This disclosure relates generally to the field of mechanical fluid dynamics, and more particularly, system and apparatus for a pump having a hollow shaft centrifugal impeller.
Centrifugal impellers having a shaft and axial bladed devices are often used in pumps, compressors, fans, and blowers in order to move volumes of fluids such as gasses and liquids. Axial bladed devices are more traditionally used in thrusters and maritime engines because they are traditionally better at moving volumes of water with low-pressure changes.
However, traditional centrifugal impellers and axial bladed devices often require complex designs that are unreliable due to complex designs involving the axial shaft, are often large due to the need to include a large shaft and are prone to failures when ropes or other objects get wrapped around the shaft during operation.
There have been several attempts to solve the problems in the prior art, including the designs of axial hollow shaft bladed pumps and centrifugal impeller pumps. Although these pumps attempt to solve the problems of the traditional shaft, they introduce new problems including not having the expanded capabilities that a drive shaft provides for applying power for other uses besides fluid flow and not having the capabilities of both a centrifugal impeller device and an axial bladed device.
Due to all of the existing shortcomings in presently available devices, there is still a need for a fluid pump having a hollow shaft as described further below in the present description.
The disclosure presented herein relates to a fluid pump having a hollow shaft centrifugal impeller that is capable of using suction or pressure to move large volume flows of fluids including liquids and gasses. In one or more non-limiting examples, the pump has an impeller assembly that is capable of being attached to the inner circumference of a housing tube and said housing tube is connected to a magnetic rotary. In this example, the magnetic rotary would spin the hollow shaft and the impeller assembly inside the hollow shaft and move the fluid through the hollow shaft. Those of ordinary skill will appreciate that other uses may be foreseeable also and are included within the scope of the present description.
In one aspect, one or more embodiments for providing an impeller assembly are provided in the present description, whereby the impeller assembly comprises an impeller that has a ring-shaped impeller hub with one or more impeller blades and a hollow shaft attached to the outside circumference of said impeller hub. Further, the present impeller assembly may comprise one or more spirally wrapped channels extending from a position radially outward at the impeller's inlet end to a position radially inward at the impeller's outlet end.
The preceding and following embodiments and descriptions are for illustrative purposes only and are not intended to limit the scope of this disclosure. Other aspects and advantages of this disclosure will become apparent from the following detailed description.
Embodiments of the present disclosure are described in detail below with reference to the following drawings. These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, appended claims, and accompanying drawings. The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations and are not intended to limit the scope of the present disclosure.
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
The term “comprises”, and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps, among others, are optionally present. For example, an article “comprising” (or “which comprises”) components A, B, and C can consist of (i.e., contain only) components A, B, and C, or can contain not only components A, B, and C but also contain one or more other components.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
The term “at least” followed by a number is used herein to denote the start of a range beginning with that number (which may be a range having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%. When, in this specification, a range is given as “(a first number) to (a second number)” or “(a first number)−(a second number),” this means a range whose limit is the second number. For example, 25 to 100 mm means a range whose lower limit is 25 mm and upper limit is 100 mm.
Certain terminology and derivations thereof may be used in the following description for convenience in reference only and will not be limiting. For example, words such as “upward,” “downward,” “left,” and “right” would refer to directions in the drawings to which reference is made unless otherwise stated. Similarly, words such as “inward” and “outward” would refer to directions toward and away from, respectively, the geometric center of a device or area and designated parts thereof. References in the singular tense include the plural, and vice versa, unless otherwise noted.
The present description includes one or more embodiments for various fluid pumps that may be used to create suction to move volumes of fluids such as liquids or gasses. In one example, one or more embodiments of the various fluid pumps may be used for many purposes including fluid pumps for water, fuel, a wet and dry vacuum, a blower or thruster for commercial and military ships. In one or more non-limiting embodiments, a fluid pump may include a hollow shaft centrifugal impeller that is capable of using suction or pressure to move large volume flows of fluids including liquids and gasses. In one or more non-limiting examples, the fluid pump has an impeller assembly that is capable of being attached to the inner circumference of a housing tube and said housing tube is connected to a magnetic rotary. In this example, the magnetic rotary would spin the hollow shaft and the impeller assembly inside the hollow shaft, resulting in the movement of fluid through the hollow shaft. Elements included herein are meant to be illustrative, rather than restrictive. Persons having ordinary skill in the art relevant to the present disclosure may understand there to be equivalent elements that may be substituted with the present disclosure without changing the essential function or operation of the fluid pump.
Turning to
In the embodiment of
Impeller blades 104, as shown in
In one or more non-limiting embodiments, when hollow shaft's 106 inner circumference is attached, or configured to be fixedly attached, to outside circumference 102 of centrifugal impeller 110, the combination of hollow shaft 106 and centrifugal impeller 110 forms impeller assembly 100. In this embodiment, said centrifugal assembly's outer circumference is the outer circumference of the hollow shaft.
Further, in the
In one or more non-limiting embodiments, all parts of the impeller assembly or hollow shaft can be manufactured from various materials comprising: stainless steel, brass, bronze, carbon fiber, titanium, aluminum, various metal alloys, hard and soft nylon or plastics. In a further embodiment, if a plastic or non-magnetic metal embodiment is used, metal may be inserted, fastened, coupled, or otherwise connected or positioned into any part of the impeller assembly or hollow shaft as to allow it to rotate in a magnetic field.
Impeller blades 104, as shown in
In one or more non-limiting embodiments, inlet end 108 and outlet end 112 are substantially perpendicular to said inner and outer circumference. In one or more non-limiting embodiments, inlet end 108 is where fluids are suctioned into centrifugal impeller 110 when said impeller is rotating along an axis extending through the center of the inlet and outlet ends. Suction is created by the spiral spirally wrapped channels moving the fluid from inlet end 108 out outlet end 112. In a further embodiment, as the fluids are compressed in spirally wrapped channels 114, it is expelled through outlet end 112 at a faster rate than the fluid enters inlet end 108. In other non-limiting embodiments the exemplary impeller assembly 100 may instead thrust fluids in the reverse direction.
In this embodiment, housing tube 604 has an outer and inner circumference. The inner circumference further comprises one or more guide rails 606 and housing tube 604 inner circumference is configured to removably attach to impeller assembly's 110 slots 119 located on the outer surface of said impeller assembly. In this embodiment, each of said one or more guide rails 606 are configured to fit into slots 119. In one or more non-limiting embodiments, guide rails 606 hold impeller assembly 100 in place and cause housing tube 604 to rotate when impeller assembly 100 rotates when fluid passes through. In a further embodiment, the impeller assembly has one or more guide rails and the housing tube has one or more slots or another connection method is used.
Additionally, in this view, magnetic rotary 602 is shown. Other types of rotaries may be used such as ball bearings, stators, electrical impulse magnetic fields or any known by those of ordinary skill in the art. The magnetic rotary, in one or more non-limiting embodiments, has an outer circumference and an inner circumference that is made out of bearings and permanent magnets located towards the outer circumference. In this embodiment, when magnetic rotary 602 is attached to housing tube 604, and a motor, generator or other device supplies electricity to the permanent magnets, a magnetic field is created that will rotate the hollow shaft. In this embodiment, the rotating hollow shaft will rotate the centrifugal impeller assembly, because of the bearings, and the permanent magnets will stay in place.
It is noted that any of the securing devices shown in
Advantageously, the present description provides one or more embodiments of various types of impeller assemblies. Each impeller assembly depicted herein provides advantages that overcome shortcomings of other types of impeller devices that are used conventionally. Further, the various embodiments shown in the Figures and described herein accommodate different sized impeller assemblies (including single or multi-bladed assemblies) and may be used in various applications, including, but not limited to, movement of fluids. It is noted that the various embodiments of impeller assemblies presented herein may be used in many other ways other than to provide movement of fluids. For example, the various impeller assemblies can be used to provide a shaftless assembly. Thus, the various embodiments described in the present description include a number of novel and helpful components that provide enhanced fluid movement devices to benefit a user.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiments were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. The present invention according to one or more embodiments described in the present description may be practiced with modification and alteration within the spirit and scope of the appended claims. Thus, the description is to be regarded as illustrative instead of restrictive of the present invention.
This application claims priority to U.S. Provisional Application No. 62/804,210 filed Feb. 11, 2019, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3011561 | Wagener | Dec 1961 | A |
4806080 | Mizobuchi et al. | Feb 1989 | A |
5306183 | Holt | Apr 1994 | A |
8267645 | Brunner et al. | Sep 2012 | B2 |
20070126297 | de Zwart | Jun 2007 | A1 |
20080299845 | Lewis | Dec 2008 | A1 |
20090035122 | Yagi | Feb 2009 | A1 |
20110188928 | West | Aug 2011 | A1 |
Entry |
---|
Andersen, Thor Peter, Design of Rim Driven Waterjet Pump for Small Rescue Vessel, Jun. 2014, Chalmers University of Technology (Year: 2014). |
Surtsey.org. Rim-Jet. [date accessed Nov. 13, 2018] http://www.surtsey.org/projects/rim-jet/. |
Number | Date | Country | |
---|---|---|---|
20200256348 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62804210 | Feb 2019 | US |