This application is the national phase of International Application No. PCT/CN2016/109697, titled “CENTRAL TRACTION DEVICE FOR STRADDLING MONORAIL TRAIN”, filed on Nov. 13, 2016, which claims priority to Chinese Patent Application No. 201610004877.7, titled “CENTRAL TRACTION DEVICE FOR STRADDLING MONORAIL TRAIN”, filed on Jan. 5, 2016 with the State Intellectual Property Office of People's Republic of China, the enclosures of which applications are incorporated herein by reference.
The present application relates to the technical field of rail vehicle manufacturing, and particularly to a central traction device for a straddle-type monorail train.
Straddle-type monorail traffic is a full-line overhead rail transit system which utilizes a space above ordinary roads, and thus can alleviate the ground traffic congestion problem effectively. And also, a monorail train, due to adopting a special bogie, has a strong adaptability to steep slopes and sharp bends and doesn't have strict requirements on a terrain. Furthermore, the monorail train is drawn by electric power, and there is no exhaust pollution in operation of the train, which is favorable for protection of the urban environment.
A central traction device for the bogie of the monorail train is mainly subjected to a traction force and a braking force, and is subjected to an impact of the bogie against a train body, and the central traction device is further required to satisfy the relative movement between the train body and the bogie. The central traction device mainly includes a frame, a traction pin, a traction beam, a transverse stopper, a damper and so on. In a central traction device of a conventional straddle-type monorail train, the traction beam and the traction pin are connected by a traction pin sleeve for transferring a longitudinal traction force to satisfy the relative rotation between the train body and the bogie. The traction pin sleeve in the conventional technology mostly has a cylindrical structure with equal diameters from top to bottom, and is formed by rubber and a metallic plate being vulcanized together. The traction pin sleeve bears load changes in a horizontal direction by compressive deformation of the rubber in the horizontal direction, thus having damping and buffering effect. However, the traction pin sleeve bears load changes in a vertical direction by torsional dislocation of the rubber, which weakens damping and buffering effect in the vertical direction greatly and further causes a service life of the traction pin sleeve to be reduced greatly.
It is a main object of the present application to provide a central traction device for a straddle-type monorail train which has a simple structure and a better manufacturability and can bear transverse load, longitudinal load and vertical load effectively, so as to address the above issues and disadvantages.
To achieve the above object, the following technical solutions are provided according to the present application.
A central traction device for a straddle-type monorail train is provided, and the central traction device includes a traction pin and a traction beam. A central sleeve is provided at the center of the traction beam, and the traction pin is mounted in the central sleeve. An inner cavity of the central sleeve has a corset-shaped structure having large diameters on an upper end and a lower end and a small diameter at a middle part, forming double tapered bevels, and a resilient rubber bush is provided between an inner wall of the central sleeve and the traction pin.
Preferably, the resilient rubber bush includes two rubber rings which are respectively an upper rubber ring and a lower rubber ring, the upper rubber ring is mounted on a tapered bevel at an upper side of the corset-shaped inner cavity of the central sleeve, and the lower rubber ring is mounted on a tapered bevel at a lower side of the corset-shaped inner cavity of the central sleeve.
Preferably, a step-like structure converging towards the center of the traction pin is provided around an outer periphery of the traction pin, and after being mounted, the upper rubber ring is clamped between the step-like structure of the traction pin and an inner wall of the central sleeve.
Preferably, an outer periphery of a bottom portion of the traction pin has a tapered surface converging toward the center of the traction pin, and after being mounted, the lower rubber ring is clamped between the bottom portion of the traction pin and an inner wall of the central sleeve.
Preferably, the central sleeve of the traction beam has a structure which is cut-through from top to bottom, a seal plate and a lower gland are provided at a bottom portion of the central sleeve, the seal plate is fixedly connected to a bottom portion of the traction beam by a bolt, and the lower gland is fixedly mounted between the seal plate and the traction pin.
Preferably, a traction pin hole, which is cut-through from top to bottom, is provided at the center of the traction pin, and a long bolt passing through the traction pin hole is mounted in the traction pin hole, an annular positioning block is mounted at a top side of the traction pin hole and a top portion of the long bolt passes through the positioning block, a bottom portion of the long bolt has external threads, an internal threaded hole is provided at the center of the lower gland, and the bottom portion of the long bolt and the lower gland are fixedly connected by screw threads.
Preferably, a bottom portion of the central sleeve of the traction beam is recessed outward, and a seal ring is mounted between an outer circumference of the lower gland and an inner wall of the bottom portion of the central sleeve.
Preferably, a boss structure is provided on an upper surface of the lower gland, an outer circumference of a bottom portion of the traction pin has an anti-rotation planar surface which is inwardly concaved, and the boss structure of the lower gland cooperates with the anti-rotation planar surface of the traction pin to prevent rotation.
Preferably, the traction device further includes two end plates distributed in a longitudinal direction, and the two end plates are respectively mounted at outer sides of the traction pin, a top portion of each of the end plates is fixedly connected to the frame, and four traction rubber stacks are mounted between the traction beam and the two end plates.
Preferably, the traction rubber stack is formed by vulcanizing five parallel metallic plates and four layers of rubber between the adjacent metallic plates together, two positioning and mounting mandrels, which protrude out, are respectively provided on outer surfaces of two metallic plates on outermost sides, and the two positioning and mounting mandrels are respectively inserted into a rubber stack mounting hole provided in the end plate and a rubber stack mounting hole provided in the traction beam to achieve fixing.
Preferably, the traction device further includes a lift assembly comprising a lift plate, a lift baffle and a lift block; the lift plate is fixedly connected to the frame by a bolt, a through hole, through which the traction pin passes, is provided at the center of the lift plate; the lift baffle is formed by two longitudinal plates and two transverse plates, and the two longitudinal plates and the two transverse plates are fixed perpendicularly on a top of the lift plate by welding, the traction pin is located in a space enclosed by the two longitudinal plates and the two transverse plates, and each of four corners of the lift plate is welded with one lift block.
In summary, compared with the conventional technology, the central traction device for the straddle-type monorail train has the following advantages:
(1) The device has a simple and compact overall structure and facilitates achieving connection and separation between the train body and the bogie. Moreover, by cooperation between the traction beam of the corset-shaped structure, the resilient rubber bush and the traction rubber stack, the device can not only achieve transmission of traction force and braking force in operation of the vehicle better in function, but also can be adapted to changes and loading of the load in a vertical direction and a longitudinal direction better, meeting the requirements of a larger traction force and a larger load change and thus improving smoothness and comfort in operation of the vehicle greatly.
(2) By providing the lift assembly, the traction device as a whole is fixedly connected to the frame, and thus the traction device can be wholly lifted. Components of the traction device are preassembled by the lift assembly to form a modular structure and then are wholly lifted, which simplifies a manner in which the traction device and the frame are connected, facilitates overall mounting and detachment of the traction device, thus improving assembling efficiency significantly.
(3) The traction beam and the traction pin are connected by the elongated bolt, and the long bolt may be detached and mounted on the grounded, thus improving operation process and environment of raising and lowering the vehicle, thereby improving assembly efficiency dramatically.
For more clearly illustrating embodiments of the present application or the technical solutions in the conventional technology, drawings referred to describe the embodiments or the conventional technology will be briefly described hereinafter. Apparently, the drawings in the following description are only examples of the present application, and for the person skilled in the art, other drawings may be obtained based on the drawings without any creative efforts.
Reference numerals in
The present application is further described in detail hereinafter in conjunction with the drawings and embodiments.
As shown in
The bogie 2 includes a frame 3, the frame 3 is a box structure formed by welding steel plates. An air spring 4 is provided on each of two sides of the frame 3. A main air chamber of the air spring 4 is connected to a height adjusting valve 5 which has an end connected to a height adjusting device 6. The height adjusting device 6 controls opening and closing of the height adjusting valve 5. In this embodiment, the air spring 4 is preferably a large convolution bellow type air spring, and since a bellow of the air spring 4 has a large diameter and the air spring has a large height, a low transverse stiffness and a low vertical stiffness, the air spring has a good dynamic performance.
A central hole 7 is provided in a central portion of the frame 3. A traction device 8 is mounted in the central hole 7. A top portion of the traction device 8 is fixedly connected to the train body 1 and a bottom portion of the traction device 8 is resiliently connected to the frame 3, thus achieving a resilient connection between the bogie 2 and the train body 1. In addition to transmitting the traction force and the braking force between the train body 1 and the bogie 2 in a longitudinal direction (a direction which extends along a travel direction of a straddle-type train), the traction device can also reduce transverse, longitudinal, and vertical impact loads between the bogie 2 and the train body 3 significantly and improve a dynamics performance of vehicle operation, thereby improving smoothness and comfort in operation of the train.
The traction device 8 includes a traction pin 9, a traction beam 10, a traction rubber stack 11, an end plate 12 and a lift assembly 13. A top portion of the traction pin 9 is fixedly connected to the train body 1. A bottom portion of the traction pin 9 is inserted into the traction beam 10, and the traction pin 9 is resiliently connected to the traction beam 10 by the traction rubber stack 11. And the traction beam 10 is connected to the frame 3 by a damper (not shown in the figure).
The traction pin 9 is formed by integral casting first and then machining, which ensures the traction pin 9 to have sufficient strength and stiffness. In this embodiment, preferably, the top portion of the traction pin 9 is fixedly connected to an underframe of the train body 1 by ten bolts 14, which not only improves a connection strength between the traction pin 9 and the train body 1, but also reduces a degree of force acting on a single bolt 14, thereby extending the service life of the bolts 14 and ensuring the safety of the vehicle operation.
As shown in
The lift baffle 42 is formed by two longitudinal plates 42a and two transverse plates 42b. The two longitudinal plates 42a and the two transverse plates 42b are perpendicularly fixed on the top of the lift plate 41 by welding. The two longitudinal plate 42a are also respectively connected to the two transverse plates 42b by welding. The traction pin 9 is located in a space enclosed by the two longitudinal plates 42a and the two transverse plates 42b. Two sides of each longitudinal plate 42a are further bent outward respectively to form an edgefold, which ensures an overall structural strength of the lift baffle 42. One transverse stopper (not shown in the figure) is mounted on an inner side surface of each of the two transverse plates 42b by a bolt. The transverse stopper adopts a rubber structure and faces the traction pin 9 at the middle. One lift block 43 is welded at each of four corners of the lift plate 41. A lift device is inserted into each of lift holes of four lift blocks 43, and thus the entire traction device 8 may be lifted.
The traction device 8 and the frame 3 are fixedly connected together by the lift assembly 13, and the whole traction device 8 can be lifted by the lift assembly 13 and thus both mounting and dismounting of the traction device 8 are very convenient, which simplifies a manner in which the traction beam 10 and the frame 3 are connected, thereby facilitating improvement of the assembly efficiency and reducing labor intensity.
As shown in
As shown in
As shown in
In this embodiment, the train body 1 and the frame 3 are resiliently connected by the traction rubber stacks 11 arranged longitudinally, and since the traction rubber stack 11 has a good longitudinal flexibility, a large longitudinal compression characteristic and a small vertical shear characteristic, the traction rubber stack 11 can not only improve bearing a capacity of the vehicle for longitudinal load, but also can allow the vehicle to withstand a certain vertical load, thus can have a good damping and buffering effect when being used to connect the train body 1 and the bogie 2, thereby significantly reducing impact load between the train body 1 and the bogie 2 and improving comfort in operation of the train.
As is shown in
As shown in
Each of cross-sections of the upper rubber ring 23 and the lower rubber ring 24 also has a substantially tapered structure. A step-like structure 25, which converges toward the center of the traction pin 9, is provided around an outer periphery of the traction pin 9. After being mounted, the upper rubber ring 23 is clamped between the step-like structure 25 of the traction pin 9 and an inner wall of the traction beam 10. An outer periphery of a bottom portion of the traction pin 9 also has a tapered surface which converges toward the center of the traction pin 9, and the lower rubber ring 24 is clamped between the bottom portion of the traction pin 9 and the inner wall of the traction beam 10.
A seal plate 26 and a lower gland 27 are provided the bottom of the central sleeve 22 of the traction beam 10. As shown in
A lower surface of the lower gland 27 has a positioning boss 32 protruding downwards. After being mounted, the positioning boss 32 cooperates with a central hole of the seal plate 26 to achieve a central positioning of the traction beam 10 and the traction pin 9.
Since the traction pin 9 and the traction beam 10 are connected in a sealed manner by the upper rubber ring 23, the traction beam 10 in this embodiment is provided with a drain hole 46 configured to drain rainwater and water for washing the train, etc.
As shown in
As shown in
An assembly process of this traction device 8 is described hereinafter in detail.
1. First, the flange 15 of the end plate 12 is fixedly connected to the lift plate 41 by the bolt 16, and the transverse stopper is mounted to each of the transverse plates 42b of the lift baffle 42.
2. The four traction rubber stacks 11 are mounted between the traction beam 10 and the end plates 12.
3. The lower rubber ring 24, the lower gland 27 and the seal ring 47 are mounted in the central sleeve 22 of the traction beam 10. The seal plate 26 is fixedly connected to the bottom portion of the traction beam 10 by using six bolts 28, and before mounting of the seal plate 26, a rubber washer 29 is mounted between the lower surface of the lower gland 27 and the seal plate 26. Thus, preliminary assembly of the traction device 8 is completed.
4. The top portion of the traction pin 9 is fixedly connected to the train body 1 by ten bolts 14.
5. The upper rubber ring 23 is sleeved onto the traction pin 9 from the lower side, which allows the upper rubber ring 23 to abut against the step-like structure 25 of the traction pin 9.
6. The traction device 8 formed by the above preliminary assembly is sleeved upward onto the traction pin 9 from a lower side of the traction pin 9, that is, the traction pin 9 is inserted into the central sleeve 22 of the traction beam 10 from top to bottom, and the boss structure 30 of the lower gland 27 cooperates with the anti-rotation planar surface 31 of the traction pin 9.
7. The lift plate 44 and the frame 3 are fixedly connected together by twenty-two bolts 44.
8. The long bolt 35 is inserted downward into the traction pin hole 34 of the traction pin 9 from the ground, and the external threads of the bottom portion of the long bolt 35 are fixed to the internal threads 37 of the lower gland 27 by screwing. Thus, assembly between the traction device 8 and the train body 1 is completed.
As described above, similar technical solutions may be derived from contents of the solution given in conjunction with the drawings. However, any contents without departing from the technical solution of the present application and any simple variations, equivalents and modifications in light of the technical essential of the present application are all within the scope of the technical solution of the present application.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0004877 | Jan 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/109697 | 12/13/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/118265 | 7/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3741406 | Anderson | Jun 1973 | A |
4962861 | Wiebe | Oct 1990 | A |
5615786 | Hoyon et al. | Apr 1997 | A |
5809899 | Kaufhold et al. | Sep 1998 | A |
Number | Date | Country |
---|---|---|
246718 | Sep 1994 | AR |
2774876 | Apr 2006 | CN |
101774388 | Jul 2010 | CN |
102019940 | Apr 2011 | CN |
201932179 | Aug 2011 | CN |
204915705 | Dec 2015 | CN |
105501245 | Apr 2016 | CN |
S56157163 | Nov 1981 | JP |
H07267086 | Oct 1995 | JP |
2005081940 | Mar 2005 | JP |
2005335558 | Dec 2005 | JP |
2013189097 | Sep 2013 | JP |
2168428 | Jun 2001 | RU |
Entry |
---|
International Search Report for PCT/CN2016/109697 dated Mar. 3, 2017, ISA/CN. |
The Chinese 1st Office Action dated Jun. 2, 2017 for 201610004877.7,English Translation provided by http://globaldossier.uspto.gov. |
The Japanese 1st Office Action dated Oct. 29, 2018 for JP2018-528042 along with the English Summary. |
Liu Shaoyong, “Car Bogie for Straddle Monorail Line in Chongqing”, Modern urban track traffic., Jan. 2006, the 5-9 pages or leaf. |
Number | Date | Country | |
---|---|---|---|
20180345996 A1 | Dec 2018 | US |