1. Field of the Invention
The present invention is directed generally to a casting device and method, and more specifically to a dental casting device for creating a dental prosthesis with efficient metal recovery and harmful-vapor minimization.
2. Description of Related Art
It is well-known that high-purity precious metals are used in the formation of prosthetic dental pieces. Traditionally, a mold of the desired dental impression was inserted into a mold along with an amount of the precious metal to be cast into a crucible. The precious metal was subjected to high temperatures allowing the metal to melt while the centrifugal force imparted thereon forced it into the mold, thereby creating the dental piece.
Such a centrifugal casting machine was required to rotate the molten metal and the mold at a high angular velocity to adequately fill the mold with the molten metal. This was typically accomplished by rotating an arm holding the metal and the mold within a cylindrical container such as a drum. The walls of the drum acted as a safety measure to minimize the number of articles cast outside of the drum possibly a bystander during rotation of the mold and the metal. However, for convenience, the assembly comprising the arm that was rotated was elevated above the bottom of the drum at a convenient working height for the operator. This left a significant void between the rotational arm of the casting machine and the bottom of the drum.
During a typical casting operation, it was common for at least a portion of the precious metal to miss the mold due to the high angular velocity at which the arm assembly was rotating. These trace amounts, typically no more than fractions of an ounce, are cooled while they are cast in a radially-outward direction towards the wall of the drum, and are typically at least partially solidified by the time they reach that wall. As such, upon impacting the sidewall of the drum, the particular precious metal falls through the void between the bottom of the drum and the rotational arm and eventually comes to rest at the bottom of the drum. For precious metals such as gold, platinum, and titanium that are expensive, the loss of even trace amounts of these metals over a prolonged period of time can amount to significant losses to the proprietor.
In addition to problems associated with costs due to lost metals, the casting environment also poses a risk to the health of an operator standing close to the machine. The high temperatures required to melt the precious metals to be used in the dental prosthesis tend to vaporize potentially toxic impurities found on the crucible used to melt the metal, the mold in which the dental prosthesis is cast, and other materials involved in the casting process. Vaporization of these potentially toxic materials requires safety measures to minimize the amount of toxic materials inhaled by the operator.
Yet other environmental hazards exist in the dental casting process. For instance, the high angular velocity at which the arm supporting the mold must rotate poses a threat to limbs of the operator coming into contact with the arm. Further, conventional casting machines often require the operator to manually wind the arm in one direction to load a spring that recoils to rotate the arm in the opposite direction at a high angular velocity. Again, this requires the operator to make physical contact with the arm immediately prior to the arm reaching a high angular velocity.
Accordingly, there is a need in the art for a dental casting machine that makes efficient use of precious metals, and minimizes potentially harmful environmental hazards to which an operator is exposed.
According to one aspect, the present invention provides a centrifugal casting apparatus for casting molten metal into a mold, the casting apparatus comprising a housing comprising a bottom surface, and a retaining wall for minimizing a number of projectiles that escape the housing during casting operations. A prime mover is provided for imparting a centrifugal force on the molten metal, and an arm is coupled to the prime mover adjacent to a proximate end to be rotated about a rotational axis and to support a cradle for receiving the mold adjacent to a distal end. A crucible is to be coupled to the arm for supporting the molten metal to be cast into the mold, and a catch surface is disposed between the arm and the bottom surface of the housing to collect molten metal that is cast but not received within the mold.
According to another aspect, the present invention provides a centrifugal casting apparatus for casting molten metal into a mold. The casting apparatus comprises a base for supporting the centrifugal casting apparatus; a housing comprising a retaining wall for minimizing a number of projectiles that escape the housing during casting operations; a prime mover for imparting a centrifugal force on the molten metal; and an arm coupled to the prime mover adjacent to a proximate end to be rotated about a rotational axis, the arm supporting a cradle for receiving the mold adjacent to a distal end. A crucible is to be coupled to the arm for supporting the molten metal to be cast into the mold, and a catch surface disposed between the arm and base to collect molten metal that is cast but not received within the mold.
According to another aspect, the present invention provides a method of minimizing a loss of metal experienced during a casting operation. The method comprises the steps of melting the metal in a crucible coupled to a rotational arm, imparting a centrifugal force onto the molten metal in the crucible to cast the molten metal into a suitably-positioned mold, and catching metal that has been cast but not received in the mold within a distance of about 24 inches or less from the arm.
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Relative language used herein is best understood with reference to the drawings, in which like numerals are used to identify like or similar items. Further, in the drawings, certain features may be shown in somewhat schematic form.
The bottom or lowermost surface 18 of the casting apparatus 10 can be a generally-circular bottom of the cylindrical housing 14, for example, or it can be a lowermost surface of a stand 23 (shown in
A prime mover such as an electric motor 30 (
An example of a suitable set of gears 20 for transmitting the rotational force generated by an electric motor 30 to rotate the shaft 29 is shown in
An example of another suitable set of gears 90 for transmitting the rotational force generated by an electric motor 30 to rotate the shaft 29 is shown in
The drive shaft from the electric motor 30 is received within an aperture 104 in the vertical gear 94, with a longitudinal tooth of the drive shaft being placed within a notch 106 of the vertical gear 94 to prevent slippage between the drive shaft and the vertical gear 94. Such an arrangement allows the drive shaft of the electric motor 30 to be oriented horizontally, which also permits a horizontal orientation of the motor 30. The horizontal orientation of the motor 30 eliminates the need for gaskets dedicated to minimize leakage of lubricants and other fluids from the motor 30 that would otherwise be required if the motor 30 was oriented on end, with the drive shaft in a vertical orientation. Similar to the arrangement of the worm gear set 20 discussed above, the shaft 29 to which the rotatable arm 25 for supporting the mold 39 is coupled extends vertically through an aperture 108 in the generally-horizontal gear 92. Again, a longitudinal tooth (not shown) extending along the length of the shaft 29 can be inserted through a notch 110 formed in the horizontal gear 92 to minimize slippage therebetween. Thus, the electric motor's rotation of the drive shaft, and in turn the vertical gear 94, causes rotation of the horizontal gear 92 and the shaft about a vertical axis. Rotation of the shaft 29 rotates the arm 25 supporting the mold 39, thereby imparting a centrifugal force on the molten metal and forcing it into the mold 39 to be shaped.
The embodiment of the bevel gear set 90 shown in
Alternate embodiments of the present invention can eliminate the need for a set of gears such as those discussed above for transmitting the rotational force of the electric motor 30 to a perpendicular shaft 29. For such embodiments, the electric motor 30 can be oriented such that the drive shaft of the motor 30 is generally parallel with the shaft 29 coupled to the arm 25 to bring about rotation thereof. Such an arrangement is referred to as a parallel-shaft configuration. The electric motor 30 in a parallel-shaft configuration is oriented such that the drive shaft extending through the motor 30 is generally vertical. Thus, the bearing supports for the drive shaft are also arranged vertically, and gravity acting on any lubricant or other fluids (collectively referred to as the “lubricants”) within the motor 30 urges the lubricants toward the lowermost bearing. A gasket is installed adjacent to the lowermost bearing in the vertically-oriented electric motor 30 to minimize the seepage of the lubricants therefrom through the lowermost bearing. A set of spur gears 120 such as those shown in
The different gear ratios discussed above can be any suitable gear ratio to rotate the arm 25 at a desired angular velocity about the shaft 29 for a given angular velocity of the electric motor's drive shaft driving rotation of the arm 25. For example, consider the set of gears shown in
Suitable gear ratios of the direct drive system of the present invention, which do not necessarily correspond to the preceding list of angular velocities, include, but are not limited to, any gear ratio selected within the range of about 1:0.5 to about 1:15, inclusive. This range of acceptable gear ratios also includes all sub-ranges that fall therein. Thus, an example of an acceptable sub-range of suitable gear ratios falling within the range of about 1:0.5 to about 1:15 is about 1:2 to about 1:6. Any sub-range of gear ratios having a starting gear ratio and an ending gear ratio that both fall within the aforementioned range of about 1:0.5 to about 1:15 are considered to be within the scope of the present invention.
It is also noted that the angular velocity of the electric motor's drive shaft for rotating the horizontal gear 94 in the examples above can optionally be continuously variable. This means that the speed of rotation of the electric motor's drive shaft can be adjusted to any speed within a predetermined range of speeds through the use of a dimmer-like switch. The dimmer-like switch typically includes a rotatable knob that can vary the duty cycle of a pulse-width modulation control routine, for example. Other methods of variably adjusting the speed of the electric motor's drive shaft known in the art are also considered within the scope of the present invention.
A cradle 34 can be provided adjacent to a distal end 36 of the arm 25 to receive a mold 39 that is to be rotated about axis 32, as shown in
The catch surface 52 is elevated above the bottom surface 18, as those relative terms are understood with reference to the Figures. The term “above” means that the catch surface 52 is positioned further from the ground 55, for example, that the casting apparatus 10 is resting on. In other words, the catch surface 52 is closer to the arms of an operator of the casting apparatus 10 as that operator stands upright adjacent to the casting apparatus 10, which is itself oriented in an upright orientation in which the casting apparatus 10 is to be operated. It follows that the catch surface 52 is closer to the arm 25 than the bottom surface 18 of the housing 14. Although the present invention includes any configuration where the catch surface 52 is closer to the arm than the bottom surface 18 of the housing 14, examples of specific embodiments include configurations where the arm 25 is separated from the catch surface 52 by a distance of: about 24 inches or less, about 20 inches or less, about 16 inches or less, about 12 inches or less, about 10 inches or less, about 8 inches or less, and about 4 inches or less.
Another way to view the relative position of the catch surface 52, the bottom surface 18, and the arm 25 is by expressing the relative positions with reference to an elevation above the bottom surface 18. Again, the present invention includes any spatial arrangement where the catch surface 52 is elevated above the bottom surface 18, but specific embodiments include a catch surface 52 supported at an elevation above the bottom surface 18 of the housing 14 that is about X inches less than the elevation of the arm 25 above the bottom surface 18. The variable X can be selected as any integer from about 1 to about 24, for example.
Other embodiments of the present invention elevate the casting apparatus 10 off of the ground. According to such embodiments, the casting apparatus includes a base for supporting the centrifugal casting apparatus and a housing comprising a retaining wall for minimizing a number of projectiles that escape the housing during casting operations. Just as before, a prime mover is provided for imparting a centrifugal force on the molten metal, and an arm is coupled to the prime mover adjacent to a proximate end to be rotated about the rotational axis. The arm supports a cradle for receiving the mold adjacent to a distal end, while a crucible is to be coupled to the arm for supporting the molten metal to be cast into the mold. For these embodiments, a catch surface is disposed between the arm and the base to collect molten metal that is cast but not received within the mold. According to these embodiments, however, the catch surface can be the bottom surface of the casting apparatus adjacent to the base that the casting apparatus is resting on.
Alternate embodiments further include a safety screen 62 such as that shown in
Alternate embodiments can optionally further include a ventilation device 68 shown in
A well ring 140 or other implement storing container can be provided about at least a portion of the exterior periphery of the housing 14 to store tools, casting molds, and other implements commonly used during casting operations. And embodiment of the well ring 140 is shown in
Also shown in
In use, a method of the present invention includes the steps of melting the metal in a crucible coupled to a rotational arm, imparting a centrifugal force onto the molten metal in the crucible using a direct drive mechanism including a set of gears and without a chain, belt, and the like, to cast the molten metal into a suitably-positioned mold, and catching metal that has been cast but not received in the mold within a distance of about X inches or less from the arm. The distance represented by X is considered an altitude, generally parallel with the direction of gravity, beneath the arm 25. Just as before, X can be any integer ranging from about 1 to about 24. Specific embodiments include values of X to be 20 inches or less, 16 inches or less, 12 inches or less, 8 inches or less, 4 inches or less, or any other distance. Further, the method can optionally also include the step of drawing vapors from casting operations in a direction generally away from a user interface. This is performed with the ventilation device 68 described herein.
Illustrative embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above devices and methods may incorporate changes and modifications without departing from the general scope of this invention. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/774,690, filed on Feb. 17, 2006.
Number | Date | Country | |
---|---|---|---|
60774690 | Feb 2006 | US |