Traditionally, a subsea christmas tree provides pressure control of a well completion system that comprises a centrally located well bore and a surrounding annulus conduit. The centrally located well bore is typically used for the extraction of reservoir hydrocarbons and is referred to as the production bore. The annulus conduit is typically used to service the well, for example allowing the circulation of fluids during well start up and shut down. During the production phase of the well, the annulus is often redundant and is monitored for pressure build up indicating a possible production tubing or packer leak from the production bore. Some wells employ the annulus for gas lift. Gas is pumped down the annulus and enters the production bore at specific locations thereby reducing the density and viscosity of the produced fluids. Electrical, optical and hydraulic service lines are also typically routed through the annulus for powering and control of downhole equipment such as valves and pumps, or for data transmission from downhole sensors. Chemical injection lines are likewise routed through the annulus.
Recent developments in expandable casing technology and reeled tubular technology dictate completion designs having decreased diameter well casing tubulars located external to the production tubing. The radial gaps between the tubulars are likewise reduced.
The present invention enables still further benefits to be gained from expandable casing technology. According to the invention, there is provided a completion system comprising a christmas tree mounted on a wellhead housing, a tubing hanger landed in the tree or wellhead housing, the wellhead housing being mounted on a casing string and a tubing string being suspended from the tubing hanger within the casing string; characterised in that, in use, the annulus defined between the tubing and the casing serves as a production bore and the tubing serves as a well service conduit; a second tubing string being expanded into sealing engagement with the casing string over at least a portion of their lengths. A second or outer tubing string surrounding that suspended from the tubing hanger may therefore be expanded to contact the production casing so that a seal is effected between these two tubulars, thereby eliminating the annulus conduit. The annulus conduit may only be absent at the base of the well in the case of a tapered well construction but uniform diameter, non-tapering wells are also possible in which the annulus is totally eliminated.
In this circumstance, it is no longer possible to circulate fluids in the well via the annulus and the central tubing string suspended from the tubing hanger performs the function that the annulus traditionally performs. The annulus conduit defined between the two tubing strings is now used for production. This has a significant impact on the configuration of the completion equipment, especially the tree. Further preferred features and advantages of the invention are in the dependent claims and the following description of preferred embodiments, made with reference to the drawings.
The preferred completion system includes a subsea christmas tree configuration that will allow the installation of a centrally located service conduit. The preferred well, construction also comprises the following components that are typically used in completions and accordingly the subsea tree design provides the appropriate interfacing equipment:
The central service conduit provided by a central coiled tubing string is preferably replaceable with minimum impact on the installed second or outer production tubing and subsea christmas tree equipment. The outer tubing string is terminated at the wellhead housing (either with or without a tubing hanger) and the tree seals to the wellhead housing with a seal stab.
Referring to
A production conduit 34 intersects with the through bore 15 below the tubing hanger seal 22. A production master valve 36 and a production wing valve 38 are provided in the production conduit 34. A pressure cap 40 is optionally installed on a wing outlet 42 of the tree 10 at the stage of installation and subsequent flow test. For flow testing, a production bypass conduit 44 containing a valve 46 extends between the production conduit 34 to the through bore 15 above the tubing hanger seal 22. A service/circulation conduit 48 intersects with the through bore 15 above the tubing hanger seal 22. The conduit 48 contains a valve 50 of equivalent function to the annulus wing valve of a “standard” horizontal tree. However, rather than communicating with a production tubing/production casing annulus as is conventional, the service/circulation conduit 48 is connected to the upper end of the coiled tubing 14. A crossover conduit 45 containing a crossover valve 47 connects the bypass conduit 44 (and/or the production conduit 34 between the valves 36, 38) to the circulation/service conduit 48.
The installation test tool 18 is connected between the coiled tubing hanger 12 and the installation string 32. Upper and lower seals 52, 54 seal a lower end of the installation test tool 18 within the tree through bore 15. A conduit 56 in the installation test tool 18 has a side outlet positioned between the seals 52, 54 for communication with the production bypass conduit 44, and an upper end in communication with a riser conduit 58 in the installation string 32. During flow testing, production fluid may therefore be led to the surface rig or vessel through the installation test tool interior and the riser conduit 58.
The lower end of the installation test tool 18 also has a central bore 60 in communication with the coiled tubing interior via the central circulation/service valve 20. A side outlet 61 leads from the bore 60 to the circulation/service conduit 48. A workover conduit 62 containing a workover valve 64 extends from the circulation/service conduit 48 to the tree through bore 15 at a point above the installation test tool upper seal 52. The other end of the installation test tool 18 comprises an upwardly extending spool 66 through which runs the conduit 56. A BOP 68 is attached to the upper end of the tree 10. Pipe rams 70 in the BOP 68 can be closed and sealed about the installation test tool spool 66, thereby sealingly connecting the workover conduit 62 to a choke/kill line 72 of the BOP.
The installation test tool also allows controls to be hooked up to the down-hole lines 28 and for operation of the circulation/service valve 20 in the coiled tubing hanger 12. Besides the remote subsea mateable couplers 26 to the top of the coiled tubing hanger 12, the installation test tool 18 also includes further remote subsea mateable couplers 74 to the base of the installation string 32.
The installation string 32 is latched and sealed to the top of the installation test tool 18 by a remotely operable connector 76 providing emergency disconnect capability. A monobore completions riser 78 is connected to the upper end of the BOP 68 by a lower marine riser package 80 which also provides for emergency disconnection. When disconnected, any fluids present in the riser conduit 58 are retained by a valve 82. The couplers 74 connect the control lines 30 in the installation test tool 18 to a controls umbilical 84 attached to the installation string 32.
The completion system illustrated in
The central coiled tubing string 14 is suspended within an outer tubing string 98 which is expanded into sealing contact with surrounding production casing 100 and the wellhead housing 11. The need for tubing hangers and packers may thus be eliminated. If a tubing hanger is used to suspend the outer tubing string 98 which has its lower end expanded into contact with the production casing, the outer tubing hanger is landed in the wellhead 11 because the outer tubing 98 is permanently attached to the other well tubulars and cannot be retrieved. Landing the outer tubing hanger in the tree 10 would therefore prevent (or at least make difficult) the recovery of the tree. If tubing corrosion occurs, a new (thin wall) liner tubing can be expanded into place inside the old outer tubing.
The use of expandable well tubulars also results in a more gradually tapering, or even uniform diameter, well. Thus the upper tubulars and completion equipment are of reduced size and weight compared to conventional wells of equivalent depth, giving materials savings and reduced operational costs. The marine riser system/BOP stack used at installation only needs a bore similar to a completions riser. Therefore it is very similar to a lightweight intervention system. Faster drill penetration rates can be achieved and the use of lower cost vessels with lower lift capacity is made possible.
Flow tests may be conducted via the installation string and workover access is provided via the coiled tubing string. The tree has a similar cost and complexity to known horizontal trees. No subsea test tree is needed during installation and workover. There is potential to adapt the system for a dual zone completion, for the use of ESP's, or for downhole separation. The effective production tubing size can be reduced as the well matures, by increasing the diameter of the coiled tubing, or a velocity string can be fitted. The completion system offers improved control of well circulation via the subsea tree for well kill or gas lift applications.
Finally,
Table 1 sets out barrier matrices for the completions described above, for various procedures and conditions.
A hole section is then drilled, a first casing section 100 is run and cemented and the wellhead housing 11 established. This may be of small diameter (21.6 mm, 8½″ drift). A further hole section is then drilled and an expandable casing section 148 run, cemented and expanded to the bore diameter of the first casing section 100. Expansion seals the casing section to the previously installed casing without the use of packers or the like. Methods for installing expandable tubulars are known in the art and will not be further elaborated here. The expansion pig may be run either from the top down or from the bottom up. However, the bottom up method is preferred, as then no hangers are needed.
Drilling continues and as many further casing sections 150, 152 as may be needed to reach the reservoir 154 are installed successively. All casing sections are expanded to the bore diameter of the initial section 100 (e.g. 6″), to produce a parallel sided well. When needed, the BOP 68 is installed on the wellhead housing 11. All casing sections are capable of withstanding the reservoir pressure.
Drilling is continued into the reservoir 154 as shown in
100: 9⅝″; 148: 8⅝″; 150: 7⅝″; 152: 6⅝″
Referring to
As shown in
There are several possible methods of setting the outer tubing hanger 172 and facilitating the expansion of the outer tubing 98 onto the liner 156. The preferred methods are based on the “top down” expansion principle. This is better for this particular well construction due to the tapering casing strings. The outer tubing 98 only eliminates the tubing/production casing annulus at the lower section. A “bottom up” approach is only readily usable if a correspondingly tapered outer tubing 98 is used. This is inconvenient due the number of trips required to set the different sizes of pig and the increased tubing costs at the top sections.
A preferred alternative is as shown in
There are various options for the seal interface between the wellhead housing 11 and the tree 10. One consideration is the need to isolate the VX gasket from the produced fluids.
Alternatively, a seal pocket may be provided at the upper inside diameter of the outer tubing hanger 172 to interface a seal stab 158 on the tree, as shown in
The arrangement shown in
100: 9⅝″; 149: 7½″; 151: 7″; 153: 6½″; 157: 6″
As shown in
Number | Date | Country | Kind |
---|---|---|---|
0010321 | Apr 2000 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB01/01747 | 4/12/2001 | WO | 00 | 10/21/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/81710 | 11/1/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3067819 | Gore | Dec 1962 | A |
4651831 | Baugh | Mar 1987 | A |
5794702 | Nobileau | Aug 1998 | A |
5868204 | Pritchett et al. | Feb 1999 | A |
6453944 | Bartlett | Sep 2002 | B1 |
6612368 | Kent et al. | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
1 205 303 | Sep 1970 | GB |
1 403 957 | Aug 1975 | GB |
2 311 312 | Sep 1997 | GB |
WO9918329 | Apr 1999 | WO |
WO9935368 | Jul 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040074635 A1 | Apr 2004 | US |