This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Centrifugal compressors may be employed to provide a pressurized flow of fluid for various applications. Such compressors typically include an impeller that is driven to rotate by an electric motor, an internal combustion engine, or another drive unit configured to provide a rotational output. As the impeller rotates, fluid entering in an axial direction is accelerated and expelled in a circumferential and a radial direction. The high-velocity fluid then enters a diffuser which converts the velocity head into a pressure head (i.e., decreases flow velocity and increases flow pressure). The volute or scroll then collects the radially outward flow and directs it into a pipe. In this manner, the centrifugal compressor produces a high-pressure fluid output. The overall compressor efficiency is a function of impeller, diffuser and scroll/volute performance, as well as the interaction between these components.
Various features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying figures in which like characters represent like parts throughout the figures, wherein:
One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
In certain configurations, a diffuser includes a series of vanes configured to enhance diffuser efficiency. Certain diffusers may include three-dimensional vanes configured to match flow variations from an impeller. For example, an angle of fluid flow from the impeller may vary along an axial direction. Consequently, a leading edge of each vane may be particularly contoured to match the angle of fluid flow, thereby reducing the incidence angle between the fluid flow and the vane. As will be appreciated, the angle of fluid flow adjacent to a shroud-side of the diffuser may be significantly different than the angle of fluid flow throughout the remainder of the axial flow profile. Therefore, it may not be feasible to properly contour the leading edge of each vane to match the angle of fluid flow adjacent to the shroud-side of the diffuser. As a result, the incidence angle may increase within the region adjacent to the shroud, thereby decreasing diffuser efficiency.
Embodiments of the present disclosure may increase diffuser efficiency by employing vanelets to reduce the incidence angle between the fluid flow and the leading edge of the vanes. In the present embodiments, both the vanes and vanelets axially extend into a flow path of the diffuser. The axial extent of the vanes is substantially equal to the axial extent of the flow path. For example, the vanes may extend from a hub side to a shroud side of the flow path. In contrast, the axial extent of the vanelets is less than the axial extent of the flow path. Therefore, vanelets coupled to the shroud side of the flow path do not contact the hub side, and vanelets coupled to the hub side of the flow path do not contact the shroud side. In certain embodiments, a diffuser includes multiple vanelets, in which a profile of each vanelet varies along the axial direction (e.g., three-dimensional vanelets), the vanelets form a non-periodic pattern around a circumference of the flow path (e.g., not circumferentially symmetric), or a combination thereof. The diffuser may also include multiple vanes having a profile that varies along the axial direction (e.g., three-dimensional vanes). The combination of three-dimensional vanes, three-dimensional vanelets and/or non-periodic vanelets may increase diffuser efficiency by substantially matching circumferential and/or axial variations in the fluid flow from the impeller.
In the present embodiment, the diffuser 24 may include vanelets configured to redirect fluid flow near an adjacent vane, thereby decreasing an incidence angle between the fluid flow and a leading edge of the vane. For example, the vanelets may properly align the fluid flow with the vane despite axial and/or circumferential variations in the flow field. As will be appreciated, reducing the incidence angle increases the efficiency of the vane, thereby increasing the overall efficiency of the diffuser 24. As a result of this configuration, overall compressor efficiency may increase by more than approximately 0.5, 1, 1.5, or more percent. As discussed in detail below, certain vanelets include a three-dimensional shape to account for variations in incidence angle along the vanelet span. Further embodiments include vanelets circumferentially disposed about the diffuser flow path in a non-periodic arrangement to compensate for circumferential variations in the flow field due to the presence of the scroll 26.
In the illustrated embodiment, the diffuser 24 includes a series of vanes 40 and vanelets 42 configured to increase the efficiency of the diffuser 24. As discussed in detail below, the vanes 40 and/or vanelets 42 are circumferentially disposed about the flow path 32 in an annular arrangement. As illustrated, an axial extent 44 of each vane 40 is equal to an axial extent 46 of the flow path 32, i.e., from the shroud-side mounting surface 34 to the hub-side mounting surface 36. The vanes 40 may be secured to the shroud-side mounting surface 34, the hub-side mounting surface 36, or both mounting surfaces 34 and 36.
In contrast to the vanes 40, an axial extent 48 of the vanelets 42 is less than the axial extent 46 of the flow path 32. For example, in certain embodiments, the axial extent 48 of the vanelets 42 may be less than approximately 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 percent, or less, of the axial extent 46 of the flow path 32. In the present embodiment, the vanelets 42 are mounted to the shroud-side mounting surface 34. However, in alternative embodiments, the vanelets 42 may be mounted to the hub-side mounting surface 36.
As discussed in detail below, the vanelets 42 may be configured to redirect the flow of fluid 30 from the impeller to reduce an incidence angle between a leading edge of the vanes 40 and the flow field. Consequently, diffuser efficiency may be increased compared to configurations which do not include the vanelets 42. In addition, because the vanelets 42 do not traverse the entire axial extent of the flow path 32, the vanelets 42 may improve choked flow performance compared to full-height vanes. Furthermore, the decreased axial extent of the vanelets 42 may reduce the possibility of reflecting pressure waves back toward the impeller 12, which may lead to rotordynamic instability.
As illustrated, the present embodiment employs 11 vanes 40 and an equal number of vanelets 42. It should be appreciated that alternative embodiments may employ more or fewer vanes 40 and/or vanelets 42. For example, certain configurations may utilize 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more vanes 40. Similarly, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more vanelets 42 may be employed. While the number of vanes 40 and vanelets 42 are equal in the present configuration, it should be appreciated that alternative configurations may employ more vanes 40 than vanelets 42, or more vanelets 42 than vanes 40. For example, in certain configurations two or more vanelets 42 may be positioned between each vane 40. In alternative configurations, the number of vanelets 42 between each vane 40 may vary along the circumferential direction 16. For example, certain pairs of vanes 40 may include 0, 1, 2, 3, 4, or more vanelets 42 disposed between them.
As illustrated, the present diffuser 24 includes vanes 40 and vanelets 42 arranged in a periodic configuration. As discussed in detail below, in a periodic configuration, the vanes 40 and vanelets 42 are symmetrically disposed about the shroud-side mounting surface 34 along the circumferential direction 16. Alternative configurations may employ non-periodic vanes 40 and/or non-periodic vanelets 42. In either a periodic or non-periodic configuration, the vanelets 42 serve to redirect flow from the impeller, thereby decreasing an incidence angle between the flow field and the vanes 40. Such a configuration may increase the efficiency of the diffuser 24 compared to diffusers having only vanes which extend along the entire axial extent of the flow path.
As illustrated, fluid flow 58 exits the impeller in both the circumferential direction 16 and the radial direction 22. An angle of the fluid flow 58 with respect to the circumferential axis 16 may vary along the circumferential direction 16. For example, at one circumferential position, the fluid flow 58 is oriented at an angle 59, while at a second circumferential position, the fluid flow 58 is oriented at an angle 60. In addition, the fluid flow 58 is oriented at an angle 61 at a third circumferential position. While three angles 59, 60 and 61 are shown, it should be appreciated that the fluid flow angle may vary continuously along the circumferential direction 16. Furthermore, it should be appreciated that the magnitude of the flow velocity may vary with circumferential position as well. Moreover, both the velocity magnitude and direction may vary with time, where the illustrated fluid flow 58 represents a time-averaged flow field.
As will be appreciated, the angles 59, 60 and 61 may vary based on impeller configuration, impeller rotation speed, and/or flow rate through the compressor 10, among other factors. In the present configuration, the angle 56 of the vanes 40 is particularly configured to match the direction of fluid flow 58 from the impeller 12. As will be appreciated, a difference between the leading edge angle 56 and the fluid flow angle 59, 60 or 61 may be defined as an incidence angle. The vanes 40 of the present embodiment are configured to substantially reduce the incidence angle, thereby increasing the efficiency of the centrifugal compressor 10. As a result, the angle 56 of each vane 40 may be particularly adjusted to match the time-averaged angle 59, 60 or 61 of the fluid flow 58 at a circumferential position corresponding to the circumferential position of the vane 40.
As previously discussed, the vanes 40 are disposed about the shroud-side mounting surface 34 in a substantially annular arrangement. A spacing 62 between vanes 40 along the circumferential direction 16 may be configured to provide efficient conversion of the velocity head to pressure head. In the present configuration, the spacing 62 between vanes 40 is substantially equal. However, alternative embodiments may employ uneven vane spacing. In addition, a spacing 64 between the vanes 40 and the vanelets 42 may serve to redirect the fluid flow adjacent to the shroud-side mounting surface 34, thereby decreasing the incidence angle and increasing the efficiency of the diffuser 24. In the present configuration, the spacing 64 is substantially equal between each vane 40 and vanelet 42. However, alternative embodiments may employ uneven vane 40/vanelet 42 spacing. Furthermore, in the present embodiment, a radial position 66 of each vane 40 is substantially equal to a radial position 68 of each vanelet 42. However, alternative embodiments may employ vanes 40 and vanelets 42 having different radial positions 66 and 68.
Each vane 40 includes a pressure surface 70 and a suction surface 72. As will be appreciated, as the fluid flows from the leading edge 52 to the trailing edge 54, a high pressure region is induced adjacent to the pressure surface 70 and a lower pressure region is induced adjacent to the suction surface 72. These pressure regions affect the flow field from the impeller 12, thereby increasing flow stability and efficiency compared to vaneless diffusers. In the present embodiment, each three-dimensional vane 40 is particularly configured to match the flow properties of the impeller 12, thereby providing increased efficiency.
In addition to variations in fluid flow velocity in the circumferential direction 16, the direction and/or magnitude of the fluid flow velocity may vary along the axial direction 20. Consequently, the angle 56 of the vane 40 relative to the circumferential axis 16 may vary along the axial direction 20 to substantially match the direction of fluid flow. However, the angle of fluid flow adjacent to the shroud side of the diffuser 24 may be significantly different than the angle of fluid flow throughout the remainder of the axial flow profile. Therefore, the present embodiment employs vanelets 42 adjacent to the vanes 40 to redirect the fluid flow adjacent to the shroud-side mounting surface 34, thereby decreasing the incidence angle and increasing the efficiency of the diffuser 24.
In addition, a circumferential position (i.e., position along the circumferential direction 16) of the leading edge 52 and/or trailing edge 54 may be configured to vary along the span 44 of the vane 40. As illustrated, a reference line 82 extends from the leading edge 52 of the vane tip 76 to the hub-side mounting surface 36 along the axial direction 20. The circumferential position of the leading edge 52 along the span 44 is offset from the reference line 82 by a variable distance 84. In other words, the leading edge 52 is variable rather than constant in the circumferential direction 16. This configuration establishes a variable distance between the impeller 12 and the leading edge 52 of the vane 40 along the span 44. For example, based on computer simulation of fluid flow from the impeller 12, a particular distance 84 may be selected for each axial position along the span 44. In this manner, efficiency of the vane 40 may be increased compared to configurations employing a constant distance 84. In the present embodiment, the distance 84 increases as distance from the vane tip 76 increases. Alternative embodiments may employ other leading edge profiles, including arrangements in which the leading edge 52 extends past the reference line 82 along a direction toward the impeller 12.
Similarly, a circumferential position of the trailing edge 54 may be configured to vary along the span 44 of the vane 40. As illustrated, a reference line 86 extends from the trailing edge 54 of the vane root 74 away from the hub-side mounting surface 36 along the axial direction 20. The circumferential position of the trailing edge 54 along the span 44 is offset from the reference line 86 by a variable distance 88. In other words, the trailing edge 54 is variable rather than constant in the circumferential direction 16. This configuration establishes a variable distance between the impeller 12 and the trailing edge 54 of the vane 40 along the span 44. For example, based on computer simulation of fluid flow from the impeller 12, a particular distance 88 may be selected for each axial position along the span 44. In this manner, efficiency of the vane 40 may be increased compared to configurations employing a constant distance 88. In the present embodiment, the distance 88 increases as distance from the vane root 74 increases. Alternative embodiments may employ other trailing edge profiles, including arrangements in which the trailing edge 54 extends past the reference line 86 along a direction away from the impeller 12. In further embodiments, a radial position of the leading edge 52 and/or a radial position of the trailing edge 54 may vary along the span 44 of the diffuser vane 40.
Furthermore, the leading edge 52 and/or the trailing edge 54 may include a curved profile at the tip of the respective edge. Specifically, a tip of the leading edge 52 may include a curved profile having a radius of curvature 90 configured to direct fluid flow around the leading edge 52. Similarly, a radius of curvature 92 of a tip of the trailing edge 54 may be selected based on computed flow properties at the trailing edge 54. In certain configurations, the radius of curvature 90 of the leading edge 52 may be larger than the radius of curvature 92 of the trailing edge 54. In alternative configurations, the radius of curvature 90 of the leading edge 52 may be smaller than the radius of curvature 92 of the trailing edge 54.
Another vane property that may affect fluid flow through the diffuser 24 is the curvature of the vane 40. As illustrated, a mean vane sectional line 94 extends from the leading edge 52 to the trailing edge 54 and defines the center of the vane profile (i.e., the center line between the pressure surface 70 and the suction surface 72). The mean vane sectional line 80 illustrates the curved profile of the vane 40. Specifically, a leading edge tangent line 96 extends from the leading edge 52 and is tangent to the mean vane sectional line 94 at the leading edge 52. Similarly, a trailing edge tangent line 98 extends from the trailing edge 54 and is tangent to the mean vane sectional line 94 at the trailing edge 54. An curvature angle 100 is formed at the intersection between the tangent line 96 and tangent line 98. As illustrated, the larger the curvature of the vane 40, the larger the curvature angle 100. Therefore, the angle 100 provides an effective measurement of the curvature of the vane 40. The curvature angle 100 may be selected to provide an efficient conversion from dynamic head to pressure head based on flow properties from the impeller 12. For example, the curvature angle 100 may be greater than approximately 0, 5, 10, 15, 20, 25, 30, or more degrees.
The curvature angle 100, the radius of curvature 90 of the leading edge 52, the radius of curvature 92 of the trailing edge 54 and/or the length 78 may vary along the span 44 of the vane 40. Specifically, each of the above parameters may be particularly selected for each axial cross section based on computed flow properties at the corresponding axial location. In this manner, a three-dimensional vane 40 (i.e., a vane 40 having a variable cross section geometry or profile) may be constructed that provides increased efficiency compared to a two-dimensional vane (i.e., a vane having a constant cross section geometry).
Referring now to
The reference surface 118 may be characterized by a collection of unique points defined by a radial distance r from the reference center point c, an angular location θ, and an axial height z. For any given reference plane, the axial height z for the collection of unique points will be the same. However, the radial distance r and the angular location θ will be different and will define each unique point of the reference surface 118 in the reference plane. For example, a leading edge point 120 corresponding to the leading edge section 122 of the vanelet 42 may be defined as a baseline point of the reference surface 118 and, as such, may be defined by a radial distance r0 and an angular location θo equal to 0 degrees. Similarly, a trailing edge point 124 corresponding to the trailing edge section 126 of the vanelet 42 may be defined by a radial distance r1 and an angular location θ1. In addition, a suction surface point 128 may be defined by a radial distance r2 and an angular location θ2. As such, a suction surface 130 of the vanelet 42 may be defined by the plurality of points along the suction surface 130 of the vanelet 42. However, a pressure surface 132 of the vanelet 42 may be similarly defined. Indeed, there may be an infinite number of unique points in the reference surface 118 of the reference vanelet 42 illustrated in
Furthermore, each vanelet 42 of the diffuser 24 of
Each of the illustrated vanelets 134, 136, 138, 140, 142, 144, 146, 148, 150, 152 and 154 are generally associated with one of the reference points A, B, C, D, E, F, G, H, I, J and K (e.g., vanelet 134 with reference point A, vanelet 136 with reference point B, vanelet 138 with reference point C, vanelet 140 with reference point D, vanelet 142 with reference point E, vanelet 144 with reference point F, vanelet 146 with reference point G, vanelet 148 with reference point H, vanelet 150 with reference point I, vanelet 152 with reference point J and vanelet 154 with reference point K). The reference points A, B, C, D, E, F, G, H, I, J and K are used to illustrate how the shape, orientation, and/or location of the vanelets 134-154 may change from vanelet to vanelet along the circumferential direction 16 of the shroud-side mounting surface 34.
More specifically, as described above, in order to be considered a periodic (e.g., symmetrical) arrangement of vanelets, for every point that lies within the two-dimensional domain of a vanelet (e.g., a reference vanelet 134) reference plane, the rotation of the point by 32.73 degrees, 65.46 degrees, 98.19 degrees, 130.92 degrees, 163.65 degrees, 196.38 degrees, 229.11 degrees, 261.84 degrees, 294.57 and 327.30 degrees (e.g., integer multiples of 360.0 degrees divided by 11, or 32.73 degrees) would yield a point that lies within the two-dimensional domain of the reference plane of the other vanelets 136, 138, 140, 142, 144, 146, 148, 150, 152 and 154. However, as illustrated, reference points B, C, D, E, F, G, H, I, J and K, which correspond to reference point A rotated through arc angles of 32.73 degrees, 65.46 degrees, 98.19 degrees, 130.92 degrees, 163.65 degrees, 196.38 degrees, 229.11 degrees, 261.84 degrees, 294.57 and 327.30 degrees, do not all lie within the two-dimensional domain of the reference plane for the other vanelets 136, 138, 140, 142, 144, 146, 148, 150, 152 and 154. For example, reference points H and I do not even lie within the corresponding vanelets 148 and 150. As such, the vanelets 134-154 are arranged in a non-periodic configuration within the diffuser 24.
As will be appreciated, the non-periodic configuration of vanelets 134-154 may compensate for circumferential flow variations within the diffuser 24. For example, the scroll 26 may induce circumferential deviations in the direction and/or speed of the fluid flow through the diffuser 24. Consequently, in the present embodiment, the position, number and/or orientation of the vanelets 134-154 may be particularly configured to account for the scroll induced flow variations. As a result, the non-periodic arrangement of vanelets 134-154 may be more efficient than the periodic arrangement described above with reference to the diffuser 24 in
As illustrated, the span 48 is defined by a vanelet tip 160 on the hub side and a vanelet root 162 on the shroud side. As discussed in detail below, a meridional length of the vanelet 134 is configured to vary along the span 48. The meridional length is the distance between the leading edge 156 and the trailing edge 158 at a particular axial position along the vanelet 134. For example, a length 164 of the vanelet tip 160 may vary from a length 166 of the vanelet root 162. A meridional length for an axial position (i.e., position along the axial direction 20) of the vanelet 134 may be selected based on fluid flow characteristics at that particular axial location. For example, computer modeling may determine that fluid velocity from the impeller 12 varies in the axial direction 20. Therefore, the meridional length for each axial position may be particularly selected to correspond to the incident fluid velocity. In this manner, efficiency of the vanelet 134 may be increased compared to configurations in which the length remains substantially constant along the span 48 of the vanelet 134. Furthermore, in diffuser configurations, such as the diffuser 24 shown in
In addition, a circumferential position (i.e., position along the circumferential direction 16) of the leading edge 156 and/or trailing edge 158 may be configured to vary along the span 48 of the vanelet 134. As illustrated, a reference line 168 extends from the leading edge 156 of the vanelet root 162 to the hub side axial extent of the vanelet 134. The circumferential position of the leading edge 156 along the span 48 is offset from the reference line 168 by a variable distance 170. In other words, the leading edge 156 is variable rather than constant in the circumferential direction 16. This configuration establishes a variable distance between the impeller 12 and the leading edge 156 of the vanelet 134 along the span 48. For example, based on computer simulation of fluid flow from the impeller 12, a particular distance 170 may be selected for each axial position along the span 48. In this manner, efficiency of the vanelet 134 may be increased compared to configurations employing a constant distance 170. In addition, the distance 170 at each axial position may be particularly configured to redirect fluid flow near an adjacent vane 40, thereby decreasing the incidence angle between the fluid flow and the vane 40. As will be appreciated, such a configuration may increase the overall efficiency of a diffuser 24 employing both vanes 40 and vanelets 134-154. In the present embodiment, the distance 170 increases as distance from the vanelet root 162 increases. Alternative embodiments may employ other leading edge profiles, including arrangements in which the leading edge 156 extends past the reference line 168 along a direction toward the impeller 12.
Similarly, a circumferential position of the trailing edge 158 may be configured to vary along the span 48 of the vanelet 134. As illustrated, a reference line 172 extends from the trailing edge 158 of the vanelet tip 160 toward the shroud-side mounting surface 34 along the axial direction 20. The circumferential position of the trailing edge 158 along the span 48 is offset from the reference line 172 by a variable distance 174. In other words, the trailing edge 158 is variable rather than constant in the circumferential direction 16. This configuration establishes a variable distance between the impeller 12 and the trailing edge 158 of the vanelet 134 along the span 48. For example, based on computer simulation of fluid flow from the impeller 12, a particular distance 174 may be selected for each axial position along the span 48. In this manner, efficiency of the vanelet 134 may be increased compared to configurations employing a constant distance 174. In addition, the distance 174 at each axial position may be particularly configured to redirect fluid flow near an adjacent vane 40, thereby decreasing the incidence angle between the fluid flow and the vane 40. As will be appreciated, such a configuration may increase the overall efficiency of a diffuser 24 employing both vanes 40 and vanelets 134-154. In the present embodiment, the distance 174 increases as distance from the vanelet root 162 increases. Alternative embodiments may employ other trailing edge profiles, including arrangements in which the trailing edge 158 extends past the reference line 172 along a direction away from the impeller 12. In further embodiments, a radial position of the leading edge 156 and/or a radial position of the trailing edge 158 may vary along the span 48 of the vanelet 134.
Furthermore, the leading edge 156 and/or the trailing edge 158 may include a curved profile at the tip of the respective edge. Specifically, a tip of the leading edge 156 may include a curved profile having a radius of curvature 182 configured to direct fluid flow around the leading edge 156. Similarly, a radius of curvature 184 of a tip of the trailing edge 158 may be selected based on computed flow properties at the trailing edge 158. In certain configurations, the radius of curvature 182 of the leading edge 156 may be larger than the radius of curvature 184 of the trailing edge 158. In alternative configurations, the radius of curvature 182 of the leading edge 156 may be smaller than the radius of curvature 184 of the trailing edge 158.
Another vane property that may affect fluid flow through the diffuser 24 is the curvature of the vanelet 134. As illustrated, a mean vanelet sectional line 186 extends from the leading edge 156 to the trailing edge 158 and defines the center of the vanelet profile (i.e., the center line between the pressure surface 176 and the suction surface 178). The mean vanelet sectional line 186 illustrates the curved profile of the vanelet 134. Specifically, a leading edge tangent line 188 extends from the leading edge 156 and is tangent to the mean vanelet sectional line 186 at the leading edge 156. Similarly, a trailing edge tangent line 190 extends from the trailing edge 158 and is tangent to the mean vanelet sectional line 186 at the trailing edge 158. A curvature angle 192 is formed at the intersection between the tangent line 188 and tangent line 190. As illustrated, the larger the curvature of the vanelet 134, the larger the curvature angle 192. Therefore, the angle 192 provides an effective measurement of the curvature of the vanelet 134. The curvature angle 192 may be selected to provide an efficient conversion from dynamic head to pressure head based on flow properties from the impeller 12. In addition, the curvature angle 192 may be selected to redirect fluid flow near an adjacent vane 40 to decrease an incidence angle between the fluid flow and the leading edge of the vane 40. As will be appreciated, such a configuration may increase the efficiency of diffuser configurations which employ both vanes 40 and vanelets 134-154. For example, the curvature angle 192 may be greater than approximately 0, 5, 10, 15, 20, 25, 30, or more degrees.
The curvature angle 192, the radius of curvature 182 of the leading edge 156, the radius of curvature 184 of the trailing edge 158 and/or the length 164 may vary along the span 48 of the vanelet 134. Specifically, each of the above parameters may be particularly selected for each axial cross section based on computed flow properties at the corresponding axial location. In this manner, a three-dimensional vanelet 134 (i.e., a vanelet 134 having a variable cross section geometry or profile) may be constructed that provides increased efficiency compared to a two-dimensional vane (i.e., a vane having a constant cross section geometry).
Similar to the non-periodic configuration described above with regard to
Each of the illustrated vanelets 210, 212, 214, 216, 218, 220, 222, 224, 226, 228 and 230 are generally associated with one of the reference points L, M, N, O, P, Q, R, S, T, U and V (e.g., vanelet 210 with reference point L, vanelet 212 with reference point M, vanelet 214 with reference point N, vanelet 216 with reference point O, vanelet 218 with reference point P, vanelet 220 with reference point Q, vanelet 222 with reference point R, vanelet 224 with reference point S, vanelet 226 with reference point T, vanelet 228 with reference point U and vanelet 230 with reference point V). The reference points L, M, N, O, P, Q, R, S, T, U and V are used to illustrate how the shape, orientation, and/or location of the vanelets 210-230 may change from vanelet to vanelet along the circumferential direction 16 of the shroud-side mounting surface 34.
More specifically, as described above, in order to be considered a periodic (e.g., symmetrical) arrangement of vanelets, for every point that lies within the two-dimensional domain of a vanelet (e.g., a reference vanelet 210) reference plane, the rotation of the point by 32.73 degrees, 65.46 degrees, 98.19 degrees, 130.92 degrees, 163.65 degrees, 196.38 degrees, 229.11 degrees, 261.84 degrees, 294.57 and 327.30 degrees (e.g., integer multiples of 360.0 degrees divided by 11, or 32.73 degrees) would yield a point that lies within the two-dimensional domain of the reference plane of the other vanelets 212, 214, 216, 218, 220, 222, 224, 226, 228 and 230. However, as illustrated, reference points M, N, O, P, Q, R, S, T, U and V, which correspond to reference point A rotated through arc angles of 32.73 degrees, 65.46 degrees, 98.19 degrees, 130.92 degrees, 163.65 degrees, 196.38 degrees, 229.11 degrees, 261.84 degrees, 294.57 and 327.30 degrees, do not all lie within the two-dimensional domain of the reference plane for the other vanelets 212, 214, 216, 218, 220, 222, 224, 226, 228 and 230. For example, reference point V does not even lie within the corresponding vanelet 230. As such, the vanelets 210-230 are arranged in a non-periodic configuration within the diffuser 24.
As illustrated, the span 48 is defined by a vanelet tip 236 on the hub side and a vanelet root 238 on the shroud side. As discussed in detail below, a meridional length of the vanelet 210 does not vary along the span 48 because the vanelet is two-dimensional. The meridional length is the distance between the leading edge 232 and the trailing edge 234 at a particular axial position along the vanelet 210. In the present embodiment, the length of the vanelet 210 remains constant. For example, a meridional length 240 of the vanelet tip 236 is substantially the same as a meridional length 242 of the vanelet root 238.
In addition, a circumferential position (i.e., position along the circumferential direction 16) of the leading edge 232 and/or trailing edge 234 does not vary along the span 48 of the vanelet 210. As illustrated, a reference line 244 extends from the vanelet root 238 to the hub side axial extent of the vanelet 210. The circumferential position of the leading edge 232 along the span 48 is offset from the reference line 244 by a constant distance 246. Similarly, a circumferential position of the trailing edge 234 does not vary along the span 48 of the vanelet 210. As illustrated, a reference line 248 extends from the vanelet tip 236 toward the shroud-side mounting surface 34 along the axial direction 20. The circumferential position of the trailing edge 234 along the span 48 is offset from the reference line 248 by a constant distance 250. Because the length and the circumferential position of the leading edge 232 and trailing edge 234 remain substantially constant, the design and manufacturing costs associated with vanelet production may be substantially less than the three-dimensional configurations described above. Furthermore, such two-dimensional vanelets 210-230 may provide increased diffuser efficiency by redirecting fluid flow near an adjacent vane 40, thereby decreasing the incidence angle between the vane 40 and the fluid flow.
Another vane property that may affect fluid flow through the diffuser 24 is the curvature of the vanelet 210. As illustrated, a mean vanelet sectional line 260 extends from the leading edge 232 to the trailing edge 234 and defines the center of the vanelet profile (i.e., the center line between the pressure surface 252 and the suction surface 254). The mean vanelet sectional line 260 illustrates the curved profile of the vanelet 210. Specifically, a leading edge tangent line 262 extends from the leading edge 232 and is tangent to the mean vanelet sectional line 260 at the leading edge 232. Similarly, a trailing edge tangent line 264 extends from the trailing edge 232 and is tangent to the mean vanelet sectional line 260 at the trailing edge 234. An curvature angle 266 is formed at the intersection between the tangent line 262 and tangent line 264. As illustrated, the larger the curvature of the vanelet 210, the larger the curvature angle 266. Therefore, the angle 266 provides an effective measurement of the curvature of the vanelet 210. The curvature angle 266 may be selected to provide an efficient conversion from dynamic head to pressure head based on flow properties from the impeller 12. In addition, the curvature angle 266 may be selected to redirect fluid flow near an adjacent vane 40 to decrease an incidence angle between the fluid flow and the leading edge of the vane 40. As will be appreciated, such a configuration may increase the efficiency of the diffuser 24. For example, the curvature angle 266 may be greater than approximately 0, 5, 10, 15, 20, 25, 30, or more degrees.
The curvature angle 266, the radius of curvature 256 of the leading edge 232, the radius of curvature 258 of the trailing edge 234 and the length 240 remain constant along the span 48 of the vanelet 210. In this manner, a two-dimensional vanelet 210 (i.e., a vanelet 210 having a constant cross section geometry or profile) may be constructed that provides increased efficiency compared to diffuser configurations without vanelets. As previously discussed, the two-dimensional vanelet configuration may reduce diffuser design and manufacturing costs, while providing increased diffuser efficiency.
As will be appreciated, the vanelets described above may be employed within various diffuser configurations. For example, the diffuser 24 described with reference to
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application claims priority to and benefit of U.S. patent application Ser. No. 12/701,446, entitled “Centrifugal Compressor Diffuser Vanelet”, filed on Feb. 5, 2010, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12701446 | Feb 2010 | US |
Child | 13975283 | US |