The present disclosure relates to a centrifugal compressor.
A centrifugal compressor includes a compressor housing in which an intake flow path is formed. A compressor impeller is arranged in the intake flow path. When a flow rate of air flowing into the compressor impeller is reduced, air compressed by the compressor impeller flows backward in the intake flow path, causing a phenomenon called surging.
Patent Literature 1 discloses a centrifugal compressor having a throttling mechanism in a compressor housing. The throttling mechanism comprises a movable member. The movable member is configured to be movable between a protruding position in which the movable member protrudes into an intake flow path, and a retracted position in which the movable member is retracted from the intake flow path. The throttling mechanism reduces the flow path cross-sectional area of the intake flow path by causing the movable member to protrude into the intake flow path. When the movable member protrudes into the intake flow path, the air flowing backward in the intake flow path is blocked by the movable member. The blocking of the air flowing backward in the intake flow path inhibits surging.
Patent Literature 1: JP 2009-236035 A
The movable member is pressed against a wall surface of the compressor housing positioned upstream in a flow of intake air, by the air flowing backward in the intake flow path. In this state, the frictional force between the wall of the compressor housing and the movable member increases. As a result, a load on the throttling mechanism increases when the movable member is driven.
An object of the present disclosure is to provide a centrifugal compressor capable of reducing a load for driving a movable member.
In order to solve the above problem, a centrifugal compressor according to one aspect of the present disclosure comprises: a housing including an intake flow path; a compressor impeller disposed in the intake flow path; an accommodation chamber formed upstream of the compressor impeller in a flow of an intake air in the housing; a movable member disposed in the accommodation chamber, and a contacting portion and a non-contacting portion provided on an accommodation chamber opposing surface of the accommodation chamber, the accommodation chamber opposing surface being positioned upstream of the movable member.
The contacting portion may be arranged at the radially innermost area of the accommodation chamber opposing surface.
The non-contacting portion may communicate with the intake flow path.
According to the present disclosure, a load for driving a movable member can be reduced.
Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Specific dimensions, materials, and numerical values, etc. shown in the embodiments are merely examples for a better understanding, and do not limit the present disclosure unless otherwise specified. In this specification and the drawings, duplicate explanations are omitted for elements having substantially the same functions and configurations by affixing the same reference sign. In addition, elements not directly related to the present disclosure are omitted from the figures.
As shown in
An accommodation hole 2a is formed in the bearing housing 2. The accommodation hole 2a passes through in the left-to-right direction of the turbocharger TC. A bearing 6 is arranged in the accommodation hole 2a. In
An inlet 10 is formed in the compressor housing 100. The inlet 10 opens to the right side of the turbocharger TC. The inlet 10 is connected to an air cleaner (not shown). A diffuser flow path 11 is formed between the bearing housing 2 and the compressor housing 100. The diffuser flow path 11 pressurizes air. The diffuser flow path 11 has an annular shape from an inner side to an outer side in a radial direction of the shaft 7 (compressor impeller 9) (hereinafter simply referred to as the radial direction). The diffuser flow path 11 is connected to the inlet 10 via the compressor impeller 9 at the inner side in the radial direction.
A compressor scroll flow path 12 is formed in the compressor housing 100. The compressor scroll flow path 12 is formed in an annular shape. The compressor scroll flow path 12 is, for example, positioned radially outside the compressor impeller 9. The compressor scroll flow path 12 is connected to an air intake of the engine (not shown) and to the diffuser flow path 11. When the compressor impeller 9 rotates, air is sucked into the compressor housing 100 from the inlet 10. The intake air is pressurized and accelerated when passing through the blades of the compressor impeller 9. The pressurized and accelerated air is further pressurized in the diffuser flow path 11 and the compressor scroll flow path 12. The pressurized air is discharged from a discharge port (not shown) and is led to the air intake port of the engine.
As described above, the turbocharger TC comprises the centrifugal compressor (compressor) CC. The centrifugal compressor CC includes the compressor housing 100, the compressor impeller 9, the compressor scroll flow path 12, and the link mechanism 200 described below.
An outlet 13 is formed in the turbine housing 4. The outlet 13 opens to the left side of the turbocharger TC. The outlet 13 is connected to an exhaust gas purification device (not shown). A connecting flow path 14 and a turbine scroll flow path 15 are formed in the turbine housing 4. The turbine scroll flow path 15 is positioned radially outside the turbine impeller 8. The connecting flow path 14 is positioned between the turbine impeller 8 and the turbine scroll flow path 15.
The turbine scroll flow path 15 is connected to a gas intake (not shown). Exhaust gas discharged from an exhaust manifold (not shown) of the engine is led to the gas intake. The connecting flow path 14 connects the turbine scroll flow path 15 with the outlet 13. The exhaust gas led from the gas intake to the turbine scroll flow path 15 is led to the outlet 13 through the connecting flow path 14 and between the blades of the turbine impeller 8. The exhaust gas rotates the turbine impeller 8 when passing therethrough.
The rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As described above, the air is pressurized by the rotational force of the compressor impeller 9 and is led to the air intake of the engine.
The first housing member 110 has an approximately cylindrical shape. A through hole 111 is formed in the first housing member 110. The first housing member 110 includes an end surface 112 on a side that is proximate (connected) to the second housing member 120. The first housing member 110 includes an end surface 113 on a side that is spaced apart from the second housing member 120. The inlet 10 is formed on the end surface 113. The through hole 111 extends from the end surface 112 to the end surface 113 along a rotational axis direction of the shaft 7 (compressor impeller 9) (hereinafter simply referred to as the rotational axis direction). The through hole 111 penetrates the first housing member 110 in the rotational axis direction. The through hole 111 includes the inlet 10 at the end surface 113.
The through hole 111 includes a parallel portion 111a and a tapered portion 111b. The parallel portion 111a is positioned closer to the end surface 113 with respect to the tapered portion 111b. An inner diameter of the parallel portion 111a is substantially constant over the rotational axis direction. The tapered portion 111b is positioned closer to the end surface 112 with respect to the parallel portion 111a. The tapered portion 111b is continuous with the parallel portion 111a. In the tapered portion 111b, an inner diameter of a portion that is continuous with the parallel portion 111a is substantially equal to the inner diameter of the parallel portion 111a. The inner diameter of the tapered portion 111b decreases as being spaced apart from the parallel portion 111a (as approaching the end surface 112).
A notch portion 112a is formed on the end surface 112. The notch portion 112a is depressed from the end surface 112 toward the end surface 113. The notch 112a is formed on an outer periphery of the end surface 112. The notch portion 112a has, for example, a substantially annular shape when seen from the rotational axis direction.
An accommodation chamber AC is formed on the end surface 112. The accommodation chamber AC is formed closer to the inlet 10 of the first housing member 110 with respect to leading edges LE of the blades of the compressor impeller 9. The accommodation chamber AC includes an accommodation groove 112b, bearing holes 112d, and an accommodation hole 115 which will be described later.
The accommodation groove 112b is formed in the end surface 112. The accommodating groove 112b is positioned between the notch portion 112a and the through hole 111. The accommodation groove 112b is depressed from the end surface 112 toward the end surface 113. The accommodating groove 112b has, for example, a substantially annular shape when seen from the rotational axis direction. The accommodating groove 112b is connected to the through hole 111 at a radially inner side.
The bearing holes 112d are formed in a wall surface (accommodation chamber opposing surface) 112c on the end surface 113 side of the accommodation groove 112b. The bearing holes 112d extend in the rotational axis direction from the wall surface 112c toward the end surface 113. Two bearing holes 112d are provided with being spaced apart from each other in a rotational direction of the shaft 7 (compressor impeller 9) (hereinafter simply referred to as the rotational direction or a circumferential direction). The two bearing holes 112d are arranged at positions spaced apart from each other by 180 degrees in the rotational direction.
A through hole 121 is formed in the second housing member 120. The second housing member 120 includes an end surface 122 on a side proximate (connected) to the first housing member 110. The second housing member 120 also has an end surface 123 on a side spaced apart from the first housing member 110 (a side connected to the bearing housing 2). The through hole 121 extends from the end surface 122 to the end surface 123 along the rotational axis direction. The through hole 121 penetrates the second housing member 120 in the rotational axis direction.
An inner diameter of the through hole 121 at an end portion on the end surface 122 is substantially equal to the inner diameter of the through hole 111 at an end portion on the end surface 112. A shroud portion 121a is formed on an inner wall of the through hole 121. The shroud portion 121a faces the compressor impeller 9 from radially outside. An outer diameter of the compressor impeller 9 increases as being spaced apart from the leading edge LE of the compressor impeller 9. An inner diameter of the shroud portion 121a increases as being spaced apart from the end surface 122 (as approaching the end surface 123).
An accommodation groove 122a is formed on the end surface 122. The accommodation groove 122a is depressed from the end surface 122 toward the end surface 123. The accommodation groove 122a has, for example, a substantially annular shape when seen from the rotational axis direction. The housing member 110 is inserted into the accommodation groove 122a. A wall surface 122b is formed on the end surface 123 side of the accommodation groove 122a. The end surface 112 of the first housing member 110 contacts the wall surface 122b. In this state, the accommodation chamber AC is formed between the first housing member 110 (wall surface 112c) and the second housing member 120 (wall surface 122b).
The through hole 111 of the first housing member 110 and the through hole 121 of the second housing member 120 form an intake flow path 130. In this manner, the intake flow path 130 is formed in the compressor housing 100. The intake flow path 130 is connected from an air cleaner (not shown) to the diffuser flow path 11 through the inlet 10. An air cleaner side (inlet 10 side) of the intake flow path 130 is an upstream side of the intake air, and the diffuser flow path 11 side of the intake flow path 130 is a downstream side of the intake air.
The compressor impeller 9 is arranged in the intake flow path 130. A cross-sectional shape of the intake flow path 130 (through holes 111 and 121) perpendicular to the rotational axis direction has, for example, a circular shape centered on the rotational axis of the compressor impeller 9. However, the cross-sectional shape of the intake flow path 130 is not limited thereto, and may be, for example, an elliptical shape.
A sealing member (not shown) is disposed in the notch portion 112a of the first housing member 110. The sealing member reduces an air flow through a gap between the first housing member 110 and the second housing member 120. However, the notch portion 112a and the sealing member are not essential.
The first movable member 210 is disposed in the accommodation groove 112b (accommodation chamber AC). Specifically, the first movable member 210 is disposed between the wall surface 112c of the accommodation groove 112b and the wall surface 122b of the accommodation groove 122a (see
The curved portion 211 extends in a circumferential direction of the compressor impeller 9. The curved portion 211 has a substantially semicircular arc shape. One end surface 211a and the other end surface 211b of the curved portion 211 in the circumferential direction extend parallel to the radial direction and the rotational axis direction. However, the one end surface 211a and the other end surface 211b may be inclined with respect to the radial direction and the rotational axis direction.
The arm portion 212 is provided on a side of the one end surface 211a of the curved portion 211. The arm portion 212 extends radially outward from an outer peripheral surface 211c of the curved portion 211. The arm portion 212 extends in a direction that is inclined with respect to the radial direction (toward the second movable member 220).
The second movable member 220 is disposed in the accommodation groove 112b (accommodation chamber AC). Specifically, the second movable member 220 is disposed between the wall surface 112c of the accommodation groove 112b and the wall surface 122b of the accommodation groove 122a (see
The curved portion 221 extends in a circumferential direction of the compressor impeller 9. The curved portion 221 has a substantially semicircular arc shape. One end surface 221a and the other end surface 221b of the curved portion 221 in the circumferential direction extend parallel to the radial direction and the rotational axis direction. However, the one end surface 221a and the other end surface 221b may be inclined with respect to the radial direction and the rotational axis direction.
The arm portion 222 is provided on a side of the one end surface 221a of the curved portion 221. The arm portion 222 extends radially outward from ah outer peripheral surface 221c of the curved portion 221. The arm portion 222 extends in a direction that is inclined with respect to the radial direction (toward the first movable member 210 side).
The curved portion 211 faces the curved portion 221 across the center of rotation of the compressor impeller 9 (intake flow path 130). The one end surface 211a of the curved portion 211 faces the other end surface 221b of the curved portion 221 in the circumferential direction. The other end surface 211b of the curved portion 211 faces the one end surface 221a of the curved portion 221 in the circumferential direction. The first movable member 210 and the second movable member 220 are configured so that the curved portions 211 and 221 are movable in the radial direction, as will be described in detail below.
The connecting member 230 is connected to the first movable member 210 and the second movable member 220. The connecting member 230 is positioned closer to the inlet 10 with respect to the first movable member 210 and the second movable member 220. The connecting member 230 has a substantially circular arc shape. The connecting member 230 has a first bearing hole 231 formed at one end in the circumferential direction and a second bearing hole 232 formed at the other end. In the connecting member 230, the first bearing hole 231 and the second bearing hole 232 are opened on an end surface 233 closer to the first movable member 210 and the second movable member 220. The first bearing hole 231 and the second bearing hole 232 are depressed in the rotational axis direction. In this embodiment, the first bearing hole 231 and the second bearing hole 232 are non-through holes. However, the first bearing hole 231 and the second bearing hole 232 may penetrate the connecting member 230 in the rotational axis direction.
In the connecting member 230, a rod connection portion 234 is formed between the first bearing hole 231 and the second bearing hole 232. In the connecting member 230, the rod connection portion 234 is formed on an end surface 235 opposite to the first movable member 210 and the second movable member 220. The rod connection portion 234 protrudes in the rotational axis direction from the end surface 235. The rod connection portion 234 has, for example, a substantially cylindrical shape.
The rod 240 has a substantially cylindrical shape. The rod 240 has a flat portion 241 formed at one end and a connecting portion 243 formed at the other end. The flat portion 241 extends in a plane direction substantially perpendicular to the rotational axis direction. A bearing hole 242 is opened in the flat portion 241. The bearing hole 242 extends in the rotational axis direction. The connecting portion 243 has a connecting hole 243a. An actuator (described below) is connected to the connecting portion 243 (the connecting hole 243a). The bearing hole 242 may be, for example, an elongated hole whose length in a direction perpendicular to the rotational axis direction and an axial direction of the rod 240 (left-to-right direction in
The rod 240 includes a rod large diameter portion 244 and two rod small diameter portions 245 between the flat portion 241 and the connecting portion 243. The rod large diameter portion 244 is disposed between the two rod small diameters 245. Between the two rod small diameter portions 245, the rod small diameter portion 245 closer to the flat portion 241 connects the rod large diameter portion 244 with the flat portion 241. Between the two rod small diameter portions 245, the rod small diameter portion 245 closer to the connecting portion 243 connects the rod large diameter 244 with the connecting portion 243. An outer diameter of the rod large diameter portion 244 is larger than an outer diameter of the two rod small diameter portions 245.
An insertion hole 114 is formed in the first housing member 110. One end 114a of the insertion hole 114 opens to an outside of the first housing member 110. The insertion hole 114 extends, for example, in a plane direction perpendicular to the rotational axis direction. The insertion hole 114 is positioned radially outside the through hole 111 (intake flow path 130). A side including the flat portion 241 of the rod 240 is inserted into the insertion hole 114. The rod large diameter portion 244 is guided by an inner wall surface of the insertion hole 114. The rod 240 is restricted from moving in directions other than a central axis direction of the insertion hole 114 (the central axis direction of the rod 240).
An accommodation hole 115 is formed in the first housing member 110. The accommodation hole 115 is opened on the wall surface 112c of the accommodation groove 112b. The accommodation hole 115 is recessed from the wall surface 112c toward the inlet 10. The accommodation hole 115 is positioned spaced apart from the inlet 110 (closer to the second housing member 120) with respect to the insertion hole 114. The accommodation hole 115 has a substantially arc shape when seen from the rotational axis direction. The accommodation hole 115 extends longer than the connecting member 230 in the circumferential direction. The accommodation hole 115 is circumferentially spaced apart from the bearing hole 112d.
A connecting hole 116 is formed in the first housing member 110. The connecting hole 116 connects the insertion hole 114 with the accommodation hole 115. The connecting hole 116 is positioned at a substantially middle portion in the circumferential direction in the accommodation hole 115. The connecting hole 116 is, for example, an elongated hole extending substantially parallel to the extending direction of the insertion hole 114. The connecting hole 116 has a width in the longitudinal direction (extending direction) that is greater than a width in the lateral direction (perpendicular to the extending direction). The width in the lateral direction of the connecting hole 114 is greater than the outer diameter of the rod connection portion 234 of the connecting member 230.
The connecting member 230 is accommodated in the accommodation hole 115 (accommodation chamber AC). The first movable member 210, the second movable member 220, and the connecting member 230 are disposed in the accommodation chamber AC formed in the first housing member 110. The accommodation hole 115 has a longer circumferential length and a larger radial width than those of the connecting member 230. Therefore, the connecting member 230 is allowed to move inside the accommodation hole 115 in a plane direction perpendicular to the rotational axis direction.
The rod connection portion 234 is inserted from the connecting hole 116 into the insertion hole 114. The flat portion 241 of the rod 240 is inserted into the insertion hole 114. The bearing hole 242 of the flat portion 241 faces the connecting hole 116. The rod connection portion 234 is inserted into (connected to) the bearing hole 242. The rod connection portion 234 is supported by the bearing hole 242.
The outer diameter of the connecting shaft portion 213 is smaller than the inner diameter of the first bearing hole 231 of the connecting member 230. The connecting shaft portion 213 is inserted into the first bearing hole 231. The connecting shaft portion 213 is rotatably supported by the first bearing hole 231. The outer diameter of the rotational shaft portion 214 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110. Between the two bearing holes 112d, the rotational shaft portion 214 is inserted into the bearing hole 112d on the vertically upper side (proximate to the rod 240). The rotational shaft portion 214 is rotatably supported by the bearing hole 112d. The rotational shaft portion 214 connects the first movable member 210 with the wall surface 112c facing the first movable member 210 in the rotational axis direction.
The second movable member 220 includes a connecting shaft portion 223 and a rotational shaft portion 224. In the second movable member 220, the connecting shaft portion 223 and the rotational shaft portion 224 protrude in the rotational axis direction from the opposing surface S1 (see
The outer diameter of the connecting shaft portion 223 is smaller than the inner diameter of the second bearing hole 232 of the connecting member 230. The connecting shaft portion 223 is inserted into the second bearing hole 232. The connecting shaft portion 223 is rotatably supported by the second bearing hole 232. The outer diameter of the rotational shaft portion 224 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110. Between the two bearing holes 112d, the rotational shaft portion 224 is inserted into the bearing hole 112d on the vertically lower side (spaced apart from the rod 240). The rotational shaft portion 224 is rotatably supported by the bearing hole 112d. The rotational shaft portion 224 connects the second movable member 220 with the wall surface 112c facing the second movable member 220 in the rotational axis direction.
Accordingly, the link mechanism 200 includes a four-bar linkage. The four links (nodes) are the first movable member 210, the second movable member 220, the first housing member 110, and the connecting member 230. Since the link mechanism 200 includes a four-bar linkage, it is a limited chain and has one degree of freedom, making it easy to control.
As shown in
The non-contacting portions 140 extend radially (linearly) along the radial direction. However, the non-contacting portions 140 may extend with being inclined from the radial direction, or may extend in a curved shape. The plurality of non-contacting portions 140 is formed on the wall surface 112c along the circumferential direction. However, only one (single) non-contacting portion 140 may be formed on the wall surface 112c.
The non-contacting portion 140 is formed radially outside the through hole 111 (the intake flow path 130). The non-contacting portion 140 is formed in an area spaced apart from the through hole 111 (the intake flow path 130) radially outward. The non-contacting portion 140 extends from a position spaced apart from the through hole 111 (intake flow path 130) radially outward, to an outer peripheral edge of the wall surface 112c.
The contacting portion 142 is a portion of the wall surface 112c that is contactable with the first movable member 210 and the second movable member 220. In the wall surface 112c, the contacting portion 142 is formed in an area that is different from the area where the non-contacting portion 140 is formed. The contacting portions 142 are formed between the plurality of non-contacting portions 140.
A portion of the contacting portions 142 is formed between the non-contacting portion 140 and the through-hole 111 (the intake flow path 130). In other words, a portion of the contacting portions 142 is formed radially inside the non-contacting portion 140. A portion of the contacting portions 142 is arranged at the radially innermost area on the wall surface 112c.
The contacting portion 142 radially inside the non-contacting portion 140 is formed over the entire length of the wall surface 112c in the circumferential direction. In the present embodiment, the non-contacting portion 140 is configured not to be in communication with the through hole 111 (intake flow path 130).
In the arrangement shown in
As shown in
When the rod 240 moves, the connecting member 230 moves upward in
As described above, the link mechanism 200 is a four-bar linkage. The connecting member 230, the first movable member 210, and the second movable member 220 exhibit a behavior of one degree of freedom with respect to the first housing member 110. Specifically, the connecting member 230 slightly moves in the left-to-right direction while slightly rotating in the counterclockwise direction in
In the first movable member 210, the rotational shaft portion 214 is supported by the first housing member 110. The rotational shaft portion 214 is restricted from moving in the plane direction perpendicular to the rotational axis direction. The connecting shaft portion 213 is supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 213 is movable in the plane direction perpendicular to the rotational axis direction. As a result, with the movement of the connecting member 230, the first movable member 210 rotates in a clockwise direction in
Similarly, in the second movable member 220, the rotational shaft portion 224 is supported by the first housing member 110. The rotational shaft portion 224 is restricted from moving in the plane direction perpendicular to the rotational axis direction. The connecting shaft portion 223 is supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 223 is movable in the plane direction perpendicular to the rotational axis direction. As a result, with the movement of the connecting member 230, the second movable member 220 rotates in a clockwise direction in
Thus, the first movable member 210 and the second movable member 220 move in directions to separate from each other in the order of
Thus, the first movable member 210 and the second movable member 220 are configured to be movable to the protruding position where they protrude into the intake flow path 130, and to the retracted position where they are not exposed (do not protrude) into the intake flow path 130. In the present embodiment, the first movable member 210 and the second movable member 220 move in the radial direction of the compressor impeller 9. However, the first movable member 210 and the second movable member 220 are not limited thereto, and may rotate around the rotational axis (circumferential direction) of the compressor impeller 9. For example, the first movable member 210 and the second movable member 220 may be shutter blades having two or more blades.
Since the first movable member 210 and the second movable member 220 do not protrude into the intake flow path 130 when they are in the retracted position (hereinafter also referred to as the retracted position state), the pressure loss of the intake air (air) flowing through the intake flow path 130 can be reduced.
As shown in
As the flow rate of the air flowing into the compressor impeller 9 decreases, the air compressed by the compressor impeller 9 may flow backward through the intake flow path 130 (i.e., the air may flow from the downstream side to the upstream side).
As shown in
In addition, since the flow path cross-sectional area of the intake flow path 130 is reduced, a velocity of the air flowing into the compressor impeller 9 is increased. As a result, a surging in the centrifugal compressor CC can be inhibited. In other words, the centrifugal compressor CC of the present embodiment can expand the operational range of the centrifugal compressor CC to the smaller flow rate area by forming the protruding position state.
In this manner, the first movable member 210 and the second movable member 220 are configured as a throttling member that decreases the intake flow path 130. In the present embodiment, the link mechanism 200 is configured as a throttling mechanism that decreases the intake flow path 130. The first movable member 210 and the second movable member 220 can change the flow path cross-sectional area of the intake flow path 130 by operating the link mechanism 200.
When the first movable member 210 and the second movable member 220 are in the protruding position, they are pressed against the wall surface 112c (the compressor housing 100) toward the upstream side in the flow of the intake air, by the air flowing backward in the intake flow path 130. In this state, a frictional force increases between the wall surface 112c and the first movable member 210 and the second movable member 220.
When the first movable member 210 and the second movable member 220 are pressed against the wall surface 112c, a gap is formed between the opposing surfaces S2 (see
In this state, a pressure in the accommodation chamber AC that is radially outside the first movable member 210 and the second movable member 220 is larger than a pressure in the intake flow path 130 that is radially inside the first movable member 210 and the second movable member 220. This makes the link mechanism 200 difficult to move the first movable member 210 and the second movable member 220 radially outward.
Thus, in the protruding position state, the load of the link mechanism 200 increases when moving the first movable member 210 and the second movable member 220.
Therefore, the compressor housing 100 of the present embodiment includes the non-contacting portions 140 and the contacting portions 142 on the wall surface 112c positioned upstream of the first movable member 210 and the second movable member 220 in the flow of the intake air, in the accommodation chamber AC.
The air flowing backward in the intake flow path 130 and flowing into the accommodation chamber AC flows into the non-contacting portion 140 formed in the wall surface 112c of the accommodation chamber AC. The air flowing into the non-contacting portion 140 presses the opposing surfaces (movable member opposing surfaces) S1 of the first movable member 210 and the second movable member 220 that faces the wall surface 112c. The air flowing into the non-contacting portion 140 presses the first movable member 210 and the second movable member 220 (the opposing surfaces S1) in a direction spaced apart from the wall surface 112c.
Accordingly, the frictional force between the wall surface 112c and the opposing surfaces S1 of the first movable member 210 and the second movable member 220 is reduced. As a result, the link mechanism 200 can reduce the load when driving the first movable member 210 and the second movable member 220 in the protruding position state.
In addition, the portion of the contacting portions 142 is arranged at the radially innermost area on the wall surface 112c. In other words, the contacting portion 142 is disposed between the non-contacting portion 140 and the through hole 111 (the intake flow path 130). In the contacting portion 142, the wall surface 112c and the first movable member 210 and the second movable member 220 are in contact with each other. The contacting portion 142 inhibits the air that flows into the non-contacting portion 140 from flowing out to the intake flow path 130. Therefore, the air that flows into the non-touching portion 140 can sufficiently press the first movable member 210 and the second movable member 220 (opposing surfaces S1) in the direction spaced apart from the wall 112c.
(Variant)
As shown in
The non-contacting portion 340 extends in an arc shape (curved shape) around the central axes of the bearing holes 112d. The non-contacting portion 340 is formed in a substantially annular shape so as to surround the bearing hole 112d. A plurality of substantially annular non-contacting portions 340 are formed on the wall surface 112c around the central axes of the bearing holes 112d.
In this variation, two bearing holes 112d are formed in the wall 112c. The substantially annular non-contacting portions 340 are formed to surround each of the two bearing holes 112d. Therefore, at least two substantially annular non-contacting portions 340 are formed on the wall surface 112c. However, at least one substantially annular non-contacting portion 340 may be formed on the wall surface 112c to surround one of the two bearing holes 112d.
The non-contacting portions 340 are formed at least in a movable range of the first movable member 210 and the second movable member 220. The non-contacting portions 340 are formed on a movement path of corner parts in the first movable member 210 and the second movable member 220 (e.g., an outer diameter end and an inner diameter end of the one end surface 211a and 221a, and an outer diameter end and an inner diameter end of the other end surface 211b and 221b shown in
The substantially annular non-contacting portions 340 surrounding each of the two bearing holes 112d have the same inner diameter as each other. However, the substantially annular non-contacting portions 340 surrounding each of the two bearing holes 112d may have different inner diameters from each other.
The non-contacting portion 340 is formed radially outside the through hole 111 (the intake flow path 130). In other words, the non-contacting portion 340 is formed in an area spaced apart from the through hole 111 (intake flow path 130) radially outward. The non-contacting portion 340 extends from a position spaced apart from the through hole 111 (the intake flow path 130) radially outward, to the outer peripheral edge of the wall surface 112c.
In the wall surface 112c, the contacting portion 342 is formed in an area that is different from an area where the non-contacting portion 340 is formed. The contacting portions 342 are formed between the plurality of non-contacting portions 340. A portion of the contacting portions 342 is formed between the non-contacting portions 340 and the through holes 111 (intake flow paths 130). A portion of the contacting portions 342 is arranged at the radially innermost area on the wall surface 112c. In this variation, the non-contacting portion 340 is configured not to be in communication with the through hole 111 (intake flow path 130).
Thus, according to the present variation, the compressor housing 100 includes the non-contacting portions 340 and the contacting portions 342 on the wall surface 112c positioned upstream of the first movable member 210 and the second movable member 220 in the flow of the intake air, in the accommodation chamber AC. Therefore, the same action and effect as the above embodiment can be achieved.
According to the present variation, the non-contacting portions 340 extend around the central axes of the bearing holes 112d. Therefore, when the first movable member 210 and the second movable member 220 rotate around the central axes of the bearing holes 112d (rotational shaft portions 214 and 224 (see
Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, the present disclosure is not limited thereto. It is obvious that a person skilled in the art can conceive of various examples of variations or modifications within the scope of the claims, which are also understood to belong to the technical scope of the present disclosure.
In the above embodiment and variation, examples in which the contacting portions 142, 342 are arranged at the radially innermost area on the wall surface 112c are described. However, the contacting portions 142, 342 are not limited thereto, and do not need to be arranged at the radially innermost area on the wall surface 112c.
In the above embodiment and variation, examples in which the contacting portions 142, 342 are arranged between the non-contacting portions 140, 340 and the intake flow path 130 are described. However, the contacting portions 142, 342 are not limited thereto, and may not be arranged in at least a part of the space between the non-contacting portions 140, 340 and the intake flow path 130. For example, the contacting portions 142, 342 may not be arranged between the non-contacting portions 140, 340 and the intake flow path 130. Also, the contacting portions 142, 342 may be provided with a connecting hole that connects the non-contacting portions 140, 340 with the intake flow path 130. In this manner, the non-touching portions 140, 340 may be connected to the intake flow path 130. By connecting the non-contacting portions 140, 340 with the intake flow path 130, high-pressure air in the accommodation chamber AC that is radially outside the first movable member 210 and the second movable member 220 can flow out into the intake flow path 130 that is radially inside the first movable member 210 and the second movable member 220. As a result, the link mechanism 200 can make it easier to move the first movable member 210 and the second movable member 220 radially outward. Therefore, the link mechanism 200 can reduce the load in driving the first movable member 210 and the second movable member 220 in the protruding position state. In contrast, when the contacting portions 142, 342 are arranged between the non-contacting portions 140, 340 and the intake flow path 130, it is difficult for the air to flow out of the non-contacting portions 140, 340 to the intake flow path 130. Therefore, it is difficult for the air in the accommodation chamber AC to mix with the air flowing in the intake flow path 130, and a mixing loss can be reduced (and thus a compressor efficiency loss can also be reduced).
The first movable member 210 and the second movable member 220 may be provided with through holes that penetrate the body portions B1, B2 in the radial direction. This allows the high-pressure air in the accommodation chamber AC that is radially outside the first movable member 210 and the second movable member 220 to flow out into the intake flow path 130 that is radially inside the first movable member 210 and the second movable member 220. As a result, the link mechanism 200 can make it easier to move the first movable member 210 and the second movable member 220 radially outward. Accordingly, the link mechanism 200 can reduce the load in driving the first movable member 210 and the second movable member 220 in the protruding position state.
Number | Date | Country | Kind |
---|---|---|---|
2019-185786 | Oct 2019 | JP | national |
This application is a continuation application of International Application No. PCT/JP2020/037894, filed on Oct. 6, 2020, which claims priority to Japanese Patent Application No. 2019-185786, filed on Oct. 9, 2019, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4122668 | Chou | Oct 1978 | A |
6375155 | Janssens | Apr 2002 | B1 |
8196610 | Murakami | Jun 2012 | B2 |
8316820 | Cammarata | Nov 2012 | B1 |
9568111 | Daniels | Feb 2017 | B2 |
9764908 | Lin | Sep 2017 | B2 |
10393009 | Mohtar | Aug 2019 | B2 |
10400789 | Harley | Sep 2019 | B2 |
10465706 | Lombard | Nov 2019 | B2 |
10495100 | Mohtar | Dec 2019 | B2 |
10502126 | Villemin | Dec 2019 | B2 |
10502232 | Mohtar | Dec 2019 | B2 |
10544808 | Mohtar | Jan 2020 | B2 |
10550761 | Lombard | Feb 2020 | B2 |
10570905 | Mohtar | Feb 2020 | B2 |
10619561 | Lombard | Apr 2020 | B2 |
10774676 | Hu | Sep 2020 | B2 |
10774677 | Hu | Sep 2020 | B2 |
10883418 | Hiller | Jan 2021 | B2 |
11105218 | Karstadt | Aug 2021 | B2 |
11131236 | Lombard | Sep 2021 | B2 |
11415149 | Karstadt | Aug 2022 | B2 |
11434927 | Bogner | Sep 2022 | B2 |
11591926 | Stankevicius | Feb 2023 | B2 |
20080192326 | Mizumaki | Aug 2008 | A1 |
20090025416 | Murakami | Jan 2009 | A1 |
20090095350 | Bauman | Apr 2009 | A1 |
20150041695 | Daniels | Feb 2015 | A1 |
20170298943 | Mohtar | Oct 2017 | A1 |
20170320470 | Belanger | Nov 2017 | A1 |
20180258842 | Villemin | Sep 2018 | A1 |
20190048876 | Mohtar | Feb 2019 | A1 |
20190136755 | Lombard | May 2019 | A1 |
20190178151 | Smith | Jun 2019 | A1 |
20190264604 | Lombard | Aug 2019 | A1 |
20190264710 | Mohtar | Aug 2019 | A1 |
20190271329 | Mohtar | Sep 2019 | A1 |
20190368373 | Hu | Dec 2019 | A1 |
20190368374 | Hu | Dec 2019 | A1 |
20200011196 | Karstadt | Jan 2020 | A1 |
20200208651 | Bogner | Jul 2020 | A1 |
20200309141 | Vuletic | Oct 2020 | A1 |
20200340497 | Lombard | Oct 2020 | A1 |
20210088054 | Sakisaka et al. | Mar 2021 | A1 |
20210262483 | Henzler | Aug 2021 | A1 |
20220090514 | Stankevicius | Mar 2022 | A1 |
20220186747 | Lombard | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2009-236035 | Oct 2009 | JP |
WO 2012161283 | Nov 2012 | WO |
WO 2018106620 | Jun 2018 | WO |
WO 2020031507 | Feb 2020 | WO |
Entry |
---|
International Search Report dated Dec. 8, 2020 in PCT/JP2020/037894 filed on Oct. 6, 2020, 4 pages (with English Translation). |
Combined Chinese Office Action and Search Report dated Mar. 8, 2023 in Patent Application No. 202080042603.1 (with English translation of Category of Cited Documents), 6 pages. |
Number | Date | Country | |
---|---|---|---|
20220099101 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/037894 | Oct 2020 | US |
Child | 17643943 | US |