This application relates to a centrifugal fan.
A centrifugal fan includes a fan housing defining an inlet and an outlet. An impeller within the housing rotates to draw air into the housing through the inlet and to exhaust the air out of the housing through the outlet.
A fan includes a fan housing located on an axis. The apparatus has axially front and rear sections that together define a chamber. Air can enter the chamber through an inlet in the front section. An impeller in the chamber is configured to rotate about the axis to drive the air radially outward. A trough-shaped channel in the rear section extends circumferentially about the axis from a first end of the channel to a second end of the channel. The channel is configured to channel the air away from the first end circumferentially toward the second end. The axially extending depth of the channel increases from the first end toward the second end such that, over a 90° range, an increase in the depth is more than twice an increase in the radially extending width of the channel.
Preferably, the channel width increases over the 90° range. The range extends from a first location in the channel, 90° from the first end, to a second location in the channel, 180° from first end. At a location in the channel diametrically opposite the first end, the channel depth is greater than the channel width. At the location diametrically opposite the first end, a surface of the rear housing section, bordering the channel, extends linearly rearward along a distance of more than 65% of the channel depth. The channel depth increases approximately linearly with circumferential distance over the 90° range. The channel width increases by less than 30% over the 90° range.
The apparatus 1 shown in
The apparatus 1 is a vacuum cleaner. It includes a base 10, a handle 14 extending upward from the base 10, and a filter bag 20 suspended from the handle 14. The base 10 includes a base housing 24 defining a nozzle 26. Front and rear wheels 30 and 32 are rotatably connected to the housing 24 to enable wheeling the base 10 over a floor 34. A fan 36 in the housing 24 drives a flow 37 of air from the floor 34, through the nozzle 26, the fan 36 and a fill tube 38, into the bag 20. The air flow 37 cleans the floor 34 by carrying dirt from the floor 34 into the bag 20.
As shown in
The impeller 50 is located in the chamber 70, behind the inlet 72. It is affixed to an output shaft 80 of the motor 52 and centered on the axis 45. The impeller 50 has a backplate 82 extending radially outward from the shaft 80 and blades 84 projecting forward from the backplate 82. A radially outer periphery 86 of the backplate 82 is centered on the axis 45.
As shown in
The collection channel 100 is connected at its second end 112 to an outlet channel 120 defined by an outlet tube 122. The outlet channel 120 extends directly rearward from the second end 112 of the collection channel 100 to an outlet opening 124 of the outlet tube 122. The outlet tube 122 is part of the fan housing 40 and rigidly fixed with respect to the front and rear housing sections 62 and 64 (
Operation of the fan 36 is illustrated in
In
The following paragraphs describe a combination of features relating to the shapes of the collection and outlet channels 100 and 120 (
The first feature relates to the shapes of the axially-extending radially inner and outer surfaces 102 and 104. At locations 90°, 180° and 270° respectively, the cross-sectional profiles of the radially inner and outer surfaces 102 and 104 extend linearly and directly rearward along a distance of more 50%, 65% and 80% of the channel depth D1, and preferably more than 65%, 80% and 90% of the channel depth D1.
The following features relate to the variation of the channel depth D1 with respect to the channel width W1: At 90°, 180° and 270° respectively, the channel depth D1 is greater than 0.5 times, 1.0 times, and 1.5 times the width W1, and preferably greater than 1.0 times, 2.0 times, and 2.6 times the channel width W1.
Over a 90 degree range, such as from 90° to 180° or from 180° to 270°, an increase in channel depth D1, measured in units of distance such as mm, is over twice, preferably over five times, and more preferably over ten times the increase in channel width W1. These criteria are met for any positive value of increase of D1 if W1 is uniform or decreasing along the 90 degree range.
The following features relate to variation of the channel width W1 with respect to circumferential position about the channel 100: As shown in
The following features relate to variation of the channel depth D1 with respect to circumferential position about the channel 100: As shown in
As shown in
The outlet channel 100 is relatively close to the axis 45. A radially innermost location 161 in the outlet channel 120, and thus the outlet channel 120 itself, is closer to the axis 45 than is the radially outer periphery 86 of the impeller backplate 82. Furthermore, the radially innermost location 161 in the outlet channel 120, and thus the outlet channel 120 itself, is closer to the axis 45 than are radially innermost and outermost locations 163 and 165 of the radially outer surface 104, respectively located at the first and second ends 111 and 112 of the channel 100.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4065233 | Torigoe et al. | Dec 1977 | A |
4120616 | Dwyer et al. | Oct 1978 | A |
5046922 | Nakamura et al. | Sep 1991 | A |
5474422 | Sullivan | Dec 1995 | A |
5511939 | Tokunaga et al. | Apr 1996 | A |
5573369 | Du | Nov 1996 | A |
5588178 | Liu | Dec 1996 | A |
6036455 | Ciccarelli | Mar 2000 | A |
6301744 | Embree et al. | Oct 2001 | B1 |
6348106 | Embree et al. | Feb 2002 | B1 |
6375720 | Embree et al. | Apr 2002 | B2 |
6579060 | Mann et al. | Jun 2003 | B1 |
20010054355 | Embree et al. | Dec 2001 | A1 |
20020138941 | Paterson et al. | Oct 2002 | A1 |
20040109760 | Jones | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070009354 A1 | Jan 2007 | US |