Centralized control of area lighting hours of illumination

Information

  • Patent Grant
  • 9572230
  • Patent Number
    9,572,230
  • Date Filed
    Tuesday, September 29, 2015
    9 years ago
  • Date Issued
    Tuesday, February 14, 2017
    7 years ago
Abstract
Systems, methods and articles for providing centralized control of area lighting hours of illumination. An illumination system includes a central control system operatively coupled to a plurality of luminaires through a power-line power distribution system. The central control system issues illumination commands to the plurality of luminaires through the power-line power distribution system. The central control system may generate commands directed to all luminaires in an illumination system, or to one or more subsets of luminaires in the lamination system. The central control system may sequentially turn on luminaires in the illumination system to reduce power surges that would otherwise occur.
Description
BACKGROUND

Technical Field


The present disclosure relates to illumination, and more particularly to control of a plurality of illumination devices and systems.


Description of the Related Art


Luminaires enjoy widespread use in a variety of industrial, commercial, and municipal applications. Such applications can include general or area lighting of workspaces, roadways, parking lots, and the like. Multiple luminaires are typically arranged in patterns and positioned at intervals sufficient to provide a minimum overall level of illumination across the area of interest. For example, luminaires may be spaced at intervals along a driveway in a multilevel parking garage to provide an overall level of illumination that permits safe ingress and egress by pedestrians as well as permits safe operation of motor vehicles within the parking garage. In a similar manner, luminaires may be spaced at intervals throughout a commercial center parking lot to promote safe operation of motor vehicles, permit safe ingress and egress by customers, and foster a sense of safety and well-being for business patrons within the commercial center. Similarly, a number of luminaires may be spaced along a roadway to provide a level of illumination permitting safe operation of motor vehicles on the roadway and, where applicable, safe passage of pedestrians on sidewalks adjoining the roadway.


To simplify power distribution and control wiring, such luminaires may be organized into groups or similar hierarchical power and control structures. For example, multiple luminaires along a roadway may be grouped together on a common power circuit that is controlled using a single, centralized controller to collectively adjust the luminous output of all of the luminaires in the group. In another instance, multiple luminaires within a parking garage may be controlled using a single photocell mounted on the exterior of the parking garage. Such installations may however compromise operational flexibility for ease of installation and simplicity of operation.


Energy conservation has become of ever-increasing importance. Efficient use of energy can result in a variety of benefits, including financial benefits such as cost savings and environmental benefits such as preservation of natural resources and reduction in “green house” (e.g., CO2) gas emissions.


Residential, commercial, and street lighting which illuminate interior and exterior spaces consume a significant amount of energy. Conventional lighting devices or luminaires exist in a broad range of designs, suitable for various uses. Lighting devices employ a variety of conventional light sources, for example incandescent lamps, fluorescent lamps such as high-intensity discharge (HID) lamps (e.g., mercury vapor lamps, high-pressure sodium lamps, metal halide lamps).


There appear to be at least two primary approaches to reducing energy consumption associated with lighting systems. One approach employs higher efficiency light sources. The other approach selectively provides light only when needed.


Use of higher efficiency light sources may, for instance, include replacing incandescent lamps with fluorescent lamps or even with solid-state light sources (e.g., light emitting diodes (LEDs), organic LEDs (OLEDs), polymer LEDs (PLEDs)) to increase energy efficiency. In some instances, these higher efficiency light sources may present a number of problems. For example, fluorescent light sources may take a relatively long time after being turned ON to achieve their full rated level of output light or illumination. Such light sources also typically have a high energy consumption during warm-up. Many higher efficiency light sources emit light with a low color rendering index (CRI). For reference, sunlight has a CRI of 100 and represents “ideal light” which contains a continuous spectrum of visible radiation. Low CRI light is less pleasing to the human eye. Surfaces illuminated with low CRI light may not be perceived in their “true” color. Low CRI light makes it more difficult to discern details, often requiring a higher level of output light or illumination to discern details that would otherwise be discernable in high CRI light. Further, higher efficiency light sources may require additional circuitry (e.g., ballasts) and/or thermal management techniques (e.g., passive or active cooling).


Providing illumination only when needed can be achieved manually by a user of the lighting system, or automatically through the use of one or more control mechanisms. Automatic control mechanisms generally fall into two broad categories, timers and environmental sensors. Timer-based control mechanisms turn light sources ON and OFF based on time. The times are typically user configurable and result in the luminaire turning ON for a period of time and then OFF for the remainder of a 24 hour period. Such timing circuits rely on the user to account for changes in length of daylight which may occur throughout a year by adjusting the ON period of the luminaire commensurate with the change in day length. Very often, timer-based control mechanisms are set once and never updated.


Automatic control devices such as photosensitive transducers (photosensors) and motion or proximity sensors add to the cost of a light fixture, and are frequently mounted in exposed positions where environmental or physical damage is unavoidable or vandalism may occur. In addition, a failure of the automatic control mechanism, for example failure of a photosensor used to turn the light source ON or OFF dependent upon the measured ambient light level, may result in the light source remaining in a continuously ON state in the event the automatic control mechanism fails in a “closed” position, permitting current flow to the light source, or in a continuously OFF state in the event the automatic control mechanism fails in an “open” position, interrupting current flow to the light source. Either failure mode results in an undesirable mode of operation of the light source.


Generally, a photocontrol is a device that switches or controls electrical loads based on ambient light levels. As an example, a photocontrol can be used as a switch that provides electrical power to a luminaire only when detected light levels are below a desired level. Photocontrols used for such luminaires may include photosensors that are electrically and operably coupled to switching devices rated for use at relatively high line voltages (e.g., 90 VAC to 600 VAC) and at relatively high currents (e.g., amperes and higher). For example, a photocontrol for a luminaire may include a photosensor that controls an electro-mechanical relay coupled between a source of electrical power and a control device (e.g., a magnetic or electronic transformer) within the luminaire. The electro-mechanical relay may be configured to be in an electrically continuous state unless a signal from the photosensor is present to supply power to the luminaire. If the photosensor is illuminated with a sufficient amount of light, the photosensor outputs the signal that causes the electro-mechanical relay to switch to an electrically discontinuous state such that no power is supplied to the luminaire.


A typical electro-mechanical relay used with a photocontrol for a luminaire has a relatively short life span. For example, electro-mechanical relays of conventional photocontrols used with luminaires may be rated to have only 5000 contactor closures with standard loads. Arcing caused by high capacitive in-rush currents of electronically ballasted luminaires and inductive “kick back” of magnetically ballasted luminaires can corrode the contactors of the electro-mechanical relays. Additionally, the contactors may include silver or other metal alloys upon which oxides and sulfides may form during normal operation. At line voltage and current, such oxides and sulfides may present a negligible resistance to the passage of current through the contactors. However, at relatively low voltages (e.g., 2V to 24V) and relatively low currents (e.g., microamps) such as those used for digital logic level signaling, the impedance presented by contaminants including oxide and sulfide accumulations can hinder or even prevent the transmission of current through the contactors. Thus, conventional photocontrols for luminaires can have especially short life spans when used in applications where the switching of relatively low voltage and relatively low current signals is required, for example, with luminaires that include solid-state light source drivers, for example, light emitting diode (LED) drivers that receive control signals for LED arrays.


BRIEF SUMMARY

A method of operation for a processor-based device to control a plurality of remotely located luminaires may be summarized as including: receiving, by at least one central control processor, illumination data relating to at least one of ambient illumination or time of day; generating, at the at least one central control processor, an illumination command based at least in part on the received illumination data; and distributing the illumination command through a power-line power distribution system.


The method may further include: receiving, at the plurality of luminaires, the illumination command through the power-line power distribution system; and controlling, at each of the plurality of luminaires, illumination of each respective luminaire based at least in part on the received illumination command. Controlling the illumination of each respective luminaire based at least in part on the received illumination command may include: controlling, at a first set of the plurality of luminaires, each respective luminaire in the first set to be in an illuminating state; and controlling, at a second set of the plurality of luminaires, each respective luminaire in the second set to be in a non-illuminating state. Receiving illumination data may include receiving photosensor data obtained from a photosensor operatively coupled to the at least one central control processor. Receiving illumination data may include receiving time data from a clock operatively coupled to the at least one central control processor. Generating an illumination command based at least in part on the received illumination data may include generating an illumination command that commands a first set of the plurality of luminaires to be in an illuminating state and commands a second set of the plurality of luminaires to be in a non-illuminating state. Generating an illumination command based at least in part on the received illumination data may include generating an illumination command that commands luminaires in the plurality of luminaires associated with a first set of logical addresses to be in an illuminating state and commands luminaires in the plurality of luminaires associated with a second set of logical addresses to be in a non-illuminating state. Generating an illumination command based at least in part on the received illumination data may include generating a set of illumination commands, each of the illumination commands in the set of illumination commands directed to luminaires associated with a unique set of logical addresses. The method may further include: generating a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of the plurality of luminaires; and sequentially distributing each of the illumination commands in the set of illumination commands through the power-line power distribution system. The method may further include: receiving, at the plurality of luminaires, the illumination commands in the set of illumination commands through the power-line power distribution system; and controlling, at each of the plurality of luminaires, the illumination of each respective luminaire based at least in part on the received illumination commands. The method may further include: partitioning the plurality of luminaires into at least two subsets based at least in part on a geographical location of each of the luminaires; and logically associating each luminaire with one of the at least two subsets in a nontransitory processor-readable storage medium; wherein generating an illumination command based at least in part on the received illumination data may include generating an illumination command directed to one of the subsets of luminaires in the at least two subsets. Distributing the illumination command through a power-line power distribution system may include superimposing the illumination command onto a power line of the power-line power distribution system. Receiving illumination data relating to at least one of ambient illumination or time of day may include receiving illumination data from an illumination data source positioned remote from at least some of the plurality of luminaires.


An illumination system may be summarized as including: at least one central control system comprising: at least one central control processor; at least one illumination data source operatively coupled to the at least one central control processor; a central transceiver operatively coupled to the at least one central control processor and a power-line power distribution system; and at least one nontransitory processor-readable storage medium operatively coupled to the at least one central control processor and storing at least one of data or instructions which, when executed by the at least one central control processor, cause the at least one central control processor to: receive illumination data from the at least one illumination data source relating to at least one of ambient illumination or time of day; generate an illumination command based at least in part on the received illumination data; and distribute the illumination command through the power-line power distribution system via the central transceiver.


The illumination system may further include: a plurality of luminaires, each of the luminaires including: at least one luminaire control processor; at least one light source operatively coupled to the luminaire control processor; a luminaire transceiver operatively coupled to the at least one luminaire control processor and the power-line power distribution system; and at least one nontransitory processor-readable storage medium operatively coupled to the at least one luminaire control processor and storing at least one of data or instructions which, when executed by the at least one luminaire control processor, cause the at least one luminaire control processor to: receive the illumination command through the power-line power distribution system via the luminaire transceiver; and control the operation of the at least one light source based at least in part on the received illumination command. In response to receipt of the illumination command from the at least one central control processor, the at least one luminaire control processor of each respective luminaire in a first set of luminaires may control the light source to be in an illuminating state, and the at least one luminaire control processor of each respective luminaire in a second set of luminaires may control the light source to be in a non-illuminating state. The illumination data source may include a photosensor operatively coupled to the central control processor, and the at least one central control processor may receive photosensor data from the photosensor. The illumination data source may include a clock operatively coupled to the central control processor, and the at least one central control processor may receive time data from the clock. The at least one central control processor may generate an illumination command that commands a first set of the plurality of luminaires to be in an illuminating state, and may command a second set of the plurality of luminaires to be in a non-illuminating state. The at least one central control processor may generate an illumination command that commands luminaires in the plurality of luminaires associated with a first set of logical addresses to be in an illuminating state, and may command luminaires in the plurality of luminaires associated with a second set of logical addresses to be in a non-illuminating state. The at least one central control processor may generate a set of illumination commands, each of the illumination commands in the set of illumination commands directed to luminaires associated with a unique set of logical addresses. The at least one central control processor may generate a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of the plurality of luminaires; and may sequentially distribute each of the illumination commands in the set of illumination commands through the power-line power distribution system. The at least one central control processor may partition the plurality of luminaires into at least two subsets based at least in part on a geographical location of each of the luminaires; and may logically associate each luminaire with one of the at least two subsets in the at least one nontransitory processor-readable storage medium; wherein the at least one central control processor may generate an illumination command directed to one of the subsets of luminaires in the at least two subsets. The at least one central transceiver may superimpose the illumination command onto a power line of the power-line power distribution system, and the luminaire transceiver of each luminaire may receive distributed power from the power line of the power-line power distribution system, and separate the illumination command from the distributed power. The illumination data source may be positioned remote from at least some of the plurality of luminaires.


A method of operation for a processor-based device to control a plurality of remotely located luminaires may be summarized as including: receiving, by at least one central control processor, illumination data relating to at least one of ambient illumination or time of day; generating, at the at least one central control processor, an illumination command based at least in part on the received illumination data; and distributing the illumination command through a power-line power distribution system to the plurality of luminaires; wherein each of the plurality of luminaires receives the illumination command through the power-line power distribution system and controls the operation of each respective luminaire based at least in part on the received illumination command.


An illumination system to control the operation of a plurality of luminaires may be summarized as including: at least one central control system comprising: at least one central control processor; at least one illumination data source operatively coupled to the at least one central control processor; a central transceiver operatively coupled to the at least one central control processor and a power-line power distribution system; and at least one nontransitory processor-readable storage medium operatively coupled to the at least one central control processor and storing at least one of data or instructions which, when executed by the at least one central control processor, cause the at least one central control processor to: receive illumination data from the at least one illumination data source relating to at least one of ambient illumination or time of day; generate an illumination command based at least in part on the received illumination data; and distribute the illumination command through the power-line power distribution system via the central transceiver to the plurality of luminaires, each of the plurality of luminaires receives the illumination command through the power-line power distribution system and controls the operation of each respective luminaire based at least in part on the received illumination command.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.



FIG. 1 is a schematic view of an environment in which an illumination system may be implemented, according to at least one illustrated embodiment.



FIG. 2 is a functional block diagram of the illumination system of FIG. 1, according to at least one illustrated embodiment.



FIG. 3 is a schematic view of an environment in which an illumination system may be implemented, according to at least one illustrated embodiment.



FIG. 4 is a graph that illustrates a sequential startup process for luminaires in an illumination system, according to at least one illustrated embodiment.



FIG. 5 is a flow diagram showing a method of operation of a processor-based device to control illumination of a plurality of luminaires in an illumination system, according to at least one illustrated embodiment.





DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with the various embodiments have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.


Unless the context requires otherwise, throughout the specification and claims that follow, the word “comprising” is synonymous with “including,” and is inclusive or open-ended (i.e., does not exclude additional, unrecited elements or method acts).


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Additionally, the terms “lighting,” “luminous output” and “illumination” are used herein interchangeably. For instance, the phrases “level of illumination” or “level of light output” have the same meanings. In addition, for instance, the phrases “illumination source” and “light source” have the same meanings.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is, as meaning “and/or” unless the content clearly dictates otherwise.


The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.


Systems, methods and articles of the present disclosure are directed to providing centralized control of area lighting hours of illumination.



FIG. 1 illustrates a schematic block diagram of an illumination system 100 that includes a power-line power distribution system 102, such as an alternating current (AC) network of a utility that includes one or more AC power sources 103, a central control system 104, and a plurality of luminaires 106. Three luminaires 106 are shown in FIG. 1 but it should be appreciated that the number of luminaires may vary depending on a particular application. For example, for applications wherein the central control system 104 controls luminaires 106 for a city, the number of luminaires may be in the hundreds or even thousands. Control output from the central control system 104 is coupled to the power distribution system 102 so as to supply control signals or commands to the plurality of luminaires 106 via power lines of the power distribution system.


The central control system 104 is operatively coupled to an illumination data source 108 that provides illumination data to the central control system through a suitable wired and/or wireless interface. In some implementations, the illumination data source 108 may include one or more photosensors operative to sense ambient light which may be used to detect one or more solar events (e.g., dawn event, dusk event). In some implementations, the illumination data source 108 may include one or more clocks or timers, and/or one or more look-up tables or other data structures that indicate dawn events and dusk events for one or more geographical locations at various times during a year. The time of occurrence of various solar events may additionally or alternatively be calculated using geolocation, time, or date data either generated by or stored within the central control system 104 or obtained from one or more external devices via one or more wired or wireless communication interfaces either in or communicably coupled to the central control system.


The central control system 104 receives illumination data from the illumination data source 108. Upon receipt of the illumination data, the central control system 104 may generate an illumination command.


The illumination command from the central control system 104 may be converted into power line control signals that may be superimposed onto wiring of the power distribution system 102 so that the control signals are transmitted or distributed to the luminaires 106 via the power distribution system. In some implementations, the power line control system signals may be in the form of amplitude modulation signals, frequency modulation signals, frequency shift keyed signals (FSK), differential frequency shift keyed signals (DFSK), differential phase shift keyed signals (DPSK), or other types of signals. The command code format of the control signals may be that of a commercially available controller format or may be that of a custom controller format. An example power line communication system is the TWACS® system available from Aclara Corporation, Hazelwood, Mo.


The central control system 104 may utilize a power line transceiver (see FIG. 2) that includes special coupling capacitors to connect transmitters to power-frequency AC conductors of the power distribution system 102. Signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. Filtering devices may be applied at substations of the power distribution system 102 to prevent the carrier frequency current from being bypassed through substation infrastructure. Power line carrier systems may be favored by utilities because they allow utilities to reliably move data over an infrastructure that they control.


In some instances, the power line control signals may be in the form of a broadcast signal or command delivered to each of the luminaires 106 in the illumination system 100. In some instances, the power line control signals may be specifically addressed to an individual luminaire 106, or to one or more groups or subsets of luminaires.


Referring to an exemplary luminaire 106 shown in FIG. 1, each luminaire includes one or more light sources 110, a power line transceiver 112, a power supply 114, and a luminaire processor 116. The power line transceiver 112 and the power supply 114 may each be electrically coupled with the power distribution system 102 to receive the power line control signal and a power signal, respectively, from the power distribution system. The power line transceiver 112 may separate or decode the power line control signals from the power signals and may provide the decoded signals to the luminaire processor 116. In turn, the luminaire processor 116 may generate one or more light source control commands that are supplied to the light sources 110 to control the operation thereof.


The power supply 114 may receive an AC power signal from the power distribution system 102, generate a DC power output, and supply the generated DC power output to the light sources 110 to power the light sources as controlled by the light source control commands from the luminaire processor 116.


The light sources 110 may include one or more of a variety of conventional light sources, for example incandescent lamps or fluorescent lamps such as high-intensity discharge (HID) lamps (e.g., mercury vapor lamps, high-pressure sodium lamps, metal halide lamps). The light sources 110 may also include one or more solid-state light sources (e.g., light emitting diodes (LEDs), organic LEDs (OLEDs), polymer LEDs (PLEDs)).



FIG. 2 and the following discussion provide a brief, general description of the components forming the illumination system 100 including the central control system 104, the power distribution system 102, the illumination data source 108, and the luminaires 106 in which the various illustrated embodiments can be implemented. Although not required, some portion of the embodiments will be described in the general context of computer-executable instructions or logic, such as program application modules, objects, or macros being executed by a computer. Those skilled in the relevant art will appreciate that the illustrated embodiments as well as other embodiments can be practiced with other computer system or processor-based device configurations, including handheld devices, for instance Web enabled cellular phones or PDAs, multiprocessor systems, microprocessor-based or programmable consumer electronics, personal computers (“PCs”), network PCs, minicomputers, mainframe computers, and the like. The embodiments can be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.


The central control system 104 may take the form of a PC, server, or other computing system executing logic or other machine executable instructions which may advantageously improve machine-readable symbol reading, allowing blurred and otherwise unreadable machine-readable symbols to be successfully read and decoded. The central control system 104 includes one or more processors 206, a system memory 208 and a system bus 210 that couples various system components including the system memory 208 to the processor 206. The central control system 104 will at times be referred to in the singular herein, but this is not intended to limit the embodiments to a single system, since in certain embodiments, there will be more than one central control system 104 or other networked computing device involved. Non-limiting examples of commercially available systems include, but are not limited to, an 80x86 or Pentium series microprocessor from Intel Corporation, U.S.A., a PowerPC microprocessor from IBM, a Sparc microprocessor from Sun Microsystems, Inc., a PA-RISC series microprocessor from Hewlett-Packard Company, or a 68xxx series microprocessor from Motorola Corporation.


The central control system 104 may be implemented as a supervisory control and data acquisition (SCADA) system or as one or more components thereof. Generally, a SCADA system is a system operating with coded signals over communication channels to provide control of remote equipment. The supervisory system may be combined with a data acquisition system by adding the use of coded signals over communication channels to acquire information about the status of the remote equipment for display or for recording functions.


The processor 206 may be any logic processing unit, such as one or more central processing units (CPUs), microprocessors, digital signal processors (DSPs), graphics processors (GPUs), application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), etc. Unless described otherwise, the construction and operation of the various blocks shown in FIG. 2 are of conventional design. As a result, such blocks need not be described in further detail herein, as they will be understood by those skilled in the relevant art.


The system bus 210 can employ any known bus structures or architectures. The system memory 208 includes read-only memory (“ROM”) 212 and random access memory (“RAM”) 214. A basic input/output system (“BIOS”) 216, which may be incorporated into at least a portion of the ROM 212, contains basic routines that help transfer information between elements within the central control system 104, such as during start-up. Some embodiments may employ separate buses for data, instructions and power.


The central control system 104 also may include one or more drives 218 for reading from and writing to one or more nontransitory computer- or processor-readable media 220 (e.g., hard disk, magnetic disk, optical disk). The drive 218 may communicate with the processor 206 via the system bus 210. The drive 218 may include interfaces or controllers (not shown) coupled between such drives and the system bus 210, as is known by those skilled in the art. The drives 218 and their associated nontransitory computer- or processor-readable media 220 provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the central control system 104. Those skilled in the relevant art will appreciate that other types of computer-readable media may be employed to store data accessible by a computer.


Program modules can be stored in the system memory 208, such as an operating system 230, one or more application programs 232, other programs or modules 234, and program data 238.


The application program(s) 232 may include logic capable of providing the luminaire control functionality described herein. For example, applications programs 232 may include programs for controlling luminaires 106 based at least in part on data received from the illumination data source 108.


The system memory 208 may include communications programs 240 that permit the central control system 104 to access and exchange data with other networked systems or components, such as the luminaires 106 and/or other computing devices.


While shown in FIG. 2 as being stored in the system memory 208, the operating system 230, application programs 232, other programs/modules 234, program data 238 and communications 240 can be stored on the nontransitory computer- or processor-readable media 220 or other nontransitory computer- or processor-readable media.


Personnel can enter commands (e.g., system maintenance, upgrades) and information (e.g., parameters) into the central control system 104 using one or more communicably coupled input devices 246 such as a touch screen or keyboard, a pointing device such as a mouse, and/or a push button. Other input devices can include a microphone, joystick, game pad, tablet, scanner, biometric scanning device, etc. These and other input devices may be connected to the processing unit 206 through an interface such as a universal serial bus (“USB”) interface that couples to the system bus 210, although other interfaces such as a parallel port, a game port or a wireless interface or a serial port may be used. One or more output devices 250, such as a monitor or other display device, may be coupled to the system bus 210 via a video interface, such as a video adapter. In at least some instances, the input devices 246 and the output devices 250 may be located proximate the central control system 104, for example when the system is installed at the system user's premises. In other instances, the input devices 246 and the output devices 250 may be located remote from the central control system 104, for example when the system is installed on the premises of a service provider.


In some implementations, the central control system 104 uses one or more of the logical connections to optionally communicate with one or more remote computers, servers and/or other devices via one or more communications channels, for example, one or more networks 114. These logical connections may facilitate any known method of permitting computers to communicate, such as through one or more LANs and/or WANs. Such networking environments are known in wired and wireless enterprise-wide computer networks, intranets, extranets, and the Internet.


In some implementations, a network port or interface 256, communicatively linked to the system bus 210, may be used for establishing and maintaining communications over the communications network 114.


The central control system may include a power line interface 258 and an AC/DC power supply 260 that are each electrically coupled to the power distribution system 102. The AC/DC power supply 260 converts AC power from the power distribution system 102 into DC power, which may be provided to power the various components of the central control system 104. As discussed above, the power line interface 258 may be operative to superimpose control signals onto one or more conductors of the power distribution system 102 that carries power to the luminaires 106. The power line interface 258 may also be operative to decode and receive communication signals sent over the power distribution system 102 (e.g., from the power line interface 112 of a luminaire 106 (FIG. 1)).


In the illumination system 100, program modules, application programs, or data, or portions thereof, can be stored in one or more computing systems. Those skilled in the relevant art will recognize that the network connections shown in FIG. 2 are only some examples of ways of establishing communications between computers, and other connections may be used, including wireless. In some embodiments, program modules, application programs, or data, or portions thereof, can even be stored in other computer systems or other devices (not shown).


For convenience, the processor 206, system memory 208, network port 256 and devices 246, 250 are illustrated as communicatively coupled to each other via the system bus 210, thereby providing connectivity between the above-described components. In alternative embodiments, the above-described components may be communicatively coupled in a different manner than illustrated in FIG. 2. For example, one or more of the above-described components may be directly coupled to other components, or may be coupled to each other, via intermediary components (not shown). In some embodiments, system bus 210 is omitted and the components are coupled directly to each other using suitable connections.


It should be appreciated that the luminaires 106 may include components similar to those components present in the central control system 104, including the processor 206, power supply 260, power line interface 258, buses, nontransitory computer- or processor-readable media, wired or wireless communications interfaces, and one or more input and/or output devices.



FIG. 3 shows a schematic block diagram of an illumination system 300. The illumination system 300 includes a plurality of sets of luminaires 106 positioned at various geographical locations. In the illustrated simplified implementation, the illumination system 300 includes a set 302 of luminaires 106 positioned along a particular stretch of a highway 304, a set 306 of luminaires positioned at a park 308, and a set 310 of luminaires positioned on a bridge 312. The luminaires 106 may be similar or identical to the luminaires described above and shown in FIGS. 1 and 2.


Each of the luminaires 106 is electrically coupled to a power distribution system 314, such as an AC power network provided by an electric utility. A power line interface 316 is operatively coupled to the power distribution system 314. In this implementation, a central control system 318 is operatively coupled to each of the luminaires 106 through a network 320 operatively coupled to the power line interface 316. The network 320 may include one or more wired or wireless networks such as the Internet, an extranet, an intranet, a LAN and/or a WAN.


The central control system 318 may also be operatively coupled to an illumination data source 322, such as a photosensor, one or more look-up tables, one or more clocks or timers, or other data structures that provide information useful to determining when to turn on and turn off the luminaires 106. In some implementations, the illumination data source 322 may be a plurality of illumination data sources. For example, a photosensor may be positioned at each of the highway 304, the park 308 and the bridge 312. In some implementations, the illumination data source 322 may be associated with one or more of the individual luminaires 106. For example, the illumination system 300 may include one photosensor that is a component of a luminaire 106 at the park 308, one photosensor that is a component of a luminaire on the highway 304, and one photosensor that is a component of a luminaire on the bridge 312. In these instances, the respective luminaires 106 including the photosensors may send illumination data to the central control system 318 via the power distribution system 314 so that the central control system can generate appropriate illumination control commands for all of the luminaires in the illumination system.


In some implementations, it may not be desirable to turn on or turn off all of the luminaires 106 in the area covered by the central control system 318 to minimize the power surge requirements of the electrical infrastructure. In these instances, the central control system 318 may generate illumination commands (e.g., “TURN ON LUMINAIRE”) which may be sent to all the luminaires 106 but are executed by only a subset of the luminaires. For example, each luminaire 106 may have a logical address associated therewith which is used by the central control system 318 to direct a command to particular luminaires. Some commands issued from the central control system 318 may indicate that only luminaires with a particular subset of addresses must execute the command.


As a non-limiting example, the luminaires 106 may be provided with numerical addresses. The central control system 318 may issue a command directed to all luminaires 106 having numerical addresses with the last digit equal to 0 (i.e., luminaires with addresses ending in 0 would execute the command while luminaires with addresses ending in 1-9 would not execute the command). The central control system 318 may subsequently issue another command directed to all luminaires 106 having numerical addresses with the last digit equal to 1. This sequence of commands may continue until the central control system 318 issues a command directed to all luminaires 106 having numerical addresses with the last digit equal to 9 such that the luminaires in the illumination system 300 are divided into 10 groups or subsets. This process has the effect of reducing the power surge by 90% since only 10% of the luminaires 106 are turned on at a given time.



FIG. 4 is a graph 400 that illustrates the above example of the central control system 318 using sequential starting logic to turn on 10 sets of luminaires. At time t0, the central control system 318 issues a first command to turn on the first set of luminaires. At time t1, the central control system issues a second command to turn on the second set of luminaires. This sequential starting logic continues until the tenth set of luminaires is turned on at time t9. By using this process, the power surge that would otherwise be caused by turning on luminaires simultaneously may be greatly reduced.


In some implementations, the subsets of the luminaires may be determined by geographical location. In the illustrated example of FIG. 3, the central control system 318 may generate a first command that turns on all of the luminaires 106 in the set 302 of luminaires on the highway 304, a subsequent second command that turns on all of the luminaires in the set 306 of luminaires in the park 308, and a subsequent third command that turns on all of the luminaires in the set 310 of luminaires on the bridge 312. By switching luminaires 106 located in the same geographical area at the same time, undesirable independent switching of luminaires within an area is prevented. For example, on a busy street where individual luminaires have individual photocontrols that have different sensitivities or different local ambient light levels, each luminaire along the street may be switched on or off independently, which could cause a distraction.



FIG. 5 shows a method 500 of operating one or more processor-based devices to control the illumination of one or more geographical areas.


The method 500 starts at 502. For example, the method 500 may start in response to commissioning an illumination system, such as the illumination systems 100 and 300 shown in FIGS. 1 and 3, respectively.


At 504, the central control system may receive illumination data relating to ambient illumination or a time of day from an illumination data source. For example, the central control system may receive illumination data from a photosensor, or from a look-up table of dusk and dawn times.


At 506, the central control system generates an illumination command based on the received illumination data. As discussed above, the illumination command may be directed to all of the luminaires in the illumination system, or one or more subsets of luminaires in the system. Additionally, the central control system may generate a plurality illumination commands intended to be sequentially executed, for example, to sequentially turn on luminaires in the illumination system to reduce power surges.


At 508, the central control system causes the illumination command to be distributed through a power distribution system using power line communication. By using power line communication, the illumination system may use existing infrastructure without incurring the expense of adding additional wired or wireless communication channels.


At 510, each of the luminaires receives the illumination command through the power distribution system. As shown in FIG. 1, each of the luminaires may be equipped with a power line communications transceiver that facilitates reception of the illumination commands from the central control system over the power distribution system.


At 512, each of the luminaires controls the illumination of its respective light sources based at least in part on the illumination command received from the central control system. Each of the luminaires may control its respective light sources to be in the on state, off state, or a dimmed state. Further, as discussed above, each luminaire may determine whether the illumination command is directed to the luminaire based on addressing information in the command or other information specifying to which luminaires in the set of luminaires the command is directed.


The method 500 ends at 514 until started or invoked again. For example, the method 500 may be operated substantially continuously for an extended duration (e.g., years) so that the luminaires of the illumination system are continuously controlled through day and night for an extended period of time.


It should be appreciated that one advantage provided by the implementations of the present disclosure is that luminaires are improved because they do not need to have, but may have, working photocontrols installed locally. Another advantage is that the power surge that occurs when numerous luminaires are tuned on or off may be managed by the central control system to protect electrical infrastructure. Another advantage provided by the implementations of the present disclosure is that local areas of luminaires may be switched at the same time, thereby preventing independent switching of luminaires, as would be the case with luminaires using locally installed photocontrols that have different sensitivities or local ambient light levels. In the presently described systems and methods, all luminaires in a particular geographical area (e.g., a busy street) may be switched on or off simultaneously.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers (e.g., microcontrollers), as one or more programs running on one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.


Those of skill in the art will recognize that many of the methods or algorithms set out herein may employ additional acts, may omit some acts, and/or may execute acts in a different order than specified.


In addition, those skilled in the art will appreciate that the mechanisms taught herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory.


The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application No. 61/052,924, filed May 13, 2008; U.S. Patent Publication No. US2009/0284155, published Nov. 19, 2009; U.S. Provisional Patent Application No. 61/051,619, filed May 8, 2008; U.S. Pat. No. 8,118,456, issued Feb. 12, 2012; U.S. Provisional Patent Application No. 61/088,651, filed Aug. 13, 2008; U.S. Pat. No. 8,334,640, issued Dec. 18, 2012; U.S. Provisional Patent Application No. 61/115,438, filed Nov. 17, 2008; U.S. Provisional Patent Application No. 61/154,619, filed Feb. 23, 2009; U.S. Patent Publication No. US2010/0123403, published May 20, 2010; U.S. Provisional Patent Application No. 61/174,913, filed May 1, 2009; U.S. Patent Publication No. US2010/0277082, published Nov. 4, 2010; U.S. Provisional Patent Application No. 61/180,017, filed May 20, 2009; U.S. Patent Publication No. US2010/0295946, published Nov. 25, 2010; U.S. Provisional Patent Application No. 61/229,435, filed Jul. 29, 2009; U.S. Patent Publication No. US2011/0026264, published Feb. 3, 2011; U.S. Provisional Patent Application No. 61/295,519 filed Jan. 15, 2010; U.S. Provisional Patent Application No. 61/406,490 filed Oct. 25, 2010; U.S. Pat. No. 8,378,563, issued Feb. 19, 2013; U.S. Provisional Patent Application Ser. No. 61/333,983, filed May 12, 2010; U.S. Pat. No. 8,541,950, issued Sep. 24, 2013; U.S. Provisional Patent Application Ser. No. 61/346,263, filed May 19, 2010, U.S. Pat. No. 8,508,137, issued Aug. 13, 2013; U.S. Provisional Patent Application Ser. No. 61/357,421, filed Jun. 22, 2010; U.S. Patent Publication No. US2011/0310605, published Dec. 22, 2011; U.S. Patent Publication No. 2012/0262069, published Oct. 18, 2012; U.S. Pat. No. 8,610,358, issued Dec. 17, 2013; U.S. Provisional Patent Application Ser. No. 61/527,029, filed Aug. 24, 2011; U.S. Pat. No. 8,629,621, issued Jan. 14, 2014; U.S. Provisional Patent Application Ser. No. 61/534,722, filed Sep. 14, 2011; U.S. Patent Publication No. 2013/0062637, published Mar. 14, 2013, filed Sep. 14, 2012; U.S. Provisional Patent Application Ser. No. 61/567,308, filed Dec. 6, 2011; U.S. Provisional Patent Application Ser. No. 61/561,616, filed Nov. 18, 2011; U.S. Provisional Patent Application Ser. No. 61/641,781, filed May 2, 2012; U.S. Patent Publication No. 2013/0229518, published Sep. 5, 2013; U.S. Provisional Patent Application Ser. No. 61/640,963, filed May 1, 2012; U.S. Provisional Patent Application No. 61/764,395 filed Feb. 13, 2013; U.S. Patent Publication No. 2013/0028198, published Jan. 30, 2014; U.S. Provisional Patent Application Ser. No. 61/692,619, filed Aug. 23, 2012; U.S. Provisional Patent Application Ser. No. 61/694,159, filed Aug. 28, 2012; U.S. Patent Publication No. 2014/0062341, published Mar. 6, 2014; U.S. Provisional Patent Application Ser. No. 61/723,675, filed Nov. 7, 2012; U.S. Patent Publication No. 2013/0141010, published Jun. 6, 2013; U.S. Provisional Patent Application Ser. No. 61/728,150, filed Nov. 19, 2012; U.S. Provisional Patent Application Ser. No. 61/764,395, filed Feb. 13, 2013; U.S. Patent Publication No. 2014/0062312, published Mar. 6, 2014, U.S. Patent Publication No. 2014/0139116, published May 22, 2014; U.S. Non-Provisional patent application Ser. No. 13/875,000 filed May 1, 2013; U.S. Provisional Patent Application No. 61/849,841 filed Jul. 24, 2013; U.S. Provisional patent application Ser. No. 13/973,696 filed Aug. 22, 2013; U.S. Provisional Patent Application No. 61/878,425 filed Sep. 16, 2013; U.S. Non-Provisional patent application Ser. No. 14/074,166 filed Nov. 7, 2013; U.S. Provisional Patent Application No. 61/905,699 filed Nov. 18, 2013; U.S. Non-Provisional patent application Ser. No. 14/158,630 filed Jan. 17, 2014; Provisional Patent Application No. 61/933,733 filed Jan. 30, 2014; and U.S. Non-Provisional patent application Ser. No. 14/179,737 filed on Feb. 14, 2014; U.S. Non-Provisional patent application Ser. No. 14/329,508 filed on Jul. 11, 2014; U.S. Non-Provisional patent application Ser. No. 14/488,069 filed On Sep. 16, 2014; U.S. Provisional Patent Application No. 62/068,517, filed Oct. 24, 2014; U.S. Provisional Patent Application No. 62/183,505, filed Jun. 23, 2015; U.S. Provisional Patent Application No. 62/082,463, filed Nov. 20, 2014; and U.S. Provisional Patent Application No. 62/057,419, filed Sep. 30, 2014; are incorporated herein by reference, in their entirety.


Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A method of operation for a processor-based device to control a plurality of remotely located luminaires, the method comprising: receiving, by at least one central control processor, illumination data relating to at least one of ambient illumination or time of day;generating, at the at least one central control processor, a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of a plurality of luminaires; andsequentially distributing each of the illumination commands in the set of illumination commands through a power-line power distribution system.
  • 2. The method of claim 1, further comprising: receiving, at the plurality of luminaires, the illumination commands through the power-line power distribution system; andcontrolling, at each of the plurality of luminaires, illumination of each respective luminaire based at least in part on the received illumination commands.
  • 3. The method of claim 2 wherein controlling the illumination of each respective luminaire based at least in part on the received illumination commands comprises: controlling, at a first subset of the plurality of luminaires, each respective luminaire in the first subset to be in an illuminating state; andcontrolling, at a second subset of the plurality of luminaires, each respective luminaire in the second subset to be in a non-illuminating state.
  • 4. The method of claim 1 wherein receiving illumination data comprises receiving photosensor data obtained from a photosensor operatively coupled to the at least one central control processor.
  • 5. The method of claim 1 wherein receiving illumination data comprises receiving time data from a clock operatively coupled to the at least one central control processor.
  • 6. The method of claim 1 wherein generating a set of illumination commands based at least in part on the received illumination data comprises generating an illumination command that commands a first subset of the plurality of luminaires to be in an illuminating state and commands a second subset of the plurality of luminaires to be in a non-illuminating state.
  • 7. The method of claim 1 wherein generating a set of illumination commands based at least in part on the received illumination data comprises generating an illumination command that commands luminaires in the plurality of luminaires associated with a first set of logical addresses to be in an illuminating state and commands luminaires in the plurality of luminaires associated with a second set of logical addresses to be in a non-illuminating state.
  • 8. The method of claim 1 wherein generating a set of illumination commands based at least in part on the received illumination data comprises generating a set of illumination commands, each of the illumination commands in the set of illumination commands directed to luminaires associated with a unique set of logical addresses.
  • 9. The method of claim 1, further comprising: receiving, at the plurality of luminaires, the illumination commands in the set of illumination commands through the power-line power distribution system; andcontrolling, at each of the plurality of luminaires, the illumination of each respective luminaire based at least in part on the received illumination commands.
  • 10. The method of claim 1, further comprising: partitioning the plurality of luminaires into at least two subsets based at least in part on a geographical location of each of the luminaires; andlogically associating each luminaire with one of the at least two subsets in a nontransitory processor-readable storage medium;wherein generating a set of illumination commands based at least in part on the received illumination data comprises generating a first illumination command directed to one of the subsets of luminaires in the at least two subsets and a second illumination command directed to another of the subsets of luminaires in the at least two subsets.
  • 11. The method of claim 1 wherein distributing each of the illumination commands in the set of illumination commands through a power-line power distribution system comprises superimposing each of the illumination commands in the set of illumination commands onto a power line of the power-line power distribution system.
  • 12. The method of claim 1 wherein receiving illumination data relating to at least one of ambient illumination or time of day comprises receiving illumination data from an illumination data source positioned remote from at least some of the plurality of luminaires.
  • 13. An illumination system, comprising: at least one central control system comprising: at least one central control processor;at least one illumination data source operatively coupled to the at least one central control processor;a central transceiver operatively coupled to the at least one central control processor and a power-line power distribution system; andat least one nontransitory processor-readable storage medium operatively coupled to the at least one central control processor and storing at least one of data or instructions which, when executed by the at least one central control processor, cause the at least one central control processor to: receive illumination data from the at least one illumination data source relating to at least one of ambient illumination or time of day;generate a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of a plurality of luminaires; andsequentially distribute each of the illumination commands in the set of illumination commands through the power-line power distribution system via the central transceiver.
  • 14. The illumination system of claim 13, further comprising: the plurality of luminaires, each of the luminaires comprising: at least one luminaire control processor;at least one light source operatively coupled to the luminaire control processor;a luminaire transceiver operatively coupled to the at least one luminaire control processor and the power-line power distribution system; andat least one nontransitory processor-readable storage medium operatively coupled to the at least one luminaire control processor and storing at least one of data or instructions which, when executed by the at least one luminaire control processor, cause the at least one luminaire control processor to: receive an illumination command in the set of illumination commands through the power-line power distribution system via the luminaire transceiver; andcontrol the operation of the at least one light source based at least in part on the received illumination command.
  • 15. The illumination system of claim 14 wherein, in response to receipt of the illumination command from the at least one central control processor, the at least one luminaire control processor of each respective luminaire in a first subset of luminaires controls the light source to be in an illuminating state, and the at least one luminaire control processor of each respective luminaire in a second subset of luminaires controls the light source to be in a non-illuminating state.
  • 16. The illumination system of claim 13 wherein the illumination data source comprises a photosensor operatively coupled to the central control processor, and the at least one central control processor receives photosensor data from the photosensor.
  • 17. The illumination system of claim 13 wherein the illumination data source comprises a clock operatively coupled to the central control processor, and the at least one central control processor receives time data from the clock.
  • 18. The illumination system of claim 13 wherein the set of illumination commands commands a first subset of the plurality of luminaires to be in an illuminating state and commands a second subset of the plurality of luminaires to be in a non-illuminating state.
  • 19. The illumination system of claim 13 wherein the set of illumination commands commands luminaires in the plurality of luminaires associated with a first set of logical addresses to be in an illuminating state and commands luminaires in the plurality of luminaires associated with a second set of logical addresses to be in a non-illuminating state.
  • 20. The illumination system of claim 13 wherein each of the illumination commands in the set of illumination commands directed to luminaires associated with a unique set of logical addresses.
  • 21. The illumination system of claim 13 wherein the at least one central control processor: partitions the plurality of luminaires into at least two subsets based at least in part on a geographical location of each of the luminaires; andlogically associates each luminaire with one of the at least two subsets in the at least one nontransitory processor-readable storage medium;wherein a first illumination command in the set of illumination commands directed to one of the subsets of luminaires in the at least two subsets and a second illumination command in the set of illumination commands directed to another of the subsets of luminaires in the at least two subsets.
  • 22. The illumination system of claim 13 wherein the at least one central transceiver superimposes the set of illumination commands onto a power line of the power-line power distribution system, and the luminaire transceiver of each luminaire receives distributed power from the power line of the power-line power distribution system, and separates at least one respective illumination command in the set of illumination commands from the distributed power.
  • 23. The illumination system of claim 13 wherein the illumination data source is positioned remote from at least some of the plurality of luminaires.
  • 24. A method of operation for a processor-based device to control a plurality of remotely located luminaires, the method comprising: receiving, by at least one central control processor, illumination data relating to at least one of ambient illumination or time of day;generating, at the at least one central control processor, a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of a plurality of luminaires; andsequentially distributing each of the illumination commands in the set of illumination commands through a power-line power distribution system to the plurality of luminaires;wherein each of the plurality of luminaires receives at least one respective illumination command in the set of illumination commands through the power-line power distribution system and controls the operation of each respective luminaire based at least in part on the at least one received respective illumination command.
  • 25. An illumination system to control the operation of a plurality of luminaires, the illumination system comprising: at least one central control system comprising: at least one central control processor;at least one illumination data source operatively coupled to the at least one central control processor;a central transceiver operatively coupled to the at least one central control processor and a power-line power distribution system; andat least one nontransitory processor-readable storage medium operatively coupled to the at least one central control processor and storing at least one of data or instructions which, when executed by the at least one central control processor, cause the at least one central control processor to: receive illumination data from the at least one illumination data source relating to at least one of ambient illumination or time of day;generate a set of illumination commands based at least in part on the received illumination data, each one of the illumination commands in the set directed to a different subset of a plurality of luminaires; andsequentially distribute each of the illumination commands in the set of illumination commands through the power-line power distribution system via the central transceiver to the plurality of luminaires, each of the plurality of luminaires receives at least one respective illumination command in the set of illumination commands through the power-line power distribution system and controls the operation of each respective luminaire based at least in part on the at least one received respective illumination command.
  • 26. The method of claim 24 wherein distributing each of the illumination commands in the set of illumination commands through a power-line power distribution system comprises superimposing each of the illumination commands in the set of illumination commands onto a power line of the power-line power distribution system.
  • 27. The illumination system of claim 25 wherein the at least one central transceiver superimposes the set of illumination commands onto a power line of the power-line power distribution system, and each of the plurality of luminaires receives distributed power from the power line of the power-line power distribution system.
US Referenced Citations (312)
Number Name Date Kind
2745055 Woerdemann May 1956 A
4153927 Owens May 1979 A
4237377 Sansum Dec 1980 A
4663521 Maile May 1987 A
4811176 Myhres Mar 1989 A
5086379 Denison et al. Feb 1992 A
5150009 Kling et al. Sep 1992 A
5160202 Légaré Nov 1992 A
5161107 Mayeaux et al. Nov 1992 A
5230556 Canty et al. Jul 1993 A
5274350 Larson Dec 1993 A
5276385 Itoh et al. Jan 1994 A
5343121 Terman et al. Aug 1994 A
5349505 Poppenheimer Sep 1994 A
5450302 Maase et al. Sep 1995 A
5561351 Vrionis et al. Oct 1996 A
5589741 Terman et al. Dec 1996 A
5808294 Neumann Sep 1998 A
5838226 Houggy et al. Nov 1998 A
5936362 Alt et al. Aug 1999 A
5948829 Wallajapet et al. Sep 1999 A
6094919 Bhatia Aug 2000 A
6111739 Wu et al. Aug 2000 A
6149283 Conway et al. Nov 2000 A
6160353 Mancuso Dec 2000 A
6230497 Morris et al. May 2001 B1
D447266 Verfuerth Aug 2001 S
6377191 Takubo Apr 2002 B1
6400101 Biebl et al. Jun 2002 B1
D460735 Verfuerth Jul 2002 S
D463059 Verfuerth Sep 2002 S
6499860 Begemann Dec 2002 B2
6585396 Verfuerth Jul 2003 B1
6601972 Sei et al. Aug 2003 B2
D479826 Verfuerth et al. Sep 2003 S
6612720 Beadle Sep 2003 B1
D483332 Verfuerth Dec 2003 S
6674060 Antila Jan 2004 B2
6753842 Williams et al. Jun 2004 B1
6758580 Verfuerth Jul 2004 B1
6787999 Stimac et al. Sep 2004 B2
6828911 Jones et al. Dec 2004 B2
6841947 Berg-johansen Jan 2005 B2
6847156 Kim Jan 2005 B2
6885134 Kurashima et al. Apr 2005 B2
6902292 Lai Jun 2005 B2
6948829 Verdes et al. Sep 2005 B2
6964501 Ryan Nov 2005 B2
6964502 Verfuerth Nov 2005 B1
7019276 Cloutier et al. Mar 2006 B2
7066622 Alessio Jun 2006 B2
7081722 Huynh et al. Jul 2006 B1
7111961 Trenchard et al. Sep 2006 B2
7122976 Null et al. Oct 2006 B1
7144140 Sun et al. Dec 2006 B2
7145179 Petroski Dec 2006 B2
7165866 Li Jan 2007 B2
D538462 Verfuerth et al. Mar 2007 S
7188967 Dalton et al. Mar 2007 B2
7196477 Richmond Mar 2007 B2
7213940 Van De Ven et al. May 2007 B1
7218056 Harwood May 2007 B1
7239087 Ball Jul 2007 B2
7252385 Engle et al. Aug 2007 B2
7258464 Morris et al. Aug 2007 B2
7270441 Fiene Sep 2007 B2
7281820 Bayat et al. Oct 2007 B2
D557817 Verfuerth Dec 2007 S
D560469 Bartol et al. Jan 2008 S
7314261 Jackson Pulver et al. Jan 2008 B2
7314291 Tain et al. Jan 2008 B2
7317403 Grootes et al. Jan 2008 B2
7322714 Barnett et al. Jan 2008 B2
7330002 Joung Feb 2008 B2
7330568 Nagaoka et al. Feb 2008 B2
7339323 Bucur Mar 2008 B2
7339471 Chan et al. Mar 2008 B1
7341362 Bjornson et al. Mar 2008 B2
7387403 Mighetto Jun 2008 B2
7401942 Verfuerth et al. Jul 2008 B1
7405524 Null et al. Jul 2008 B2
7438440 Dorogi Oct 2008 B2
7440280 Shuy Oct 2008 B2
7458330 MacDonald et al. Dec 2008 B2
7461964 Aubrey Dec 2008 B1
7468723 Collins Dec 2008 B1
7475002 Mann Jan 2009 B1
7524089 Park Apr 2009 B2
7538499 Ashdown May 2009 B2
7549773 Lim Jun 2009 B2
D595894 Verfuerth et al. Jul 2009 S
7556406 Petroski et al. Jul 2009 B2
7559674 He et al. Jul 2009 B2
7563006 Verfuerth et al. Jul 2009 B1
7564198 Yamamoto et al. Jul 2009 B2
7569802 Mullins Aug 2009 B1
7575338 Verfuerth Aug 2009 B1
7578596 Martin Aug 2009 B2
7578597 Hoover et al. Aug 2009 B2
7581856 Kang et al. Sep 2009 B2
7595595 Mehta Sep 2009 B2
D606697 Verfuerth et al. Dec 2009 S
D606698 Verfuerth et al. Dec 2009 S
7626342 Sun et al. Dec 2009 B2
7627372 Vaisnys et al. Dec 2009 B2
7628506 Verfuerth et al. Dec 2009 B2
7631324 Buonasera et al. Dec 2009 B2
7633463 Negru Dec 2009 B2
7635203 Weaver, Jr. et al. Dec 2009 B2
7637633 Wong Dec 2009 B2
7665862 Villard Feb 2010 B2
7677753 Wills Mar 2010 B1
7686461 Goray et al. Mar 2010 B2
7688002 Ashdown et al. Mar 2010 B2
7688222 Peddie et al. Mar 2010 B2
7695160 Hirata et al. Apr 2010 B2
7697925 Wilson Apr 2010 B1
7703951 Piepgras et al. Apr 2010 B2
D617028 Verfuerth et al. Jun 2010 S
D617029 Verfuerth et al. Jun 2010 S
7748879 Koike et al. Jul 2010 B2
7762861 Verfuerth et al. Jul 2010 B2
7766507 Nakajima Aug 2010 B2
7766508 Villard et al. Aug 2010 B2
7780310 Verfuerth et al. Aug 2010 B2
7780314 Seabrook Aug 2010 B2
D623340 Verfuerth et al. Sep 2010 S
7798669 Trojanowski et al. Sep 2010 B2
7804200 Flaherty Sep 2010 B2
7828463 Willis Nov 2010 B1
7834922 Kurane Nov 2010 B2
7857497 Koike et al. Dec 2010 B2
7874699 Liang Jan 2011 B2
7874710 Tsai et al. Jan 2011 B2
D632006 Verfuerth et al. Feb 2011 S
7901107 Van De Ven et al. Mar 2011 B2
7932535 Mahalingam et al. Apr 2011 B2
7940191 Hierzer May 2011 B2
7952609 Simerly et al. May 2011 B2
7960919 Furukawa Jun 2011 B2
7976182 Ribarich Jul 2011 B2
7985005 Alexander et al. Jul 2011 B2
8018135 Van De Ven et al. Sep 2011 B2
8057070 Negley et al. Nov 2011 B2
8066410 Booth et al. Nov 2011 B2
D650225 Bartol et al. Dec 2011 S
8070312 Verfuerth et al. Dec 2011 B2
8100552 Spero Jan 2012 B2
8118450 Villard Feb 2012 B2
8118456 Reed et al. Feb 2012 B2
8136958 Verfuerth et al. Mar 2012 B2
8143769 Li Mar 2012 B2
8174212 Tziony et al. May 2012 B2
8186855 Wassel et al. May 2012 B2
RE43456 Verfuerth et al. Jun 2012 E
8207830 Rutjes et al. Jun 2012 B2
8254137 Wilkolaski et al. Aug 2012 B2
8260575 Walters et al. Sep 2012 B2
8290710 Cleland et al. Oct 2012 B2
8302677 Havinga Nov 2012 B2
8324641 Yan et al. Dec 2012 B2
8334640 Reed et al. Dec 2012 B2
8337043 Verfuerth et al. Dec 2012 B2
8362677 Morejon et al. Jan 2013 B1
8376583 Wang et al. Feb 2013 B2
8378563 Reed et al. Feb 2013 B2
8390475 Feroldi Mar 2013 B2
8408739 Villard et al. Apr 2013 B2
8427076 Bourquin et al. Apr 2013 B2
8450670 Verfuerth et al. May 2013 B2
8508137 Reed Aug 2013 B2
8547022 Summerford et al. Oct 2013 B2
8637877 Negley Jan 2014 B2
8646944 Villard Feb 2014 B2
8674608 Holland et al. Mar 2014 B2
8749403 King et al. Jun 2014 B2
8794804 Verfuerth et al. Aug 2014 B2
8810138 Reed Aug 2014 B2
8816576 Erion et al. Aug 2014 B1
8858019 Novak et al. Oct 2014 B2
8872964 Reed et al. Oct 2014 B2
8878440 Reed Nov 2014 B2
8896215 Reed et al. Nov 2014 B2
8901825 Reed Dec 2014 B2
8922124 Reed et al. Dec 2014 B2
8926138 Reed et al. Jan 2015 B2
8926139 Reed et al. Jan 2015 B2
8987992 Reed Mar 2015 B2
9119270 Chen et al. Aug 2015 B2
9210751 Reed Dec 2015 B2
9210759 Reed Dec 2015 B2
9312451 Reed et al. Apr 2016 B2
20030016143 Ghazarian Jan 2003 A1
20030123521 Luoma Jul 2003 A1
20030184672 Wu et al. Oct 2003 A1
20040120156 Ryan Jun 2004 A1
20040192227 Beach et al. Sep 2004 A1
20050057187 Catalano Mar 2005 A1
20050146884 Scheithauer Jul 2005 A1
20050231133 Lys Oct 2005 A1
20050265019 Sommers et al. Dec 2005 A1
20060014118 Utama Jan 2006 A1
20060066264 Ishigaki et al. Mar 2006 A1
20060098440 Allen May 2006 A1
20060146652 Huizi et al. Jul 2006 A1
20070032990 Williams et al. Feb 2007 A1
20070102033 Petrocy May 2007 A1
20070139961 Cheah et al. Jun 2007 A1
20070147046 Arik et al. Jun 2007 A1
20070153550 Lehman et al. Jul 2007 A1
20070183156 Shan Aug 2007 A1
20070225933 Shimomura Sep 2007 A1
20070285000 Lim et al. Dec 2007 A1
20070297184 Isely Dec 2007 A1
20080018261 Kastner Jan 2008 A1
20080043106 Hassapis et al. Feb 2008 A1
20080106907 Trott et al. May 2008 A1
20080130304 Rash et al. Jun 2008 A1
20080205068 Neeld et al. Aug 2008 A1
20080232116 Kim Sep 2008 A1
20080266839 Claypool et al. Oct 2008 A1
20080298058 Kan et al. Dec 2008 A1
20090000217 Verfuerth et al. Jan 2009 A1
20090001372 Arik et al. Jan 2009 A1
20090046151 Nagaoka et al. Feb 2009 A1
20090058320 Chou et al. Mar 2009 A1
20090129067 Fan et al. May 2009 A1
20090153062 Guo et al. Jun 2009 A1
20090160358 Leiderman Jun 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090167203 Dahlman et al. Jul 2009 A1
20090195162 Maurer et al. Aug 2009 A1
20090195179 Joseph et al. Aug 2009 A1
20090225540 Chen Sep 2009 A1
20090230883 Haug Sep 2009 A1
20090235208 Nakayama et al. Sep 2009 A1
20090244899 Chyn Oct 2009 A1
20090261735 Sibalich et al. Oct 2009 A1
20090273290 Ziegenfuss Nov 2009 A1
20090278479 Platner et al. Nov 2009 A1
20100001652 Damsleth Jan 2010 A1
20100052557 Van Der Veen et al. Mar 2010 A1
20100053962 Mo et al. Mar 2010 A1
20100084979 Burton et al. Apr 2010 A1
20100123403 Reed May 2010 A1
20100149822 Cogliano et al. Jun 2010 A1
20100171442 Draper et al. Jul 2010 A1
20100177519 Schlitz Jul 2010 A1
20100244708 Cheung et al. Sep 2010 A1
20100246168 Verfuerth et al. Sep 2010 A1
20100259193 Umezawa et al. Oct 2010 A1
20100271802 Recker et al. Oct 2010 A1
20100277914 Bachl et al. Nov 2010 A1
20100277917 Shan Nov 2010 A1
20100290236 Gingrich, III et al. Nov 2010 A1
20100309310 Albright Dec 2010 A1
20100328946 Borkar et al. Dec 2010 A1
20100328947 Chang et al. Dec 2010 A1
20110001626 Yip et al. Jan 2011 A1
20110006703 Wu et al. Jan 2011 A1
20110026264 Reed et al. Feb 2011 A1
20110084614 Eisele Apr 2011 A1
20110090686 Pickard Apr 2011 A1
20110176297 Hsia et al. Jul 2011 A1
20110221346 Lee et al. Sep 2011 A1
20110235317 Verfuerth et al. Sep 2011 A1
20110251751 Knight Oct 2011 A1
20110282468 Ashdown Nov 2011 A1
20110310605 Renn et al. Dec 2011 A1
20120001566 Josefowicz et al. Jan 2012 A1
20120019971 Flaherty et al. Jan 2012 A1
20120038490 Verfuerth Feb 2012 A1
20120081906 Verfuerth et al. Apr 2012 A1
20120146518 Keating et al. Jun 2012 A1
20120153854 Setomoto et al. Jun 2012 A1
20120169053 Tchoryk, Jr. et al. Jul 2012 A1
20120181935 Velazquez Jul 2012 A1
20120212138 Jungwirth Aug 2012 A1
20120221154 Runge Aug 2012 A1
20120224363 Van De Ven Sep 2012 A1
20120242254 Kim et al. Sep 2012 A1
20120286673 Holland Nov 2012 A1
20120286770 Schröder et al. Nov 2012 A1
20130057158 Josefowicz et al. Mar 2013 A1
20130126715 Flaherty May 2013 A1
20130141000 Wei et al. Jun 2013 A1
20130163243 Reed Jun 2013 A1
20130229518 Reed et al. Sep 2013 A1
20130235202 Nagaoka et al. Sep 2013 A1
20130249429 Woytowitz et al. Sep 2013 A1
20130293112 Reed et al. Nov 2013 A1
20130308325 Verfuerth et al. Nov 2013 A1
20130340353 Whiting et al. Dec 2013 A1
20140001961 Anderson et al. Jan 2014 A1
20140015418 Pandharipande Jan 2014 A1
20140028198 Reed et al. Jan 2014 A1
20140028200 Van Wagoner et al. Jan 2014 A1
20140055990 Reed Feb 2014 A1
20140140052 Villard May 2014 A1
20140159585 Reed Jun 2014 A1
20140203714 Zhang et al. Jul 2014 A1
20140225521 Reed Aug 2014 A1
20140244044 Davis et al. Aug 2014 A1
20140313719 Wang et al. Oct 2014 A1
20140339390 Verfuerth et al. Nov 2014 A1
20150015716 Reed et al. Jan 2015 A1
20150028770 Verfuerth et al. Jan 2015 A1
20150069920 Denteneer et al. Mar 2015 A1
20150077019 Reed et al. Mar 2015 A1
20150078005 Renn et al. Mar 2015 A1
20150084520 Reed Mar 2015 A1
20150137693 Reed May 2015 A1
Foreign Referenced Citations (59)
Number Date Country
40 01 980 Aug 1990 DE
19810827 Sep 1999 DE
1 734 795 Dec 2006 EP
2 320 713 May 2011 EP
2 559 937 Feb 2013 EP
2 629 491 Aug 2013 EP
1 459 600 Feb 2014 EP
2 781 138 Sep 2014 EP
2 883 306 Sep 2006 FR
6-335241 Dec 1994 JP
2001-333420 Nov 2001 JP
2004-279668 Oct 2004 JP
2004-320024 Nov 2004 JP
2004-359065 Dec 2004 JP
2005-93171 Apr 2005 JP
2005-198238 Jul 2005 JP
2005-310997 Feb 2006 JP
2006-031977 Feb 2006 JP
2006-179672 Jul 2006 JP
2006-244711 Sep 2006 JP
2008-59811 Mar 2008 JP
2008-509538 Mar 2008 JP
2008-130523 Jun 2008 JP
2008-159483 Jul 2008 JP
2008-177144 Jul 2008 JP
2008-535279 Aug 2008 JP
2010-504628 Feb 2010 JP
10-2005-0078403 Aug 2005 KR
10-2006-0086254 Jul 2006 KR
20080094344 Oct 2008 KR
10-20090042400 Apr 2009 KR
10-0935736 Jan 2010 KR
20-2010-0007230 Jul 2010 KR
10-1001276 Dec 2010 KR
10-1044224 Jun 2011 KR
10-1150876 May 2012 KR
10-2012-0108662 Oct 2012 KR
02076068 Sep 2002 WO
03056882 Jul 2003 WO
2005003625 Jan 2005 WO
2006057866 Jun 2006 WO
2007023454 Mar 2007 WO
2007036873 Apr 2007 WO
2008030450 Mar 2008 WO
2008034242 Mar 2008 WO
2009040703 Apr 2009 WO
2009105168 Aug 2009 WO
2011005441 Jan 2011 WO
2011019806 Feb 2011 WO
2011063302 May 2011 WO
2011129309 Oct 2011 WO
2012006710 Jan 2012 WO
2012033750 Mar 2012 WO
2012142115 Oct 2012 WO
2013074900 May 2013 WO
2014018773 Jan 2014 WO
2014039683 Mar 2014 WO
2014078854 May 2014 WO
2015039120 Mar 2015 WO
Non-Patent Literature Citations (121)
Entry
“A Review of the Literature on Light Flicker: Ergonomics, Biological Attributes, Potential Health Effects, and Methods in Which Some LED Lighting May Introduce Flicker,” IEEE Standard P1789, Feb. 26, 2010, 26 pages.
“Lcd Backlight I/O Ports and Power Protection Circuit Design,” dated May 2, 2011, retrieved Jun. 10, 2011, retrieved from http://www.chipoy.info/gadgets/lcd-backlight-i-o-ports-and-power-pr . . . , 4 pages.
EE Herald, “Devices to protect High brightness LED from ESD,” dated Mar. 16, 2009, retrieved Jun. 10, 2011, retrieved from http://www.eeherald.com/section/new-products/np100779.html, 1 page.
Extended European Search Report, dated Sep. 28, 2015, for corresponding European Application No. 12850159.0-1802, 6 pages.
Extended European Search Report dated Oct. 21, 2015, for corresponding EP Application No. 13835001.2-1802, 7 pages.
Extended European Search Report dated Jan. 4, 2016, for corresponding EP Application No. 13823055.2-1802, 7 pages.
Fairchild Semiconductor, “LED Application Design Guide Using Half-Bridge LLC Resonant Converter for 100W Street Lighting,” AN-9729, Fairchild Semiconductor Corporation, Rev. 1.0.0, Mar. 22, 2011, 17 pages.
Huang, “Designing an Llc Resonant Half-Bridge Power Converter,” 2010 Texas Instruments Power Supply Design Seminar, SEM1900, Topic 3, TI Literature Number: SLUP263, Copyright 2010, 2011, Texas Instruments Incorporated, 28 pages.
International Search Report, mailed Jun. 10, 2009, for PCT/US2009/043170, 4 pages.
International Search Report, mailed Nov. 29, 2010, for PCT/US2010/033000, 3 pages.
International Search Report, mailed Dec. 15, 2010 for PCT/US2010/035658, 3 pages.
International Search Report, mailed Sep. 29, 2011, for PCT/US2011/041402, 3 pages.
International Search Report, mailed Sep. 30, 2011, for PCT/US2011/021359, 3 pages.
International Search Report, mailed Feb. 27, 2013, for PCT/US2012/065476, 3 pages.
International Search Report, mailed Nov. 19, 2013 for PCT/US2013/052092, 4 pages.
International Search Report, mailed Dec. 30, 2013 for PCT/US2013/058266, 3 pages.
International Search Report, mailed Feb. 26, 2014, for PCT/US2013/070794, 3 pages.
International Search Report, mailed Dec. 30, 2014, for PCT/US2014/055909, 3 pages.
International Search Report and Written Opinion, mailed Jan. 13, 2016, for PCT/US2015/053009, 15 pages.
Kadirvel et al., “Self-Powered, Ambient Light Sensor Using bq25504,” Texas Instruments, Application Report, SLUA629—Jan. 2012, 6 pages.
Reed et al., “Adjustable Output Solid-State Lamp With Security Features,” Office Action mailed Feb. 27, 2014, for U.S. Appl. No. 13/679,687, 11 pages.
Reed et al., “Adjustable Output Solid-State Lamp With Security Features,” Amendment filed Jun. 24, 2014, for U.S. Appl. No. 13/679,687, 11 pages.
Reed et al., “Adjustable Output Solid-State Lamp With Security Features,” Notice of Allowance mailed Aug. 29, 2014, for U.S. Appl. No. 13/679,687, 9 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire,” Office Action mailed Mar. 26, 2014, for U.S. Appl. No. 13/604,327, 10 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire,” Amendment filed Jun. 24, 2014, for U.S. Appl. No. 13/604,327, 14 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire,” Notice of Allowance mailed Jul. 7, 2014, for U.S. Appl. No. 13/604,327, 8 pages.
Reed et al., “Apparatus and Method for Schedule Based Operations of a Luminaire,” Office Action mailed Mar. 2, 2015, for U.S. Appl. No. 14/552,274, 7 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire” Amendment filed Jun. 1, 2015, for U.S. Appl. No. 14/552,274, 14 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire” Notice of Allowance mailed Jun. 19, 2015, for U.S. Appl. No. 14/552,274, 9 pages.
Reed et al., “Apparatus and Method of Operating a Luminaire,” Office Action mailed Dec. 22, 2014, for U.S. Appl. No. 13/558,191, 17 pages.
Reed et al., “Apparatus and Method of Operating a Luminaire,” Amendment filed Mar. 19, 2015, for U.S. Appl. No. 13/558,191, 20 pages.
Reed et al., “Apparatus and Method of Operating a Luminaire,” Notice of Allowance mailed Apr. 27, 2015, for U.S. Appl. No. 13/558,191, 8 pages.
Reed et al., “Electrically Isolated Heat Sink for Solid-State Light,” Office Action mailed Oct. 12, 2012, for U.S. Appl. No. 12/846,516, 11 pages.
Reed et al., “Electrically Isolated Heat Sink for Solid-State Light,” Amendment filed Jan. 14, 2013, for U.S. Appl. No. 12/846,516, 16 pages.
Reed et al., “Electrically Isolated Heat Sink for Solid-State Light,” Office Action mailed Apr. 4, 2013, for U.S. Appl. No. 12/846,516, 12 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Jun. 22, 2011, for U.S. Appl. No. 12/437,467, 12 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Amendment filed Sep. 6, 2011, for U.S. Appl. No. 12/437,467, 14 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Nov. 17, 2011, for U.S. Appl. No. 12/437,467, 15 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Amendment filed Apr. 10, 2012, for U.S. Appl. No. 12/437,467, 22 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Jun. 12, 2012, for U.S. Appl. No. 12/437,467, 17 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Amendment filed Sep. 7, 2012, for U.S. Appl. No. 12/437,467, 9 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Jan. 17, 2013, for U.S. Appl. No. 12/437,467, 12 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Jun. 26, 2013, for U.S. Appl. No. 12/437,467, 15 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Amendment filed Sep. 26, 2013, for U.S. Appl. No. 12/437,467, 20 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Office Action mailed Jan. 30, 2014, for U.S. Appl. No. 12/437,467, 17 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Amendment filed Jul. 30, 2014, for U.S. Appl. No. 12/437,467, 14 pages.
Reed et al., “Gas-Discharge Lamp Replacement,” Notice of Allowance mailed Sep. 3, 2014, for U.S. Appl. No. 12/437,467, 8 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed Jul. 31, 2012, for U.S. Appl. No. 12/769,956, 15 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Oct. 30, 2012, for U.S. Appl. No. 12/769,956, 12 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed Nov. 26, 2012, for U.S. Appl. No. 12/769,956, 18 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Mar. 25, 2013, for U.S. Appl. No. 12/769,956, 13 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed Apr. 26, 2013, for U.S. Appl. No. 12/769,956, 20 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Jul. 25, 2013, for U.S. Appl. No. 12/769,956, 12 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed Aug. 28, 2013, for U.S. Appl. No. 12/769,956, 22 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Nov. 27, 2013, for U.S. Appl. No. 12/769,956, 19 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed Dec. 23, 2013, for U.S. Appl. No. 12/769,956, 18 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Apr. 11, 2014, for U.S. Appl. No. 12/769,956, 16 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Office Action mailed May 9, 2014, for U.S. Appl. No. 12/769,956, 22 pages
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Amendment filed Aug. 11, 2014, for U.S. Appl. No. 12/769,956, 15 pages.
Reed et al., “Gas-Discharge Lamp Replacement With Passive Cooling,” Notice of Allowance mailed Aug. 29, 2014, for U.S. Appl. No. 12/769,956, 12 pages.
Reed et al., “Remotely Adjustable Solid-State Lamp,” Amendment filed Apr. 1, 2015, for U.S. Appl. No. 13/875,130, 14 pages.
Reed et al., “Remotely Adjustable Solid-State Lamp,” Office Action mailed Apr. 21, 2015, for U.S. Appl. No. 13/875,130, 10 pages.
Reed et al., “Remotely Adjustable Solid-State Lamp,” Amendment filed Jul. 20, 2015, for U.S. Appl. No. 13/875,130, 15 pages.
Reed et al., “Remotely Adjustable Solid-State Lamp,” Corrected Notice of Allowance, mailed Aug. 12, 2015, and Notice of Allowance, mailed Jul. 31, 2015 for U.S. Appl. No. 13/875,130, 11 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Office Action mailed Dec. 29, 2010, for U.S. Appl. No. 12/540,250, 16 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Amendment filed Apr. 29, 2011, for U.S. Appl. No. 12/540,250, 11 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Office Action mailed Jul. 20, 2011, for U.S. Appl. No. 12/540,250, 15 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Amendment filed Oct. 14, 2011, for U.S. Appl. No. 12/540,250, 12 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Office Action mailed Jan. 5, 2012, for U.S. Appl. No. 12/540,250, 12 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Amendment filed Apr. 5, 2012, for U.S. Appl. No. 12/540,250, 8 pages.
Reed et al., “Turbulent Flow Cooling for Electronic Ballast,” Notice of Allowance mailed Aug. 15, 2012, for U.S. Appl. No. 12/540,250, 7 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Office Action mailed Dec. 5, 2012, for U.S. Appl. No. 12/784,093, 13 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Amendment filed Apr. 2, 2013, for U.S. Appl. No. 12/784,093, 13 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Notice of Allowance mailed Apr. 12, 2013, for U.S. Appl. No. 12/784,093, 9 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Office Action mailed Nov. 27, 2013, for U.S. Appl. No. 13/943,537, 8 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Notice of Allowance mailed Apr. 11, 2014, for U.S. Appl. No. 13/943,537, 9 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Office Action mailed Aug. 28, 2014, for U.S. Appl. No. 14/329,508, 8 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Amendment filed Sep. 30, 2014, for U.S. Appl. No. 14/329,508, 18 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination,” Notice of Allowance mailed Nov. 5, 2014, for U.S. Appl. No. 14/329,508, 10 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination Using Received Signals,” Office Action mailed Oct. 1, 2013, for U.S. Appl. No. 13/085,301, 11 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination Using Received Signals,” Amendment filed Jan. 2, 2014, for U.S. Appl. No. 13/085,301, 26 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination Using Received Signals,” Office Action mailed Apr. 23, 2014, for U.S. Appl. No. 13/085,301, 12 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination Using Received Signals,” Amendment filed Jul. 23, 2014, for U.S. Appl. No. 13/085,301, 12 pages.
Reed, “Apparatus and Method of Energy Efficient Illumination Using Received Signals,” Notice of Allowance mailed Jul. 30, 2014, for U.S. Appl. No. 13/085,301, 5 pages.
Reed, “Asset Management System for Outdoor Luminaires,” U.S. Appl. No. 14/869,501, filed Sep. 29, 2015, 57 pages.
Reed, “Detection and Correction of Faulty Photo Controls in Outdoor Luminaires,” U.S. Appl. No. 14/869,492, filed Sep. 29, 2015, 71 pages.
Reed et al., “Luminaire With Adjustable Illumination Pattern,” U.S. Appl. No. 14/939,856, filed Nov. 12, 2015, 69 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Office Action mailed Dec. 17, 2014, for U.S. Appl. No. 13/786,332, 20 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Amendment filed Mar. 13, 2015, for U.S. Appl. No. 13/786,332, 23 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Office Action mailed May 29, 2015, for U.S. Appl. No. 13/786,332, 7 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Amendment filed Jul. 23, 2015, for U.S. Appl. No. 13/786,332, 17 pages.
Reed , “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Notice of Allowance mailed Aug. 6, 2015, for U.S. Appl. No. 13/786,332, 9 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” U.S. Appl. No. 14/950,823, filed Nov. 24, 2015, 72 pages.
Reed, “Luminaire With Atmospheric Electrical Activity Detection and Visual Alert Capabilities,” Notice of Allowance mailed Jul. 1, 2014, for U.S. Appl. No. 13/786,114, 9 pages.
Renesas Electronics, “Zener Diodes for Surge Absorption—Applications of high-intensity LED,” Apr. 2010, 1 page.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Office Action mailed Apr. 29, 2013, for U.S. Appl. No. 13/166,626, 19 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Amendment filed Sep. 24, 2013 for U.S. Appl. No. 13/166,626, 19 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Office Action mailed Jan. 14, 2014, for U.S. Appl. No. 13/166,626, 19 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Amendment filed Mar. 11, 2014, for U.S. Appl. No. 13/166,626, 24 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Office Action mailed Oct. 2, 2014, for U.S. Appl. No. 13/166,626, 18 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Amendment filed Dec. 29, 2014, for U.S. Appl. No. 13/166,626, 23 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Office Action mailed Apr. 30, 2015, for U.S. Appl. No. 13/166,626, 17 pages.
Renn et al., “Solid State Lighting Device and Method Employing Heat Exchanger Thermally Coupled Circuit Board,” Notice of Allowance mailed Sep. 10, 2015, for U.S. Appl. No. 13/166,626, 8 pages.
Tyco Electronics, “Circuit Protection,” retrieved Jun. 10, 2011, retrieved from http://www.tycoelectronics.com/en/products/circuit-protection.html, 2 pages.
Written Opinion, mailed Jun. 10, 2009 for PCT/US2009/043170, 7 pages.
Written Opinion, mailed Nov. 29, 2010 for PCT/US2010/033000, 5 pages.
Written Opinion, mailed Dec. 15, 2010 for PCT/US2010/035658, 3 pages.
Written Opinion, mailed Sep. 29, 2011 for PCT/US2011/041402, 4 pages.
Written Opinion, mailed Oct. 8, 2012 for PCT/US2012/033059, 3 pages.
Written Opinion, mailed Feb. 27, 2013, for PCT/US2012/065476, 8 pages.
Written Opinion, mailed Nov. 19, 2013 for PCT/US2013/052092, 7 pages.
Written Opinion, mailed Dec. 30, 2013 for PCT/US2013/058266, 8 pages.
Written Opinion, mailed Feb. 26, 2014, for PCT/US2013/070794, 10 pages.
Written Opinion, mailed Dec. 30, 2014, for PCT/US2014/055909, 13 pages.
Extended European Search Report, dated May 3, 2016, for corresponding European Application No. 12771286.7, 9 pages.
International Preliminary Report on Patentability, issued Mar. 22, 2016, for International Application No. PCT/US2014/055909, 14 pages.
International Search Report and Written Opinion, mailed Feb. 29, 2015, for PCT/US2015/053000, 20 pages.
International Search Report and Written Opinion, mailed Feb. 29, 2015, for PCT/US2015/053006, 21 pages.
Reed, “Luminaire With Ambient Sensing and Autonomous Control Capabilities,” Notice of Allowance mailed May 4, 2016, for U.S. Appl. No. 14/950,823, 10 pages.
Reed et al., “Apparatus and Method for Schedule Based Operation of a Luminaire,” Amendment filed Jun. 7, 2016, for U.S. Appl. No. 14/552,274, 14 pages.
Reed, “Detection and Correction of Faulty Photo Controls in Outdoor Luminaires,” Notice of Allowance mailed May 19, 2016 for U.S. Appl. No. 14/869,492, 9 pages.
Related Publications (1)
Number Date Country
20160095186 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62057419 Sep 2014 US