relative to the rear shaft part. In this connection, the pivoting unit makes it possible to bring the front shaft part, to which the coupling head is attached, from an extended position in which it is ready for operation into a parked, pivoted-in position. In the extended position, the coupling head projects beyond the face wall of the vehicle. In the parked, pivoted-in position, the front shaft part with the coupling head is located behind the face wall of the vehicle.
A central buffer coupling having a device for horizontal re-centering is known, for example, from DE 24 19 184 A1, in which a pressure spring is disposed symmetrically on both sides of the coupling axis, which spring rests against a slide piece that is guided in the housing, in each instance. The slide pieces are each pressed against a guide that participates in the horizontal pivoting movement of the coupling shaft about the vertical pivot axis of the central buffer coupling, by way of a related support roller having a vertical axis, by means of the force of the biased pressure springs. The support rollers form a pair of support rollers, in each instance, that are mounted in the guide, symmetrically on both sides of the coupling axis; the two support rollers of each pair are at different distances from the coupling axis, in each instance.
In this connection, the axis of the support rollers lies on a circle that is concentric to the vertical pivot axis of the central buffer coupling. In the center position of the central buffer coupling, the support rollers of each pair of support rollers rest against the slide surface of the slide piece, in each instance, which piece has an approximately triangular shape in a top view, whereby a guide shaft is disposed on each slide piece, which shaft penetrates through the housing. In normal operation, i.e. also when traveling along curves or through switches, the pivoting unit is constantly in effect, so that a relatively great wear occurs, as a result of the pivoting movement of the central buffer coupling, at the slide surfaces of the slide pieces, which are pressed against the support rollers by the pressure spring. Coupling in a curve is possible only with difficulty, or not at all, since here, the re-set forces of the pressure spring counteract the manually effected pivoting-out of the central buffer couplings to be coupled.
It is true that the devices known from the state of the art are able to allow re-centering or fixation of the coupling shaft in the center position, and also a shut-off and thereby stress-relieved, manual pivoting of the coupling shaft, but this re-centering or pivoting continues to require the use of personnel for work in the coupling area, which work is highly hazardous. Automated or remote-controlled positioning of the coupling shaft and thereby of the coupling head, in accordance with requirements, in arcs, particularly in tight arcs, is not possible with the known central buffer couplings and is also not planned. Such known central buffer couplings are unable to achieve particularly precise positioning, in any angular position of a horizontal pivot range that is provided. The same also holds true for freely selectable positioning of the coupling shaft by way of the pressure springs.
Furthermore, a device for horizontal re-centering for a central buffer coupling affixed to a rail vehicle by means of a coupling shaft, so as to pivot, is known from DE 101 62 731 A1. That device has a guide that participates in the pivoting movement of the coupling shaft about its vertical pivot axis, as well as pressure surfaces provided symmetrical to the longitudinal axis of the coupling shaft, whereby a pressure device is assigned to each pressure surface, which are supported relative to a linking housing and bring about the horizontal re-centering of the coupling shaft. In this connection, it is provided that the pressure devices, in each instance, can be activated using a pneumatically, hydraulically, or electrically operated means of activation. In the case of this known device, the means of activation is configured as a remote-controlled setting drive. This drive can be used to position the guide, and thereby the coupling shaft that is connected to work with it, in any position of the planned horizontal pivoting range of the coupling shaft, with a force flow by way of the device for re-centering, in order, in particular, to facilitate coupling in tight arcs, or actually make it possible.
In the case of this known device, the force flow for pivoting the coupling shaft takes place from a worm-wheel drive to a worm-wheel gear mechanism, the worm-wheel of which is connected with the bearing pin and thereby transfers the pivoting movement directly. Since no de-coupling or interruption of the force flow between the activation device of the worm-wheel drive to the bearing pin is provided in the case of this principle known from the state of the art, every pivoting-out movement of the coupling shaft during traveling operation is directly transferred all the way to the activation device. However, since worm-wheel gear mechanisms are generally considered to be self-locking, pivoting-out during traveling operation, using the known device is possible, if at all, only with a great expenditure of force, since here, two worm-wheel gear mechanisms switched one behind the other are actually provided. Furthermore, pivoting-out during traveling operation causes very great wear in the worm-wheel gear mechanisms.
In view of the problems that occur with the known central buffer couplings, the object of the present invention is to provide a central buffer coupling having a device for horizontal re-centering according to DE 101 62 731 A1, in such a manner that decoupling of the force flow between the activation device and the bearing pin is made possible. In this way, the swing-out movements of the coupling shaft that occur during traveling operation are effectively prevented from being transferred directly all the way to the activation device.
According to one aspect of the present invention, this object is achieved by providing in a central buffer coupling of the type stated initially, a guide that is connected with the activation device by way of a pivoting device that can be brought into engagement with the guide, wherein the engagement can be released in the center position of the guide. The principle of the present invention makes use of the nonengagement of the pivoting device with the guide during traveling operation and therefore the pivoting device is also not in engagement with the coupling shaft that is connected to work with the guide. To put it differently, this arrangement results in the pivoting device no longer being affected by pivoting-out movements of the coupling shaft during traveling operation.
By means of the configuration according to the invention, namely that the guide can be connected with the activation device by way of the pivoting device, it is possible, in advantageous manner, to act directly on the guide by means of activating the activation device, thereby causing the guide to be rotated about a vertical pivot axis and forcing the coupling shaft into a horizontal pivoting movement. Because the engagement of the pivoting device with the guide, which is directly connected with the activation device, can be released in the center position of the coupling shaft, the result is achieved, in advantageous manner, that the force flow transferred by way of the coupling shaft and the bearing pins can no longer be transferred all the way to the activation device, so that thereby the wear of the gear mechanisms provided between the guide, i.e. the pivoting device, and the activation device, due to pivoting movements of the coupling shaft that occur during traveling operation, is clearly reduced. Possible means of activation in this connection are pneumatically, hydraulically, or electrically operated means of activation, such as hydraulic cylinders or linear drives in the form of electrical cylinders.
Furthermore, it is possible for example in the case of a defect of a lifting spindle drive of the activation device, that the pivoting device can be operated manually. By means of the solution according to the invention, it is now possible to pivot the coupling rod of the central buffer coupling in and out when moving the coupling head attached at the front end of the coupling shaft in and out. Therefore, not only is automated or remote-controlled precise positioning of the coupling rod and thereby of the coupling head possible in every angular position of a planned horizontal pivoting range, but also, in particular, freely selectable positioning of the coupling shaft by way of the pressure elements of the pivoting unit is possible, whereby the engagement of the pivoting unit with the guide can be released during traveling operation.
Advantageous further developments of the invention are discussed below.
Thus, in a particularly preferred embodiment of the central buffer coupling according to the invention, the guide is configured as a cam disk, which is mounted to rotate in the linking housing, about a vertically disposed pivot pin, and coupled to rotate synchronously with the coupling shaft. By configuring the guide as a rotating cam disk that rotates about the vertically disposed pivot pin, a particularly simple and easily implemented way of bringing about pivoting of the coupling shaft by means of the pivoting unit is achieved. In other words, by implementing a guide that participates in a horizontal pivoting movement of the coupling shaft about a vertical pivot axis, the coupling shaft is simply and easily pivoted. Of course, different embodiments are also possible here.
In a particularly preferred implementation of the central buffer coupling according to the invention, the pivoting device has a link configured with a contour, in the contour of which a guide pin is guided, which can be brought into engagement with a driver of the guide, which driver accommodates the guide pin. This further development represents a solution that can be implemented in particularly simple manner, and at the same time is very effective and, in particular, robust, with which solution the guide can be brought into engagement with the activation device and, vice versa, with which the engagement of the guide with the activation device can be released. For this purpose, it is provided, in preferred manner, that the link is rigidly connected with the linking housing of the coupling shaft or with the rail car body itself, and therefore cannot participate in any rotational movement with the guide, about the vertically disposed pivot pin.
In this embodiment, the contour of the pivoting device formed in the link serves as a guide for the guide pin, by way of which the engagement of the guide with the activation device is made possible. In advantageous manner, the contour of the pivoting device formed in the link has a particular shape, particularly an S-shaped swung shape or step-shaped shape, in which the guide pin is guided, and can be brought into engagement with the guide, as a function of the segment of the contour shape, in each instance. Because the link is rigidly connected with the linking housing or with the rail car body itself, each segment of the contour shape corresponds to a specific pivot range of the guide and therefore also of the coupling shaft that is connected to work with the guide, in preferred manner, so that it can be determined in advance, by way of the contour shape of the link, in which pivot region an engagement of the guide pin with the guide is supposed to take place or to be released.
In a particularly preferred further development of the last two embodiments discussed above, the guide, i.e. the cam disk, can be brought into engagement with a lever device that can be rotated about the pivot pin using the activation device. In this connection, this lever device is preferably mounted to rotate about the pivot pin, which also serves as an axle of rotation for the guide, i.e. the cam disk. In this connection, the activation device is directly connected with a working point on the lever device, by way of an adjuster or by way of a suitable transfer linkage. Because the engagement of the guide, i.e. the cam disk, with the lever device according to the invention and therefore with the activation device is releasable in the center position of the guide, de-coupling of the activation device with the guide is made possible, in particularly preferred manner. Of course, different embodiments are possible here, as well.
In another preferred further development of the last embodiment mentioned, the lever device furthermore has a guide slot in which the guide pin, which is guided in the contour, runs about the pivot pin during rotation of the lever device. Accordingly, the pivot pin is guided, on the one hand, by means of the guide slot that is provided in the lever device and runs, in preferred manner, almost radially to the pivot pin, and, on the other hand, by means of the contour that is formed in the link of the pivoting device.
This embodiment makes available a coupling location between the guide and the activation device that can be implemented in particularly simple manner, and, at the same time, is very effective, since it is made possible for the pivoting device not to be in engagement with the guide during traveling operation, and therefore also not to be affected by the pivoting-out movements of the coupling shaft transferred by the guide during traveling operation. By means of the activation device, for example a linear drive in the form of an electrical cylinder, the guide pin being guided by way of the contour is then pushed into the driver of the guide. The driver of the guide, in turn, is connected with the pivot pin of the guide, so that after the guide pin is pushed into the driver, the pivoting movement of the coupling shaft can take place by means of the activation device.
In a particularly preferred embodiment of the central buffer coupling according to the invention, the pivot pin is articulated on, aligning axially with regard to a vertically oriented bearing pin that connects the coupling shaft with the linking housing. In this way, a possibility that can be implemented in particularly simple manner is indicated, which can be used to transfer the rotational movement of the guide about the pivot pin, which is brought about by means of the activation device, to the coupling shaft. Of course, different embodiments are possible here, as well.
In a particularly preferred implementation of the last embodiment of the central buffer coupling according to the invention as mentioned above, the pivot pin is connected with the bearing pin so as to work directly with it.
In order to automatically shut off the activation device after an end position has been reached, i.e. after the planned end position in the pivoting range of the central buffer coupling has been reached, a particularly preferred embodiment provides a device in the region of a lateral end position of the coupling shaft, i.e. of the central buffer coupling. This device triggers shut-off of the activation device. Furthermore, it is possible that pivoting the coupling shaft back after the center position has been reached can also be performed with an automatic shut-off.
In another embodiment, the coupling shaft is formed by a rear and a front shaft part, which are connected by means of a joint having a vertical pivot axis, whereby the front shaft part is configured to pivot horizontally relative to the rear shaft part. In this embodiment of the coupling shaft, together with the embodiment of the pivoting unit according to the present invention, it is possible to implement pivoting the coupling shaft in and out while moving the central buffer coupling in and out. In this connection, this process takes place in interaction with the bend joint integrated into the coupling shaft between the front and rear shaft part.
In another further development of the last-mentioned embodiment, a device is disposed in the region of a lateral end position of the coupling shaft, i.e. of the central buffer coupling. This device initiates the pivoting process of the front shaft part. A lift spindle drive that is controlled by means of an approximation switch serves as such a device, for example.
In particularly preferred manner, the pivoting procedures of the pivoting of the extended coupling shaft, from the center position into a lateral end position and vice versa, and/or the pivoting procedures of the pivoting of the front shaft part, may be automated or remote-controlled. Depending on the requirements and the planned degree of automation, all of the pivoting procedures or parts of them can take place in automated or remote-controlled manner.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It should be understood, however, that the drawings are designed for the purpose of illustration only and not as a definition of the limits of the invention.
In the drawing, wherein similar reference characters denote similar elements throughout the several views:
Turning now in detail to the drawings and in particular making reference to
As shown, the pivoting device 9 is composed of an upper and a lower part of a lever device 16. Between the upper and the lower part of lever device 16, a guide 4 is provided, which is mounted to rotate with slide rings 20 in the assembled state. For this purpose, slide rings 20 are set over a pin accommodation 29 provided at the upper and the lower side of guide 4, in each instance. In the representation of the preferred embodiment shown in FIGS. 1 and 2A–2C, guide 4 takes the form of a cam disk 4a having recesses as pressure absorption regions 31. In the assembled and inserted state, pressure surfaces of the pivoting unit formed by pivoting device 9 engage in these pressure absorption regions 31 in the assembled and inserted state, in each instance; the pressure surfaces are not explicitly shown in
Furthermore, a driver 13 in the form of a symmetrically configured, mouth-shaped projection is formed on cam disk 4a, i.e. on guide 4. Furthermore, axially disposed pin accommodation 29 previously mentioned runs through guide 4, i.e. cam disk 4a; in the inserted state, a pivot pin, not explicitly shown, is set into it.
The upper and the lower part of lever device 16 has a section that projects out in lever-like manner, in each instance, in which a guide slot 17 that runs almost radially is provided. A guide pin 12 is set into this guide slot 17, so that it can move in the direction of slot 17. For this purpose, guide pin 12 is appropriately mounted by means of slide rings 23. In order to prevent guide pin 12 and slide rings 23 from falling out of guide slot 17 in the assembled state, guide heads 26 are provided, which are set onto the ends of guide pin 12 with slide rings 23 disposed in between, in each instance.
In the section of lever device 16 that extends in lever-like manner, passage holes 27 are provided in the upper part of lever device 16, into which fixation means 21 are inserted. Fixation means 21 are screwed into corresponding accommodations 24, for example threads, in the lower part of lever device 16, in order to thereby fix in place the upper part and the lower part of lever device 16 with guide 4 that is mounted to rotate between them. Furthermore, an adjustment pin 22 runs through a passage hole 28 of the upper part of lever device 16 and is fixed in place in the lower part of lever device 16, in an accommodation 25 provided for this purpose. A clamp ring 30 may be associated with adjustment pin 22. In the assembled state of the pivoting device, adjustment pin 22 serves as the working point for an adjuster, not specifically shown, which in turn works together, directly, with an activation device.
From the different representations of the pivoting device shown in
It should be pointed out that because of the shape of guide slot 17 in lever device 16, in interaction with contour 10 formed in link 11, different functional sequences of the center position of the central buffer coupling and of pivoting device 9 can also be achieved.
Cam disk 4a is coupled with coupling shaft 2 with rotation synchronicity, and pivot pin 14, as was already mentioned, is disposed to align axially with bearing pin 15 of coupling shaft 2. Pivot pin 14 is connected to work with bearing pin 15, and cam disk 4a is mounted to rotate in the pivoting device, in accordance with the representation in
Pressure device 5 is configured to act permanently, in the embodiment shown, or so that it turns off or can be turned off as a function of the pivot angle, or can be activated by means of a pneumatically, hydraulically, or electrically operated means of activation. The activation means or device 8 is configured as a remote-controlled setting drive in the exemplary embodiment. In this way, guide 4, i.e. cam disk 4a, can be positioned for re-centering in any position of the planned horizontal pivoting range of coupling shaft 2, with force flow byway of pivoting unit 19, using the setting drive by way of an adjuster 34.
In the region of a lateral end position of coupling shaft 2, a device, not shown, can be affixed, which automatically shuts activation device 8 off after the lateral end position has been reached. Furthermore, pivoting coupling shaft 2 back after the center position has been reached can be performed with automatic shut-off.
In the embodiment shown, coupling shaft 2 is formed by a rear shaft part 2a and a front shaft part 2b, which are connected with one another by means of a joint 18 having a vertical pivot axis, and front shaft part 2b is configured to pivot horizontally relative to rear shaft part 2a.
In the situation shown in
In the following, an automated operation of a preferred embodiment of the central buffer coupling will be explained, using
As soon as this switch has been touched, the lift-spindle drive M4 stops, in order to allow coupling rod 2 to bend in, in interaction with bend joint 18. After coupling rod 2 has then reached its intermediate position, i.e. when an approximation switch S16 has been touched, lift-spindle drive M4 of pivoting unit 19 starts again, and turns the center position further to its “park position”, which is recognized by an approximation switch S13. When this end position has been reached, lift-spindle drive M4 is shut off. A mechanical lock in the interior of the center position guarantees that the coupling will be reliably held in the pivoted position. Moving the coupling out ahead of the coupling procedure that is initiated by a signal from the vehicle control, takes place analogous to the moving-in procedure described above. An approximation switch S11 is touched as soon as the pivoting device 19 has moved the coupling shaft 2 back into its center position. A switch S10 may also be provided, which serves to detect when the coupling shaft 2 is bent.
Furthermore, the switches S1 (position heart piece), S2 (query counter-coupling eye), S3 (E-coupling rear), S4 (E-coupling front), S7 (bend joint locked) and S8 (bend joint unlocked) are also provided, which serve to detect the coupling status and the status of the shaft parts 2a and b. The motors M1 and M2 serve to move the coupling head 37 and for de-coupling. The reference symbol Y1 designates a lift magnet for unlocking the bend joint 36.
In summary, the invention provides de-coupling, i.e. interruption of the force flow between bearing pins 15 and activation device 8, by means of pivoting unit 19, in order to thereby prevent a transfer of any pivoting-out movement of coupling shaft 2 to activation device 8 during traveling operation. The principle, according to the invention, of pivoting unit 19 is based on the pivoting device 9 not being in engagement during traveling operation. To put it differently, this nonengagement means that pivoting unit 19 is not affected by pivoting-out movements of coupling shaft 2 during traveling operation. By means of a linear drive in the form of adjuster 34 driven by way of activation device 8, the guide pin 12 guided by way of contour 10 of link 11 is pushed into driver 13, towards guide 4. Because driver 13 is connected with bearing pin 15, the pivoting movement of coupling shaft 2 takes place by means of activation device 8, i.e. adjuster 34 driven by the activation device, after guide pin 12 has been pushed into driver 13.
Although only a few embodiments of the present invention have been shown and described, it is to be understood that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
03028145 | Dec 2003 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3484000 | Cope | Dec 1969 | A |
3627144 | Dwyer, Jr. | Dec 1971 | A |
3926317 | Scharfenberg et al. | Dec 1975 | A |
4013175 | Klein et al. | Mar 1977 | A |
4289247 | Brand et al. | Sep 1981 | A |
5472104 | Domsgen | Dec 1995 | A |
6805251 | Radewagen et al. | Oct 2004 | B1 |
Number | Date | Country |
---|---|---|
28 22 104 | Nov 1979 | DE |
101 62 731 | Jul 2003 | DE |
Number | Date | Country | |
---|---|---|---|
20050121404 A1 | Jun 2005 | US |