The disclosure is relative to a centrifugal fan, especially relative to a centrifugal fan for increasing the input air and with stable output air.
In recent years, with advances in technology, the electronic devices (ex: notebook) are gradually developing with high-performance, high speed and high frequency. Accordingly the computing loading of the inside components of the electronic device increases and the temperature of the electronic device is getting higher. If a good heat dissipation solution is not utilized efficiently in the electronic device, the stability will he influenced and the life of the electronic device will be shortened. Thus, generally a fan (ex: centrifugal fan) will be installed inside of the electronic device for heat dissipation.
Recently the most electronic devices are developed to have a thinner size. The thinner size of the electronic devices will decrease the inner space of the electronic devices. Accordingly, it is an important subject to provide a centrifugal fan with an increasing input air and a stable/uniform output air in the same fan volume.
In US publication 2013/0071238, with reference to
In U.S. Pat. No. 2,050,523, the air inlets 15 are provided in the top of hood member 8 adjacent the forward portion thereof, but the extending louver boards 16 are not toward the discharge opening 11.
In view of foregoing subject, an objective of the present disclosure is to provide a centrifugal fan with an increasing input air and a stable/uniform output air in the unchanged volume of the fan.
The disclosure discloses a centrifugal fan including an impeller, a motor and a fan frame. The motor is connected with the impeller and configured to drive the impeller. The fan frame includes a base plate, a top plate, a sidewall, a plurality of air deflectors and a plurality of airflow entry tunnels. The impeller is disposed between the base plate and the top plate. The sidewall is disposed on the base plate between the base plate and the top plate. A flow channel is between the impeller and the sidewall. The air deflectors are directly connected to the base plate and the top plate, and separately disposed toward an air outlet and sequentially at different radial positions outwardly from the sidewall along a forward circumferential direction toward an air outlet with respect to the impeller to sequentially expand the flow channel outwardly in a radial direction at different circumferential positions along the forward circumferential direction with respect to the impeller. The airflow entry tunnels are formed by the air deflectors between the base plate and the top plate.
In one embodiment, the two adjacent air deflectors are overlapped by a non-zero overlapping length along the forward circumferential direction so that the two adjacent air deflectors, the base plate and the top plate firm one of the airflow entry tunnels. One of the air deflectors and the sidewall are overlapped by a non-zero overlapping length along the forward circumferential direction so that the one of the air deflectors, the sidewall, the base plate and the top plate form one of the airflow entry tunnel.
In one embodiment, two ends of one the airflow entry tunnels have a same height with respect to the base plate. Two ends of one the air deflectors have a same height with respect to the base plate.
In one embodiment, two ends of one of the air deflectors have a same distance to the impeller.
In one embodiment, the one of the air deflectors is arc-shaped and its arc center is at the impeller.
In one embodiment, the air outlet and an opposite point are respectively at two opposite sides of the impeller, and a forward included angle between the opposite point and a forward end of the sidewall is between 15 degrees and 60 degrees.
In one embodiment, the forward included angle is 50 degrees.
In one embodiment, a pressurization area is from the air outlet through the opposite point to a forward end of the sidewall along the sidewall, and a combinational air input area is from the forward end of the sidewall to the air outlet along the air deflectors.
In one embodiment, a normal line of the air outlet is toward through a rotation center of the impeller, and the opposite point is at the normal line.
In one embodiment, an included angle from the air deflector which is closest to the sidewall to the normal line of the air outlet along the forward circumferential direction with respect to the impeller is between 120 degrees and 165 degrees.
In one embodiment, an included angle from an entry opening of the airflow entry tunnel which is closest to the air outlet to the normal line of the air outlet along the forward circumferential direction with respect to the impeller is below 90 degrees.
In one embodiment, the flow channel comprises circumferential sections from the impeller outwardly, the innermost section of the circumferential sections is defined within a reference circumferential position at which the sidewall is, other sections of the circumferential sections are respectively defined within the circumferential positions at which the air deflectors are, and the innermost section does not overlap the other sections in a direction from the base plate to the top plate.
In one embodiment, outside airflows flow into the other sections via the airflow entry tunnels.
In one embodiment, the sidewall comprises a throat part, and the air deflectors and the throat part are disposed at two opposite sides of the impeller, respectively.
In one embodiment, dusts in the centrifugal fan are exhausted from the centrifugal fan via the airflow entry tunnels when the impeller is driven to rotate reversely by the motor.
In one embodiment, the air deflectors are discrete sidewalls of the fan frame.
In one embodiment, the base plate and the top plate do not protrude from the air deflectors.
In one embodiment, an included angle between the air outlet and the air deflector which is closest to the sidewall along the forward circumferential direction with respect to the impeller is between 120 degrees and 165 degrees.
The disclosure discloses a centrifugal fan including an impeller, a motor and a fan frame. The motor is connected with the impeller and configured to drive the impeller. The fan frame includes a base plate, a top plate, a sidewall, a plurality of air deflectors and a plurality of airflow entry tunnels. The impeller is disposed between the base plate and the top plate. The sidewall is disposed on the base plate between the base plate and the top plate. A flow channel is between the impeller and the sidewall. The air deflectors are directly connected to the base plate and the top plate, and separately disposed toward an air outlet and sequentially at different radial positions outwardly from the sidewall along a forward circumferential direction toward an air outlet with respect to the impeller to sequentially expand the flow channel outwardly in a radial direction at different circumferential positions along the forward circumferential direction with respect to the impeller. The airflow entry tunnels are formed by the air deflectors between the base plate and the top plate. The air outlet and an opposite point are respectively at two opposite sides of the impeller. A forward included angle between the opposite point and a forward end of the sidewall is between 15 degrees and 60 degrees. An included angle from an entry opening of the airflow entry tunnel which is closest to the air outlet to the normal line of the air outlet along the forward circumferential direction with respect to the impeller is below 90 degrees.
The disclosure discloses a centrifugal fan including an impeller, a motor and a fan frame. The motor is connected with the impeller and configured to drive the impeller. The fan frame includes a base plate, a top plate, a sidewall, a plurality of air deflectors and a plurality of airflow entry tunnels. The impeller is disposed between the base plate and the top plate. The sidewall is disposed on the base plate between the base plate and the top plate. A flow channel is between the impeller and the sidewall. The air deflectors are directly connected to the base plate and the top plate, and separately disposed toward an air outlet and sequentially at different radial positions outwardly from the sidewall along a forward circumferential direction toward an air outlet with respect to the impeller to sequentially expand the flow channel outwardly in a radial direction at different circumferential positions along the forward circumferential direction with respect to the impeller. The airflow entry tunnels are formed by the air deflectors between the base plate and the top plate. The air outlet and an opposite point are respectively at two opposite sides of the impeller. A forward included angle between the opposite point and a forward end of the sidewall is between 15 degrees and 60 degrees. A pressurization area is from the air outlet through the opposite point to a forward end of the sidewall along the sidewall. A combinational air input area is from the forward end of the sidewall to the air outlet along the air deflectors. The air deflectors are discrete sidewalls of the fan frame, and the base plate and the top plate do not protrude from the air deflectors.
According to above, the centrifugal fan of the present disclosure can increase the input air by that air deflectors set separately and along the extension direction along the flow channel and towards to the air outlet and the outside airflow can flow in the fan via the space between the two adjacent air deflectors. Additionally, the airflow flowing into the fan can be flowing along the air deflectors to the air outlet for stable/uniform output air.
The invention will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
The fan frame includes a base plate 311, a sidewall 312 and a plurality of air deflectors 313. In the embodiment, the centrifugal fan includes three air deflectors. However, the number of the air deflector can depend on real requirements.
The sidewall 312 and the air deflectors 313 are disposed on the base plate 311. An accommodating space S and an air outlet O2 is disposed by the base plate 311, the sidewall 312 and the air deflectors 313.
The impeller 32 includes a wheel 321 and a plurality of fan blades 322. The impeller is received in the accommodating space S and mounted on the motor 33. The motor is connected with the impeller 32 and drives the impeller 32 to rotate. A flow channel P3 (as shown in
In the embodiment, the air deflectors 313 are separately disposed along the extension direction of the flow channel and toward to the air outlet O2. In detail, the sidewall 312 in the embodiment includes a throat part 3121 and a guiding part 3122. The throat part 3121 and the guiding part 3122 are respectively disposed at two ends of the sidewall 312. The air deflectors 313 are separately disposed from the position. adjacent to the guiding part 3122 and toward to the air outlet O2. The air deflectors 313 and the throat part 3121 are disposed on the two sides of the impeller 32. According to that the air deflectors are separately disposed, a gap D is formed between the two adjacent air deflectors 313. In the embodiment, a distance of the gap D optimally is between 0.5 mm to 10 mm. In the embodiment, when the impeller is rotating, outside airflow can flow into the centrifugal fan 3 via the gap D, the air in the centrifugal fan 3 flows along the extension direction of the flow channel P3 for increasing the input air.
In the embodiment, the outside air that flows into the centrifugal fan 3 can be guided to a low air pressure position by the air deflectors 313. In
The following descriptions are relative to the relative positions of the air deflectors 313.
In the embodiment, the air deflectors 313 at least include a first air deflector 3131 and a second air deflector 3132. A distance between the second air deflector 3132 and the air outlet O2 is smaller than a distance between the first air deflector 3131 and the air outlet O2. The second air deflector 3132 and the impeller 32 are disposed two opposite sides of the first air deflector 3131.
In detail, the first air deflector 3131 includes a first end 3131a and a second end 3131b. The second end 3131b is disposed adjacent to the second deflector 3132. The second air deflector 3132 includes a third end 3132a and a fourth end 3132b. The third end 3132 is adjacent to the first air deflector 3131. The third end 3132a and the impeller 32 are disposed two opposite sides of the second end 3131b. It means that the second air deflector 3132 is located at outside of the first air deflector 3131.
In centrifugal fan 3 according to the embodiment of the present, the position of the air deflector 313 that is closer to the air outlet O2 is disposed farther than the position of the air deflector 313 that is father from the air outlet O2. Therefore, the air deflectors 313 will not decrease the space of the whole flow channel and prevent to decrease the air inside the centrifugal fan.
Additionally, in the embodiment, the two adjacent air deflectors 313 are partially overlapped along a predetermined direction. In
In the embodiment, the gap D is also disposed between the first end 3131a of the first air deflector 3131 and the guiding part 3122. The gap D is utilized for increasing the input air. The distance between the first air deflector 3131 and the impeller 32 is larger than the distance between the sidewall 312 and the impeller 32. Accordingly the space of the flow channel will not be decreased by the first air deflector 3131.
The distance between the sidewall 312 and the impeller 32, the distance between the first air deflector 3131 and the impeller 32, and the distance between second air deflector 3132 and the impeller 32 are increasing in turn. A width of the flow channel is larger increasingly. There is enough space that the outside airflow can flow via the gap D for increasing the air in the centrifugal fan 3.
Additionally, in the embodiment, when the motor drives the impeller 32 to rotate reversely, a reverse airflow is generated in the centrifugal fan 3. Dusts in the centrifugal fan 3 can be exhausted from the centrifugal fan 3 via the gap D between the two adjacent air deflectors to achieve the dust-removing function. A shape of the air deflectors 313 is arc-shaped to match the flow direction of the flow field. The dusts in the centrifugal fan 3 can be flowed along the arc-shaped air deflector and exhausted via the gap D.
The two adjacent air deflectors 3131, 3132 are overlapped by a non-zero overlapping length along the forward circumferential direction d1 so that the two adjacent air deflectors 3131, 3132, the base plate 311 and the top plate 314 form one airflow entry tunnel G2. The airflow entry tunnel G2 is at the gap D and extended from the third end 3132a of the air deflector 3132 to the second end 3131b of the air deflector 3131 along the forward circumferential direction d1. The distance from the third end 3132a of the air deflector 3132 to the second end 3131b of the air deflector 3131 along the forward circumferential direction d1 is greater than 0. The airflow entry tunnel G3 is similar or same with the airflow entry tunnel G2. Further, one of the air deflectors 311 (air deflector 3131) and the sidewall 312 are overlapped by a non-zero overlapping length along the forward circumferential direction d1 so that the air deflectors 3131, the sidewall 312, the base plate 311 and the top plate 314 form the airflow entry tunnel G1. The airflow entry tunnel G1 is at the gap D and extended from the first end 3131a of the air deflector 3131 to a forward end 3121 of the sidewall 312 along the forward circumferential direction d1. The distance from the first end 3131a of the air deflector 3131 to the forward end 3121 of the sidewall 312 along the forward circumferential direction d1 is greater than 0.
A height of the air deflectors 313 is equal to a height of the airflow entry tunnels G1˜G3 with respect to the base plate 311. Regarding one air deflector 313, for example the air deflector 3131, its two ends 3131a, 3131b have a same height with respect to the base plate 311. For example, the air deflector 3131 has an equal height from one end 3131a to the other end 3131b. The air deflectors 3132, 3133 are similar or same with the air deflector 3131. Two ends of the airflow entry tunnel G2 have a same height with respect to the base plate 311. The airflow entry tunnel G2 has an equal height from the third end 3132a to the second end 3131b. The airflow entry tunnels G1 and G3 are similar or same with the airflow entry tunnel G2. Further, the width of the airflow entry tunnels G1 and G3 is between 0.5 mm and 10 mm. The width of the airflow entry tunnels G1 and G3 can remain equal along the forward circumferential direction d1.
In addition, the two ends 3131a, 3131b of the air deflector 3131 have a same distance to the impeller 32. For example, the air deflector 3131a is arc-shaped and its arc center is at the impeller 32. The arc center and the rotation center C may be at the same position. The air deflector 3132 is similar or same with the air deflector 3131. The two ends of the air deflector 3133 have different distances to the impeller 32, but in other embodiment the two ends of the air deflector 3133 can have a same distance to the impeller 32.
In
Ahead of the forward end 3121, an included angle θ2 from the air deflector 3131, which is closest to the sidewall 312, to the air outlet O2 or the normal line NL along the forward circumferential direction d1 with respect to the impeller 32 is between 120 degrees and 165 degrees. The forward included angle θ1 and the included angle θ2 are supplementary angles. An included angle θ3 from an entry opening of the airflow entry tunnel G3, which is closest to the air outlet O2, to the normal line NL along the forward circumferential direction di with respect to the impeller 32 is below 90 degrees.
The flow channel P3 comprises circumferential sections P30˜P33 from the impeller 32 outwardly. The innermost section P30 of the circumferential sections is defined within a reference circumferential position R0 at which the sidewall 312 is. Other sections P31˜P33 of the circumferential sections are respectively defined within the circumferential positions R1˜R3 at which the air deflectors 3131˜3133 are. An extension arc line E0 by a radius (from the rotation center C to the reference circumferential position R0) is extended from the forward end 3121 along the forward circumferential direction d1. Extension arc lines E1, E2 by radii (from the rotation center C respectively to the reference circumferential positions R1, R2) are extended from the air deflectors 3131, 3132 along the forward circumferential direction d1 to a reference line RL. The extension arc lines E0˜E2 do not intersect. The innermost section P30 is within the extension arc line E0 and does not overlap the other sections P31˜P33 in a direction Z from the base plate 311 to the top plate 314. The section P31 is between the extension arc lines E0, E1 and the air deflector 3131. The sections P32˜P33 are similar to the section P31. The other sections P31˜P33 also do not overlap each other in the direction Z. Viewing along the direction Z from top, the sections P31˜P33 are covered by the top plate 314. The air inlet O3 of the top plate 314 is connected to the innermost section P30. The innermost section P30 is partially covered by the top plate 314. The sections P31˜P33 and part of the innermost section P30 are at the combinational air input area.
In addition, the air deflector 3133 can have an arc section 3133a and a straight section 3133b. Along the forward circumferential direction d1, the arc section 3133a is following the reference line RL, and the straight section 3133b is ahead of the reference line RL. The arc center of the arc section 3133a is at the impeller 32. The air deflectors 3131, 3132 and the arc section 3133a have the same arc center at the rotation center C.
The full heights of sections P30˜P33 are from the base plate 311 to the top plate 314 and remain unchanged from the forward end 3121 to the air outlet O2. The full heights of the airflow entry tunnels G1˜G3 are from the base plate 311 to the top plate 314 and remain unchanged along the forward circumferential direction d1. The heights of the sections P30˜P33 and the airflow entry tunnels G1˜G3 are equal.
Outside airflows flow into the other sections P31˜P33 via the airflow entry tunnels G1˜G3. The outside airflows through the airflow entry tunnels G1˜G3 would not interfere with air pressurization at the pressurization area PA. Further, dusts in the centrifugal fan 3 can be exhausted from the centrifugal fan 3 via the airflow entry tunnels G1˜G3 when the impeller is driven to rotate reversely (the forward circumferential direction d1 in reverse) by the motor.
Referring to
In summary, in the centrifugal fan, the air deflectors are disposed separately along the extension direction and toward to the air outlet. The outside airflow can flow in the centrifugal fan via the gap between the two adjacent air deflectors. Thus, the input air is increased. Additionally, the inside airflow can flow along the air deflectors to the air outlet for unifying the output air.
Comparing to the prior art, the flow channel of the centrifugal fan is not reduced according to the air deflectors. The centrifugal fan can overcome the problem that the air pressure in the fan is not uniform and noisy. Additionally, the dust in the fan can be exhausted easily, and is not accumulated in the gap.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201410689760.8 | Nov 2014 | CN | national |
This Non-provisional application is a Continuation-In-Part application of U.S. application Ser. No. 14/734,654, which claims priority to 201410689760.8 filed in People's Republic of China on Nov. 25, 2014, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14734654 | Jun 2015 | US |
Child | 16434442 | US |