The present disclosure relates to a centrifugal compressor and a turbocharger including the centrifugal compressor.
In recent year, it is desired to enlarge the operating region of centrifugal compressors. For instance, as automobile engines require to improve fuel efficiency and acceleration performance in a low speed region, turbochargers require to improve the efficiency in a low speed and low flow rate operating point. Such an operating region is a region where a centrifugal compressor of a turbocharger operates in a stall condition. In this region, large separation is observed in a scroll passage. Patent Document 1 describes that separation occurs due to recirculation flow from the scroll end to the scroll start in the scroll passage.
However, as a result of intensive studies by the present inventors, they have found that separation occurs by a factor other than the recirculation flow described in Patent Document 1. More specifically, compressed air discharged from a diffuser passage in the vicinity of a tongue of a scroll part forming the scroll passage swirls and flows through the scroll passage along the inner wall surface of the scroll passage. Such a swirl flow having made one round along the inner wall surface of the scroll passage interferes with compressed air discharged from the diffuser passage. This is one of factors of separation in the scroll passage.
In view of the above, an object of at least one embodiment of the present disclosure is to provide a centrifugal compressor and a turbocharger including the centrifugal compressor whereby it is possible to improve the efficiency in a low flow rate operating point.
(1) A centrifugal compressor according to at least one embodiment of the present disclosure comprises: an impeller and a housing. The housing includes: a scroll part having a scroll passage of a spiral shape formed on an outer peripheral side of the impeller; and a diffuser part including a pair of passage walls spaced from each other in an extension direction of a rotational axis of the impeller and forming a diffuser passage, communicating with the scroll passage along a circumferential direction of the scroll passage on a radially inner side of the impeller, between the pair of passage walls. The pair of passage walls includes: a first passage wall; and a second passage wall positioned closer to a scroll center of the scroll passage than the first passage wall is to the scroll center in the extension direction of the rotational axis. The second passage wall includes a radially inner portion of an inner wall surface of the scroll passage, and the radially inner portion of the inner wall surface included in the second passage wall forms at least one concave arc portion having a curvature radius inside the scroll passage in a cross-section of the housing formed by a plane that includes the rotational axis. The at least one concave arc portion includes a radially outermost concave arc portion located outermost in a radial direction of the impeller, and an inclination angle between a tangential direction of a radially outer edge of the radially outermost concave arc portion and a direction perpendicular to the rotational axis has a distribution along the circumferential direction of the scroll passage. When a circumferential position in the scroll passage from a tongue of the scroll part to an outlet of the scroll passage is represented by a central angle about the rotational axis by using the tongue as a reference, the distribution of the inclination angle has a local minimum value or a minimum value in a range of the central angle of 30° to 210°.
With the above configuration (1), as a swirl flow swirling and flowing through the scroll passage along the inner wall surface of the scroll passage circulates one round along the inner wall surface of the scroll passage, the angle between the direction of the swirl flow and the flow direction of a compressed fluid discharged from the diffuser passage decreases. Thus, interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage is reduced, and the occurrence of separation in the scroll passage is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor in a low flow rate operating point.
(2) In some embodiments, in the above configuration (1), the distribution of the inclination angle has the local minimum value or the minimum value in a range of the central angle of 30° to 120°.
The flow passage area of the scroll passage gradually decreases from the outlet toward the tongue. Due to this shape of the scroll passage, the inclination angle of the concave arc portion tends to increase as it approximates to the tongue. With the above configuration (2), by forming the scroll passage such that the inclination angle has a local minimum value or a minimum value in the range of the central angle of 30° to 120° where the inclination angle tends to increase if the scroll passage is formed without considering the size of the inclination angle, it is possible to decrease the inclination angle in the range of the central angle of 30° to 210°. Thus, interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage is reduced, and the occurrence of separation in the scroll passage is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor in a low flow rate operating point.
(3) In some embodiments, in the above configuration (1) or (2), the second passage wall includes: a flat inner wall surface which defines the diffuser passage and is flat and perpendicular to the rotational axis; a convex inner wall surface defining the scroll passage and curved convexly with respect to the scroll passage; at least one concave inner wall surface defining the scroll passage and forming the at least one concave arc portion in the cross-section of the housing formed by the plane that includes the rotational axis, the at least one concave inner wall surface including a radially outermost concave inner wall surface located outermost in the radial direction of the impeller and connected to the convex arc portion; and an end surface connecting the flat inner surface and the convex inner wall surface at an outermost portion of the flat inner surface in the radial direction of the impeller.
With the above configuration (3), in addition to that it is possible to reduce interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage and reduce the occurrence of separation in the scroll passage, since the inner wall defining the diffuser passage is flat and perpendicular to the rotational axis, it is possible to easily perform processing of the diffuser passage.
(4) In some embodiments, in any one of the above configurations (1) to (3), an outer diameter of the diffuser passage about the rotational axis has a distribution in a circumferential direction of the diffuser passage, and the distribution of the outer diameter of the diffuser passage has a local maximum value or a maximum value in a range of the central angle of 30° to 210°.
With the above configuration (4), since the inclination angle of the concave arc portion has a local minimum value or a minimum value in the range of the central angle of 30° to 210°, interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage is reduced, and the occurrence of separation in the scroll passage is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor in a low flow rate operating point.
(5) In some embodiments, in any one of the above configurations (1) to (4), a distance from the rotational axis to the scroll center of the scroll passage has a distribution in a circumferential direction of the diffuser passage, and the distribution of the distance has a local minimum value or a minimum value in a range of the central angle of 30° to 210°.
With the above configuration (5), since the inclination angle of the concave arc portion has a local minimum value or a minimum value in the range of the central angle of 30° to 210°, interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage is reduced, and the occurrence of separation in the scroll passage is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor in a low flow rate operating point.
(6) A turbocharger according to at least one embodiment of the present disclosure comprises: the centrifugal compressor described in any one of the above (1) to (5).
With the above configuration (6), since the occurrence of separation in the scroll passage is reduced, it is possible to improve the efficiency of the turbocharger in a low speed and low flow rate operating point.
According to at least one embodiment of the present disclosure, as a swirl flow swirling and flowing through the scroll passage along the inner wall surface of the scroll passage circulates one round along the inner wall surface of the scroll passage, the angle between the direction of the swirl flow and the flow direction of a compressed fluid discharged from the diffuser passage decreases. Thus, interference between the swirl flow and the flow of the compressed fluid discharged from the diffuser passage is reduced, and the occurrence of separation in the scroll passage is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor in a low flow rate operating point.
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. However, the scope of the present invention is not limited to the following embodiments. It is intended that dimensions, materials, shapes, relative positions and the like of components described in the embodiments shall be interpreted as illustrative only and not intended to limit the scope of the present invention.
A centrifugal compressor according to an embodiment of the present disclosure will be described by taking a centrifugal compressor of a turbocharger as an example. However, the centrifugal compressor in the present disclosure is not limited to a centrifugal compressor of a turbocharger, and may be any centrifugal compressor which operates alone. Although a fluid to be compressed by the compressor is air in the following description, the fluid may be replaced by any other fluid.
As shown in
Air flowing into the centrifugal compressor 1 through the air inlet part 9 is compressed by the impeller 3 into compressed air. The compressed air flows through the diffuser passage 8 into the scroll passage 5 and then passes through the scroll passage 5 and is discharged from the centrifugal compressor 1.
When the flow rate of air into the centrifugal compressor 1 is small since, for instance, the turbocharger operates at low speed, the centrifugal compressor 1 operates in a stall condition, resulting in a decrease in efficiency. In such an operating region, large separation is observed in the scroll passage 5. The present inventors have found one of factors that cause this separation as a result of intensive studies. The mechanism of separation due to this factor will now be described.
As shown in
As shown in
As shown in
Therefore, to suppress the occurrence of interference, the cross-sectional shape of the scroll passage 5 needs to have a reduced inclination angle α.
Curving convexly with respect to the scroll passage 5 means that the curvature center of a convex arc portion 23a forming the convex inner wall surface 23 is positioned outside the scroll passage 5 in the cross-section of the housing 2 (see
In the cross-section of the housing 2 including the rotational axis L, as the inclination angle α between the tangential direction A of a radially outer edge 24a1 of the concave arc portion 24a and the direction B perpendicular to the rotational axis L decreases, the angle β between the swirl flow f2 and the flow f3 of the compressed air that is about to flow from the diffuser passage 8 to the scroll passage 5 decreases. Thus, since interference between the swirl flow f2 and the flow f3 of the compressed fluid is reduced, the occurrence of separation is reduced. Accordingly, by making the cross-sectional shape of the scroll passage 5 such that the inclination angle α is small at the portion where interference can occur, it is possible to reduce the occurrence of separation.
Further, the present inventors have found that separation is likely to occur in a range of the central angle θ of 30° to 210° by CFD analysis. The reason is that when stable swirl flow is generated in the scroll passage 5, the swirl flow in the scroll passage 5 and the flow of the compressed air discharged from the diffuser passage 8 gradually stop interfering with each other, and thus interference is mainly caused on the upstream side in the scroll passage 5. Accordingly, by making the cross-sectional shape of the scroll passage 5 such that the inclination angle α is small on the upstream side, it is possible to effectively reduce the occurrence of separation.
The cross-sectional shape of the scroll passage 5 shown in
Next, some embodiments of the housing 2 (see
In an embodiment, the outer diameter of the diffuser passage 8 (see
Alternatively, in some embodiments, a distance R (see
Alternatively, in some embodiments, locally increasing the outer diameter of the diffuser passage 8 (see
As described above, as the swirl flow f2 swirling and flowing through the scroll passage 5 along the inner wall surface 5a of the scroll passage 5 circulates one round along the inner wall surface 5a of the scroll passage 5, the angle β between the direction of the swirl flow f2 and the direction of the flow f3 of the compressed fluid discharged from the diffuser passage 8 decreases. Thus, interference between the swirl flow f2 and the flow f3 of the compressed fluid discharged from the diffuser passage 8 is reduced, and the occurrence of separation in the scroll passage 5 is reduced. As a result, it is possible to improve the efficiency of the centrifugal compressor 1 in a low flow rate operating point.
In the above embodiments, the second passage wall 7b includes the flat end surface 22 connected to the flat inner wall surface 21 at right angle, the convex inner wall surface 23 connected to the end surface 22 and curved convexly with respect to the scroll passage 5, and the concave inner wall surface 24 connected to the convex inner wall surface 23 and curved concavely with respect to the scroll passage 5. However, the present invention is not limited thereto. The end surface 22 may not be perpendicular to the flat inner wall surface 21. The end surface 22 may be not flat but curved. Further, the convex inner wall surface 23 may be eliminated, and the concave inner wall surface 24 and the end surface may be connected to each other.
Further, two or more concave inner wall surfaces 24 may be included.
Although in the above embodiments, the distribution of the inclination angle α has a local minimum value or a minimum value in the range of the central angle θ of 30° to 210°, it may have a local minimum value or a minimum value in the range of the central angle θ of 30° to 120° (see
Further, although the diffuser passage is generally formed by cutting, in the above embodiments, since the flat inner wall surface 21 defining the diffuser passage 8 is flat and perpendicular to the rotational axis L, it is easy to process the diffuser passage 8.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/039909 | 11/6/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/087385 | 5/9/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9366265 | Tomita | Jun 2016 | B2 |
9562541 | Iwakiri | Feb 2017 | B2 |
20100178163 | Dettmann et al. | Jul 2010 | A1 |
20130266432 | Iwakiri | Oct 2013 | A1 |
20130272865 | Hoshi et al. | Oct 2013 | A1 |
20130343885 | Iwakiri et al. | Dec 2013 | A1 |
20160003259 | Yonezawa et al. | Jan 2016 | A1 |
20180347382 | Iwakiri et al. | Dec 2018 | A1 |
20180355886 | Fujiwara | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
103052808 | Apr 2013 | CN |
103415707 | Nov 2013 | CN |
2010-529358 | Aug 2010 | JP |
2010-216378 | Sep 2010 | JP |
2012-193716 | Oct 2012 | JP |
2016-17419 | Feb 2016 | JP |
WO 2012090853 | Jul 2012 | WO |
WO 2017109949 | Jun 2017 | WO |
Entry |
---|
Office Action dated Jul. 31, 2020 issued in counterpart Chinese Application No. 201780090061.3 with machine translation. |
International Preliminary Report on Patnetability and Written Opinion of the International Searching Authority, dated May 22, 2020, for International Application No. PCT/JP2017/039909, with an English Translation. |
International Search Report, dated Jan. 23, 2018, for International Application No. PCT/JP2017/039909, with an English translation. |
Number | Date | Country | |
---|---|---|---|
20210123456 A1 | Apr 2021 | US |