The invention relates to centrifugal compressors. More particularly, in some embodiments, the invention relates to centrifugal compressors and methods of their operation, which in a single compressor stage, is capable of achieving high-pressure ratios of greater than, or equal to 2.5:1 on process fluids having a molecular weight range of 12-20, such as natural gas. In other embodiments, the invention relates to two-stage centrifugal compressors and methods of their operation, which are capable of achieving throughput pressure ratios of greater than or equal to 5:1 on process fluids having a molecular weight of 12-20, such as natural gas.
Reliable and efficient compressors and systems including compressors have been developed and are utilized in a myriad of industrial processes (e.g., petroleum refineries, offshore oil production platforms, and subsea-process control systems). Generally, conventional compressors are utilized to compress gas or gas/liquid mixture process fluids, which are also referred to as “working fluids”. Typically, compression is achieved by applying mechanical energy to the process fluid gas in a low-pressure environment and transporting the gas to and compressing the gas within a high-pressure environment, such that the compressed gas may be utilized to perform work or for operation of one or more downstream process components.
As conventional compressors are increasingly used in offshore oil production facilities and other environments facing space constraints, there is an ever-increasing demand for smaller, lighter, and more compact compressors. In addition to the foregoing, it is desirable for commercial purposes that the compact compressors achieve higher overall throughput compression ratios (e.g., 10:1 or greater) while maintaining a compact arrangement.
In the past, higher compression ratios were achieved by increasing the number of compression stages within the compressor. Increasing the number of compression stages, however, increases the overall number of components (e.g., impellers and/or other intricate parts) required to achieve the desired compressor throughput (e.g., mass flow) and pressure rise to achieve the higher compression ratios. Increasing the number of components required in these compact compressors may often increase length requirements for the rotary shaft and/or increase distance requirements between rotary shaft bearings, leading to mechanical issues. The imposition of these requirements often results in larger, less compact compressors as compared to compact compressors utilizing fewer compression stages. Further, in many cases, increasing the number of compression stages in the compact compressors may still not provide the desired higher compression ratios or, if the desired compression ratios are achieved, the compact compressors may exhibit decreased efficiencies that make the compact compressors commercially undesirable. For example, compression ratio increase within a compressor stage of given inlet, impeller, diffuser passage, and outlet dimensions vary with molecular weight (mole weight) of the compressed process fluid. A compressor that is structurally configured to provide a pressure ratio of 11:1 for a 44 mole weight process fluid for a given impeller tip speed might only achieve a pressure ratio of 1.5:1 for a 10 mole weight process fluid. Generally, increasing impeller tip speed increases pressure ratio of the process fluid, up to its aero-thermodynamic and mechanical limits; i.e., Mach numbers for aero-thermodynamics and stress levels and material properties for mechanical.
At least one known proposed solution to the above-mentioned constraints of conventional compact compressors has been the utilization of supersonic compressors to achieve higher compression ratios while maintaining a compact structure. At least some of the known supersonic compressors utilize a compressor rotor that imparts supersonic velocity, greater than Mach 1, on the process fluid, to achieve greater single-stage pressure ratios than conventional compressors that impart velocities less than Mach 1.
Exemplary compressor embodiments described herein achieve high-pressure ratios of at least 2.5:1 in a single compressor stage, on process fluids having molecular weights of 12-20. Exemplary process or working fluids within the 12-20 molecular weight range include natural gas, comprising methane, and other hydrocarbons, with or without other non-hydrocarbon constituents. In other embodiments, the compressor is configured to impart a pressure ratio of at least 5:1 on the process fluid having a molecular weight of 24-27.99; or at least 4:1 on the process fluid having a molecular weight of 20-24; or at least 3:1 on the process fluid having a molecular weight of 16-20; or at least 2.5:1 on the process fluid having a molecular weight of 10-16; or at least 2:1 on the process fluid having a molecular weight less than 10. Other exemplary compressor embodiments described herein include first and second single-stage compressors serially in communication within a common housing structure or as separate housing structures, where both stages are commonly driven by a driver, such as an electric motor or a turbine engine. In such two-stage compressors, the outlet of the first-stage compressor, downstream of its diffuser passage, is in fluid communication with the inlet of the second-stage compressor. Thus, a multi-stage compressor of four stages, constructed and operated in accordance with embodiments described herein, is capable of compressing natural gas within a mole weight range of 12-20 to a commercially desirable pressure ratio of 39:1 or higher. Embodiments of the compressor stages described herein are of modular structure, which achieve maximum pressure ratios within a range of between 2.0:1-11:1 proportionally for 10-44 mole weight (MW) process fluids.
Each single-stage compressor, constructed in accordance with embodiments described herein, includes a housing having an inlet defining an inlet passage, and an outlet defining an annular diffuser passage. The process fluid in the inlet passage has an inlet pressure (P1) and the process fluid discharged from the annular diffuser passage has a discharge pressure (P2) greater than the inlet pressure, such that a pressure ratio (r) of the discharge pressure divided by the inlet pressure is greater than unity. A shaft-mounted centrifugal impeller is oriented between the inlet and the outlet. The impeller includes a plurality of three-dimensional impeller blades projecting outwardly from a hub. The hub has an axial length (Ax), and a hub outer diameter (D2) extending radially at a radius (R2) relative to the shaft axis. Each of the impeller blades has a leading edge facing the inlet passage at a blade sweep angle (θ), a trailing edge facing the annular diffuser passage at a back sweep angle (β) and having a tip width (b2), and a blade tip having a radius of curvature (RC), which defines an outer periphery of the centrifugal impeller. The impeller blades are configured to impart energy to the process fluid, upon rotation of the rotary shaft, and discharge the process fluid therefrom at a flow angle (α) into the annular diffuser passage. The annular diffuser passage has a leading or shroud wall and a trailing or hub wall, which define a diffuser passage height (b3) there between. A plurality of diffuser vanes is oriented in the annular diffuser passage. The respective diffuser vanes extend axially from the shroud wall towards the hub wall of the diffuser passage. The diffuser vanes have a vane height (b3R), and they are circumferentially disposed about the periphery of the centrifugal impeller. Each diffuser vane respectively defines curved, opposing vane pressure and vane suction sides, a vane leading edge proximate the periphery of the centrifugal impeller at a radial distance (R3) relative to the shaft axis and conjoining the suction side, a vane trailing edge facing the outlet and conjoining the suction side, and a vane radial extent between the vane leading and trailing edges. The vane radial extent defines a length (RE). Dimension ranges of the annular diffuser passage, the centrifugal impeller, and the diffuser vanes vary as a function of pressure ratio (r). In various embodiments, when r varies between 2:1-10:1, Ax/D2 varies between 0.1-0.4; 1/RC varies between 0.5-0.15; 0; and 0 varies between 40-86. When r varies between 2:1-10:1, the angular bandwidth of minimum and maximum angles for the back sweep angle β vary between 20-60 degrees and 35-45 degrees, and the ratio of RE/R2 varies from 0.1-0.5. Dimension ranges of the annular diffuser passage and the diffuser vanes vary as a function of flow coefficient (φ) of the process fluid flowing between the inlet and the outlet of the compressor. When φ is in the range of 0-0.030, the ratio of b3R/b3 is 1.0. When φ is in the range of 0.030-0.050, the ratio of b3R/b3 is 0.5-1.0. When φ is in the range of 0.050-0.110, the ratio of b3R/b3 is 0.3. Aforementioned dimensions of the modular construction housing, impeller, diffuser passage, diffuser vanes and outlet are selectively matched, within the aforementioned ranges, to achieve desired pressure ratios for given molecular weight process fluids. Achievable pressure ratios within any given stage are limited by ultimate mechanical stress limit of the impeller.
Other exemplary embodiments of the invention feature methods for compressing natural gas, having a molecular weight (MW) of 12-20. The methods are practiced by utilizing a single-stage, centrifugal compressor with a compressor casing having therein an inlet for receipt of a process fluid. The single-stage compressor includes a single, unshrouded, rotatable, centrifugal impeller defining a plurality of impeller blades for imparting kinetic energy into the process fluid. Each of the respective impeller blades has a leading edge for receiving process fluid from the inlet and a trailing edge for discharging process fluid. The single-stage compressor also has a diffuser, which defines an annular diffuser passage, for receiving the process fluid discharged from the respective trailing edges of the impeller blades in the annular diffuser passage and increasing static pressure of the process fluid therein. The compressor has an outlet for receiving process fluid discharged from the annular diffuser passage. When practicing the method, a first process fluid, comprising natural gas, having a molecular weight (MW) of 12-20, is introduced into the inlet passage of the compressor at an inlet pressure (P1). The centrifugal impeller is driven at a rotational speed (N), so that the trailing edges of the respective impeller blades achieve a rotational velocity (U2) of greater than or equal to 1400 feet/second: this imparts kinetic energy into the first process fluid. The diffuser passage receives the first process fluid discharged by the trailing edges of the centrifugal impeller blades, which converts the kinetic energy imparted in the first process fluid by centrifugal impeller into a pressure increase. The first process fluid is discharged from the annular diffuser passage at a discharge pressure (P2) greater than the inlet pressure (P1) thereof, such that a pressure ratio (r) of the discharge pressure divided by the inlet pressure is greater than or equal to 2.5:1.
Other exemplary embodiments of the invention feature methods for compressing process fluids. The methods are practiced by utilizing a single-stage, centrifugal compressor with a compressor casing having therein an inlet for receipt of a process fluid. The single-stage compressor includes a single, unshrouded, rotatable, centrifugal impeller defining a plurality of impeller blades for imparting kinetic energy into the process fluid. Each of the respective impeller blades has a leading edge for receiving process fluid from the inlet and a trailing edge for discharging process fluid. The single-stage compressor also has a diffuser, which defines an annular diffuser passage, for receiving the process fluid discharged from the respective trailing edges of the impeller blades in the annular diffuser passage and increasing static pressure of the process fluid therein. The compressor has an outlet for receiving process fluid discharged from the annular diffuser passage. When practicing the method, a first process fluid, having a molecular weight (MW), is introduced into the inlet passage of the compressor at an inlet pressure (P1). The centrifugal impeller is driven at a rotational speed (N), so that the trailing edges of the respective impeller blades achieve a rotational velocity (U2) of greater than or equal to 1400 feet/second: this imparts kinetic energy into the first process fluid. The diffuser passage receives the first process fluid discharged by the trailing edges of the centrifugal impeller blades, which converts the kinetic energy imparted in the first process fluid by centrifugal impeller into a pressure increase. The first process fluid is discharged from the annular diffuser passage at a discharge pressure (P2) greater than the inlet pressure (P1) thereof, such that a pressure ratio (r) of the discharge pressure divided by the inlet pressure is:
at least 5:1, where the first process fluid has a molecular weight of 24-27.99;
or at least 4:1 where the first process fluid has a molecular weight of 20-24;
or at least 3:1 where the first process fluid has a molecular weight of 16-20;
or at least 2.5:1 where the first process fluid has a molecular weight of 10-16;
or at least 2:1 where the first process fluid has a molecular weight less than 10.
The respective features of the exemplary embodiments of the invention that are described herein may be applied jointly or severally in any combination or sub-combination.
The exemplary embodiments of the invention are further described in the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The figures are not drawn to scale.
Exemplary embodiments of the invention are utilized in compressors, and methods of their operation. These exemplary embodiments achieve, in a single compressor stage, between the inlet and outlet of the stage, a high pressure ratio (r) of at least 5:1 on the process fluid having a molecular weight of 24-27.99; or at least 4:1 on a process fluid having a molecular weight of 20-24; or at least 3:1 on a process fluid having a molecular weight of 16-20 or at least 2.5:1 on a process fluid having a molecular weight of 10-16 or at least 2:1 on a process fluid having a molecular weight less than 10. By way of example, an exemplary embodiment achieves a pressure ratio (r) of greater than or equal to 2.5:1 on a process fluid having a molecular weight of 12-20, such as natural gas. Natural gas in that molecular weight range typically comprises methane, other hydrocarbons, and non-hydrocarbon constituents, such as water, and carbon dioxide. In at least one embodiment, the process fluids pressurized, circulated, contained, or otherwise utilized in the supersonic compression system are a liquid phase, a gas phase, a supercritical state, a subcritical state, or any combination thereof.
Other exemplary compressor embodiments described herein include first and second single-stage compressors, serially in communication within a common housing structure or as separate housing structures, where both stages are commonly driven by a driver, such as an electric motor or a turbine engine. In such two-stage compressors, the outlet of the first-stage compressor, downstream of its diffuser passage, is in fluid communication with the inlet of the second-stage compressor. In compressor embodiments having more than two stages, the inlet of each successive stage is downstream of the outlet of the prior stage. In some embodiments, one or more compressor stages incorporate known intercooling structure, for extracting heat from the process fluid.
In some embodiments, the compressors are modular compressors, with a plurality of modular housings, respectively including annular diffuser passages and diffuser vanes; and a plurality of modular impellers. Internal dimensions of the respective modular housings and impellers are matched for imparting desired pressure ratios in selected process fluids respectively having varying molecular weight range properties during compressor design. In some embodiments, the diffuser vanes are also modular, annular diffuser vanes having varying vane height. Exemplary internal dimensions of the modular housings, modular diffuser vanes, and the modular centrifugal impellers are described in detail herein.
In the exemplary embodiments of
Referring to
As shown in
In an exemplary embodiment of
Referring to
The centrifugal impeller 160 embodiments shown in all of the figures are open or “unshrouded”, because they do not incorporate a rotating shroud that defines a boundary of the process fluid path between the inlet 122 and the outlet 130 upstream of the centrifugal impeller. Unshrouded impellers are capable of achieving higher rotational speeds of the blade tips than shrouded designs, enabling higher compression ratios for any given process fluid molecular weight range. In multi-stage compressor embodiments, such as the compressor 102A of
As shown in
In some embodiments, each diffuser vane 146, regardless of its vane height b3R, respectively defines curved, opposing vane pressure 148 and vane suction sides 150, a vane leading edge 152 proximate the periphery of the centrifugal impeller at a radial distance R3 relative to the shaft axis 108A and conjoining the suction side 150, a vane trailing edge 154 facing the outlet 130 and conjoining the suction side 150. A vane radial extent, between the vane leading 152 and trailing 154 edges, has a radial length RE measured relative to the shaft rotational axis 108A. In the vane 146 embodiment of
As noted, the annular diffuser 140 is configured to convert kinetic energy of the process fluid from the centrifugal impeller 160 into increased static pressure. An annular-vane, static diffuser 140 is shown in the exemplary embodiments of
In some embodiments, such as in
Accordingly, the supersonic compressor 102 provided herein is said to be “supersonic” because the centrifugal impeller 160 designed to rotate about the shaft axis of rotation 108A at high speeds such that a moving process fluid encountering the supersonic compression-inducing surface 158 disposed within the diffuser passageway 156 is said to have a fluid velocity which is supersonic. Thus, in an exemplary embodiment, the moving process fluid encountering the supersonic compression-inducing surface 158 may have a velocity in excess of Mach 1. However, to increase total energy of the fluid system, the moving process fluid encountering the supersonic compression-inducing surface 158 may have a velocity in excess of Mach 1.2. The exemplary compression inducing surface 158 shown in
Embodiments of the present invention achieve higher-pressure ratios r for a broad range of disparate process fluids having widely varying mole weight ranges (MW). By utilizing combinations of compressor housings 120, centrifugal impellers 160 driven at blade tip speeds of greater than or equal to 1400 feet/second, annular diffusers 140, and annular vane rings 155, having specified differing dimensional ranges in accordance with embodiments of the invention, higher pressure ratios r and stage head are achieved by tailoring the compressor 102 structure to the MW properties of specific process fluids. Construction of the invention's housings, impellers, and discharge vane embodiments allows precise configuration and assembly of a specific compressor to meet needs of a narrow bandwidth of MW.
In embodiments disclosed herein, dimension ranges of the annular diffuser passage 140, the centrifugal impeller 160, and the diffuser vanes 146, 146A, and housings 120 needed to support those components vary as a function of pressure ratio r, regardless of the process fluid MW. In various embodiments, when r varies between 2:1-10:1, the impeller 160 dimensional ratio of hub length 164 to diameter Ax/D2 varies between 0.1-0.4, as shown in
As shown in
In
Impeller exit flow angle α is influenced by the impeller back sweep angle β, the impeller 160 tip speed at its trailing edge 168 and the mole weight of the process fluid. Impeller tip speed and the back sweep angle are selected to achieve a desired pressure ratio. Referring to
Dimension ranges of the respective heights b3R of the diffuser vanes 146 and b3 of the annular diffuser passage 140 vary as a function of flow coefficient (φ) of the process fluid flowing between the inlet 122 and the outlet 130 of the compressor 102. Referring to
Single-stage, centrifugal compressors constructed in accordance with embodiments described herein are capable of driving their respective, single, unshrouded impellers at rotational velocities of greater than or equal to 1400 feet/second. The high kinetic energy imparted by these impellers on the process fluid achieves the following pressure ratios (r):
at least 5:1, where the first process fluid has a molecular weight of 24-27.99;
or at least 4:1 where the first process fluid has a molecular weight of 20-24;
or at least 3:1 where the first process fluid has a molecular weight of 16-20;
or at least 2.5:1 where the first process fluid has a molecular weight of 10-16;
or at least 2:1 where the first process fluid has a molecular weight less than 10.
More particularly, commonly available natural gas compositions have molecular weight ranges of 12-20. Single-stage compressor embodiments disclosed herein, with tip speed velocities of greater than or equal to 1400 feet/second, are capable of achieving pressure ratios (r) greater than or equal to 2.5: 1 on such commonly available natural gas compositions in the 12-20 MW range.
In some embodiments, two of the aforementioned single-stage, centrifugal compressors are combined in series, with the outlet of the first stage coupled to the inlet of the second stage. The two stages in combination receive the process fluid in the inlet of the first stage, and discharge the process fluid out of the outlet of the second stage at a throughput pressure ratio (r) of:
at least 10:1, where the first process fluid has a molecular weight of 24-27.99;
or at least 8:1 where the first process fluid has a molecular weight of 20-24;
or at least 6:1 where the first process fluid has a molecular weight of 16-20;
or at least 5:1 where the first process fluid has a molecular weight of 10-16;
or at least 4:1 where the first process fluid has a molecular weight less than 10.
Two-stage, centrifugal compressor embodiments disclosed herein, with unshrouded impeller, tip speed velocities of greater than or equal to 1400 feet/second, are capable of achieving pressure ratios (r) greater than or equal to 5:1 on commonly available natural gas compositions in the 12-20 MW range.
In other embodiments, multi-stage compressors, having 3 or more of the aforementioned single-stage, centrifugal compressors in series, are configured to impart sequentially with the assembled multi-stage compressor a throughput pressure ratio (r) of greater than or equal to 10:1 on process fluids having a molecular weight of 2.0-27.99. Process fluids in the aforementioned molecular weight range include compositions of natural gas. Additionally, multi-stage compressors, having 3 or more of the disclosed, single-stage, centrifugal compressors in series, are configured to impart sequentially compressor a throughput pressure ratio (r) of greater than or equal to 10:1 on commonly available natural gas compositions in the 12-20 MW range.
Terms used herein are defined as follows.
“Actual cubic feet per minute” (ACFM) is the volume of process gas flowing at the inlet to the compressor independent of its density. ACFM is related to the mass flow of the process fluid as follows:
Where R=the universal gas constant (1545.35 lb-ft/° F.-lbmmol)
Where: n=the polytropic exponent
Where: μ=the stage head coefficient (relationship of head increase, impeller rotational speed and impeller hub diameter)
Although various embodiments that incorporate the invention have been shown and described in detail herein, others can readily devise many other varied embodiments that still incorporate the claimed invention. The invention is not limited in its application to the exemplary embodiment details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted”, “connected”, “supported”, and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical, mechanical, or electrical connections or couplings.
This application is a continuation-in-part of U.S. utility patent application Ser. No. 14/272,667, filed May 8, 2014, and entitled “Supersonic Compressor”, which claims the benefit of U.S. Provisional Application No. 61/823,237, filed May 14, 2013, and entitled “Supersonic Compressor”, both of which are incorporated by reference herein. Priority under the parent applications is claimed in all jurisdictions where it is permissible to do so.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/018361 | 2/15/2018 | WO | 00 |