The present invention relates to a centralizer while drilling and particularly a centralizer for drilling operations by means of a pipe string in the form of casing, liner.
Several different centralizers exist on the market today wherein most of them have been designed for traditional casing and liner running and are not intended for drilling operations using the same.
When running casing or liner into a borehole the centralizers are used to improve cementing operations and also to reduce friction during such operations. If drilling with centralizers, the centralizer should also protect the pipe string from wear. Low rotational and running friction becomes increasingly important as horizontal displacement increases and drilling with liner and casing develop into a common technique.
Current technologies have a wide assortment of designs and components but the challenges of drilling with centralizers on the pipe string have not been properly considered during construction. This means that current equipment available on the market may cause friction forces between the casing and the borehole which are too high for a drilling application, even with the use of centralizers. The current equipment may also induce concern regarding the wear and integrity of a rotatable pipe string over time.
To be able to meet future well construction demands, there is a need for a centralizer which:
The providers of centralizers also provide stop collars for locking the centralizers in place. Most of the current products are fastened to the pipe string by a number of bolts or screws through the stop collar body, biting into the surface of the pipe to lock the collars in place to prevent movement.
Recent testing has revealed that existing stop collars have weaknesses and might slide out of position downhole. This is particularly true when used in a liner- or casing-drilling application.
An extended amount of rotation is experienced during drilling operations with a casing or liner. The current means are not designed with drilling in mind and there is a high risk of the stop collars loosing their grip on the casing and starting to move. This causes the centralizers to shift position, which would disrupt the pipe string structure and also have a potential for damaging the pipe string integrity, e.g. with respect to burst and collapse, as the bolts of a loose stop collar can scrape into the outer surface of the pipe string at each rotation. A need exists for an improved design which can
The above problems have been solved by a centralizer and locking stop collar according to the appended claims.
One main objective of the present invention is to provide a centralizer created specifically for drilling operations with a casing or liner. The invention can also be used for running a casing or liner into extended deviated borehole sections where torque and drag becomes an issue.
This objective can be achieved by means of a centralizer comprising a centralizer body to be situated at the outer surface of a pipe string in the form of a casing or liner used while drilling, the centralizer body being formed with a plurality of outer centralizer blades arranged in an inclined, helical manner to the longitudinal axis of the centralizer body. The number and width of the blades can be varied depending on the application of the centralizer, e.g. the expected load that the blades will be subjected to, the centralizer diameter and the angle of the blade relative to the central axis of the centralizer. The centralizer body further comprises a separate inner tube section secured to the outer surface of the pipe string by means of a press fit and an inner surface consisting of a high friction surface, wherein facing contact surfaces between the centralizer body and its separate inner tube section are made from a suitable low friction material. This material forms a low friction bearing between the components. The separate inner tube section can be made up of a tube section that is split in its longitudinal direction, allowing it to be expanded and slipped over a casing or liner making up the pipe string. In this context, the term “low friction materials” is used for materials that reduce the friction between contacting surfaces in the centralizer assembly. The material should preferably, but not necessarily, be possible to be applied as a coating to a metal surface. Non-excluding examples of suitable materials are low friction polymers, such as Teflon©, polyethylene (PE) Medium-Density Polyethylene (MDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE).
To improve fixation, the centralizer body is positioned on the pipe string using a pair of stop collars. A stop collar is mounted non-rotatably around the casing or liner at each end of the centralizer body and allows the centralizer body to rotate relative to the stop collars, as well as relative to the inner tube section, substantially without friction.
To enable such a rotation substantially without friction, at least one facing end or contact surface of the centralizer body and/or the stop collar is provided with a coating or a separate, exchangeable annular disc comprising or coated with a suitable low friction material. This material forms a low friction bearing between the components. The end of each stop collar can be mounted in an end-to-end arrangement adjacent a corresponding end of the centralizer body. Alternatively, the end of the stop collar can be accommodated within a recess conforming to the size of the stop collar formed in the centralizer body, in order to protect the facing end or contact surfaces.
To facilitate both sliding into or out of a borehole, the outer centralizer blades are provided with a coating or protruding pad made from a suitable low friction material. The protruding pad is oval formed and shaped to conform with the outer diameter of the borehole. The shape and size of the pads depend on factors such as the diameter of the borehole, the diameter of the centralizer, the location of the pads on the centralizer body radius and the desired radial extension out of the blade.
Alternatively, each outer centraliser blade can comprise of at least one outer protruding portion, extending a predetermined distance radially outwards from said centralizer blades. The predetermined distance that the protruding portions extend radially from said centralizer blades is selected to ensure that the protruding portions prevent the centralizer blades from coming into contact with the borehole. This distance is dependent on the axial length and angle of the centralizer blades, the outer diameter of the centralizer blades and the diameter of the borehole. Each protruding portion can be in the form of a roller, such as a failsafe oval formed roller, i.e. having an oval basic shape, with an outer surface having a minimum diameter at each end and a maximum diameter at its middle section. The roller is journalled in bearings at each end and is arranged with its central axis at right angles to the central axis of the centralizer. The rollers are installed in recesses inside the blades and extend radially outwards through openings in the outer circumferential surface of the blades. These openings are smaller than the roller outer diameter at each point along its length. The shape of the opening is arranged to conform with the outer contour of the roller extending a predetermined radial distance out of the opening.
The edges of an opening can be provided with an overlap, making the length of the opening less than the length of the roller, so that said edges extend over the roller at its respective ends. Similarly, the width of the opening is less than the diameter of the roller at each point along its length, so that these side edges follow the oval shape of the roller along the length of the opening. The tolerances between the edges of the opening and the outer surface of the roller are selected to minimize the risk of material entering the recess. The relatively smaller opening prevents the rollers from falling out into the borehole if the roller bearing axis fails and thus reduces the risk of junk in borehole which can jam the pipe string during drilling or tripping. The number of rollers can be varied depending on the axial length of the blade and/or the expected loading on the centralizer. The shape and size of the rollers depend on factors such as the diameter of the borehole, the diameter of the centralizer, the location of the rollers on the centralizer body radius and the desired radial extension out of the blade.
In other words, during drilling, the present centralizer consists of an inner split tube section which is placed over a section the pipe string at regular intervals. The inner diameter of the tube section is slightly under gauge relative to the outer diameter of a corresponding section of the pipe string. As described above, the tube section is split in its longitudinal direction, allowing it to be expanded and slipped over a casing or liner. The expanded tube section is slipped onto the casing or liner from one end thereof. When the tube section has been moved along the casing or liner into a desired position the tube section is released and allowed to contract over the casing or liner, where it is held in position be a press fit. The split tube section has a high friction inner surface and a low friction outer surface. The high friction inner surface is in direct contact with the casing or liner and assists in holding the tube section in position, allowing it to rotate together with the pipe. The high friction surface can comprise an aggregate coating or a similar suitable material. The low friction outer surface of the split tube is working as a bearing face for the corresponding centraliser body which has a low friction inner surface.
The low friction inner surface of the centraliser is achieved by either use of a suitable low friction material on the inside of the centraliser body or alternatively by the use of a suitable low friction material on the inside of the centraliser body in combination with a centre tube built into the centraliser body and made from a suitable low friction material. The use of a low friction centre tube will create an additional low friction bearing face and thereby create on low friction bearing between the centraliser body and the centre tube and a second low friction bearing between the centre tube and the split tube mounted on the casing or liner.
The use of low friction surfaces between the split tube and the centralizer body minimises the rotational resistance between these components. Creating a low friction rotational surface attached to and separated from the outer surface of the casing or liner, for cooperation with the centralizer body, also assists in preventing wear of this portion of the pipe string during extended periods of rotation and radically increases the burst and collapse integrity.
The centralizer body has an inner low friction surface to reduce rotational friction and is equipped with angled or helically curved blades on its outer surface to give improved circular coverage in contact with the borehole. Oval shaped rollers or, alternatively, oval shaped low friction pads or coating are set into the blades to minimise sliding resistance when moving the pipe string into or pulling it out of a borehole. The oval configuration of the rollers or pads matches the curvature of the borehole outer diameter and gives an even load distribution over the length of the rollers or pads in contact with the borehole. This arrangement avoids point loading on the rollers or pads and reduces the risk of uneven wear or failure.
As described above, the end surfaces of the centralizer body facing the stop collars can be provided with a low friction coating, or be equipped with an annular disc either coated with or comprising a suitable low friction material. The low friction end surfaces will further reduce the rotational resistance of the centralizer, especially when it is simultaneously rotated and moved in the axial direction of the borehole. The ends of the centralizer body can also have an annular recess providing an overlap extending a predetermined axial distance over the outer circumference of the stop collars to reduce the amount of cuttings and particles entering into the low friction bearing surface inside the centralizer body and at the end surfaces of said centralizer body. The recesses at the end of the centralizer body accommodating the stop collars, and if desired the annular discs comprising or coated with a suitable low friction material, can be achieved by allowing the centralizer body to extend axially past the outer ends of the low friction inner surface of said centralizer body, or by machining each end of the centralizer body to form a recess.
The outer ends of each stop collar, which end faces away from the centralizer body, forms a transition between the casing or liner and the main body of the stop collar. This first transition is bevelled, forming a truncated cone, in order to reduce the risk of hang-up on sharp ledges in the borehole and to work as a guide if stepped changes in borehole geometry are encountered. The outer ends of the centralizer body form a transition between the stop collars and the outer diameter of the blades in the longitudinal direction of the centralizer body. This second transition is bevelled, forming a truncated cone, for the same reasons as for the first transition described above.
The aim of the centralizer according to the present invention is to remove any wear between the pipe string and the centralizer while minimising the rotational friction involved when rotating the pipe string. As drilling operations with a casing or liner causes the pipe string to be subjected to long periods of rotation, the integrity of the pipe string becomes a problem. Current technology may have either a potential wear problem, caused by friction between the inner surface of a moving centralizer and the outside of the rotating pipe string surface, or a torque problem, caused by friction between the outer surface of a fixed centralizer and the borehole formation.
A stop collar with a high friction inner surface is fixed firmly to the pipe by tightening a number of fastening screws, which causes a reduction in the stop collar inner diameter. The fastening mechanism ensures that the equipment is kept in the intended fixed position, without the risk of causing wear or damage to the pipe body. The additional low friction end surface on the stop collar facing towards the centralizer body further reduces the rotational restriction of the centralizer as the pipe string is axially displaced in the borehole.
The present invention removes many boundaries of current well construction constraints and enables the construction and execution of extended deviated sections without exceeding the pipe string and surface equipment limitations.
Briefly, the benefits achieved compared to existing technology are as follows:
In the text of the description, both above and below, the examples may sometimes refer to “a casing”. However, it should be understood that drilling operations using an arrangement according to the present invention could be performed using a pipe string in the form of a casing or a liner.
The invention will be described in detail with reference to the attached figures. It is to be understood that the drawings are designed solely for the purpose of illustration and are not intended as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to schematically illustrate the structures and procedures described herein.
As illustrated in
The centralizer body 2 is fixedly mounted around a casing 1 located in a borehole during a drilling operation. The centralizer body 2 comprises a separate split inner tube 8 and is provided with a plurality of outer centralizer blades 4 arranged in an inclined, helical manner to the longitudinal axis thereof. In
The split inner tube 8 is provided with a longitudinal split 12 allowing it to be expanded and placed over the casing 1 into the selected position. The split inner tube 8 is made slightly under gauge and clamps around the outer diameter of the casing by a force caused by the resilient properties of split inner tube 8 as the force expanding the split inner tube 8 is released. The grip of the split inner tube 8 is enhanced by an inner surface made from high friction material, such as brake band materials or a soft metal (e.g. aluminium). This low friction tube is placed around the casing to act as a bearing face about which the centralizer body and the low friction centre tube 9 in can be rotated. The intention is to protect from wear during rotation and create a rotational surface outside the casing with very low resistance to the revolving inner centralizer surface. Having positioned the split inner tube 8 in the correct area, the centralizer body 2 and the centre tube 9 is slid over the split inner tube 8 and secured in place by a stop collar 3 on each side of the centralizer body 2.
Each end of the centralizer body 2 is equipped with an annular low friction ring 7 in order to reduce the rotational friction between the centralizer body 2 and the stop collars 3. The low friction material centre tube 9 is formed by a cylindrical body placed between the split tube 8 and the centralizer body 2. A stop collar overlap 6 is formed by allowing each end of the centralizer body 2 to extend axially past the ends of the cylindrical low friction centre tube 9. The ends of the cylindrical low friction centre tube 9 forms an annular stop, against which the respective annular low friction rings 7 and the stop collars 3 are positioned. The stop collar overlap 6 reduces the amount of particles to enter the bearing faces between the inner split tube 8, the centre tube 9 and the centralizer body 2, and the stop collars 3 and the low friction end rings 7, respectively.
According to a further example, the ends of the stop collar 3 facing the centralizer body 2 can be provided with a low friction coating or be made from a suitable low friction material (not shown).
The centralizer body 2 is equipped with protruding portions 5 formed in the helical centralizer blades 4. The curved blades give better circular coverage which makes stand off less dependent on the position of the centralizer in the borehole. The protruding portions reduce the sliding resistance and each are made in the form of an oval formed roller 10 to avoid point loading on the edge of the roller in a curved borehole. The roller 10 is supported by means of an axle (see
A bevel 11 at each end of the centralizer functions as a guide if encountering cuttings beds and reduces the risk of hanging up on ledges or sharp edges while running in or pulling out of a borehole.
As indicated in
The outer diameter and inner diameters of the centralizer in the above embodiments are matched to the casing size. The centralizer inner diameter normally ranges from 4″ to 20″ and the centralizer outer diameter ranges from 6″ to 24″. The length of the centralizer can vary somewhat with its inner diameter but will typically range from 15″ to 30″.
As shown in
The outer diameter and inner diameters of the stop collar in the above embodiments are matched to casing size. The stop collar inner diameter normally ranges from 4″ to 20″. The length of the stop collar can vary somewhat with its inner diameter but will typically range from 2″ to 6″.
This application is a Continuation of copending U.S. application Ser. No. 13/978,369, filed on Jul. 26, 2013, which is a National Stage of International Application No. PCT/EP11/50180, filed on Jan. 7, 2011, all of which are hereby expressly incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
5579854 | Barry | Dec 1996 | A |
5692562 | Squires | Dec 1997 | A |
5810100 | Samford | Sep 1998 | A |
5901798 | Herrera | May 1999 | A |
6032748 | DeBray | Mar 2000 | A |
6209667 | Murray | Apr 2001 | B1 |
6453999 | Reinholdt | Sep 2002 | B1 |
6585043 | Murray | Jul 2003 | B1 |
9534456 | Eidem | Jan 2017 | B2 |
20030192720 | Mitchell | Oct 2003 | A1 |
20080217063 | Moore | Sep 2008 | A1 |
20100252274 | Buytaert | Oct 2010 | A1 |
20110114338 | Casassa et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2 400 124 | Oct 2004 | GB |
WO 9634173 | Oct 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20170074055 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13978369 | US | |
Child | 15344010 | US |