The application of multi-component sealants and other multi-component fluid products requires the effective mixing of multiple fluids. In the case of medical sealants, proper mixing is required so that when the multi-component sealant reaches a targeted tissue, vessel or organ the pre-cursors components are mixed, allowing cross-linking, tissue reaction, adherence, and/or curing occur.
Several ways of achieving such mixing have been previously developed, including a mixing tip that requires a ‘static mixer’ that works to ‘turn’ the fluids through a complex geometric baffle to achieve mixing. The extended length of the static mixer limits its function with fast setting chemistries as the tip often becomes blocked as sealant sets before exiting an orifice for spraying or within an unacceptable interval limiting its potential commercial opportunity.
As such, there is a need for improved multi-component mixing and delivery nozzles.
Some embodiments provide a nozzle tip assembly for mixing multiple pre-cursor fluids, the nozzle tip assembly comprising a nozzle housing, itself comprising a proximal end adapted for receiving a delivery portion of a multi-lumen dispenser, a distal end defining an exit orifice, and a sidewall extending from proximal end to distal end; and a break-up insert, itself comprising a proximal end, a distal end, further defining at least three fluted channels and a central, recessed swirl chamber and a sidewall extending between the proximal end and distal end; wherein the sidewall of the break-up insert and the sidewall of the nozzle housing define a channel therebetween for fluid communication between the lumen and the at least three fluted channels.
In some embodiments, the swirl chamber is defined by a substantially centrally located semi-spherical recess in the distal end of the break-up insert.
In some embodiments, each of the fluted channels approaches the swirl chamber at an angle to facilitate mixing of the pre-cursor fluids in the swirl chamber.
In some embodiments, the distance between the sidewall of the break-up insert and the nozzle housing sidewall decreases from proximal end to distal end.
In some embodiments, the break-up insert comprises one or more sloped shoulders to decrease the distance between the sidewall of the break-up insert and the nozzle housing sidewall.
In some embodiments, the at least three fluted channels are equidistant from one another.
In some embodiments, the nozzle housing is adapted for coupling to a dual barrel syringe.
In some embodiments, the nozzle housing is adapted for coupling to a dual lumen delivery device.
In some embodiments, the nozzle housing is adapted for coupling to a tri-lumen delivery device.
Some embodiments provide a multi-component delivery device comprising a multi-lumen delivery device; and a nozzle tip assembly comprising a nozzle housing, itself comprising a proximal end adapted for receiving a delivery portion of a multi-lumen dispenser, a distal end defining an exit orifice, and a sidewall extending from proximal end to distal end; and a break-up insert, itself comprising a proximal end, a distal end, further defining at least three fluted channels and a central, recessed swirl chamber and a sidewall extending between the proximal end and distal end; wherein the sidewall of the break-up insert and the sidewall of the nozzle housing define a channel therebetween for fluid communication between the lumen and the at least three fluted channels; wherein the sidewall of the break-up insert and the sidewall of the nozzle housing define a channel therebetween for fluid communication between the lumen and the at least three fluted channels; wherein the nozzle assembly is coupled to the multi-lumen delivery device such that each of the lumen is in fluid communication with the swirl chamber and exit orifice via the fluted channel and the channel between the nozzle housing and break-up insert sidewall.
The drawings, including any dimensions recited therein are provided for illustrative purposes only. They are not meant to be limiting in any way.
Described herein is a centrifugal mixing nozzle tip capable of mixing a multi-component fluid product, such as a sealant. In some embodiments, this is accomplished without the aid of any propellants allowing user controlled spray techniques. The nozzle design is efficient and limits tip clogging. In some embodiments, the nozzle features are adaptable to viscosity mis-match and/or molecular weight differences between the component pre-cursor fluids.
As used herein, multi-component product or system refers to a mixed product resulting from two or more pre-cursor components. Exemplary multi-component systems include medical sealants, glues, and epoxies, in and out of the medical setting.
The centrifugal mixing nozzle will be described herein with reference to a two-component medical sealant, particularly a sealant comprising a biological component and polymeric component, although the disclosed tips are not limited to two-component systems or this particular sealant.
The pre-cursor components may be selected for the desired properties and any multi-component system may be used. For examples, the biologic material (preferably albumin and PEG) in a medical sealant may be tunable based on protein fragments that affect elongation, adhesiveness, gelation time, % swelling, degradation rate, pH, sterilization efficiency, Young's modulus, ultimate tensile strength, durometer, viscosity, tertiary cross-linking and others.
Generally, a nozzle tip assembly 100 for mixing multiple pre-cursor fluids (502, 504) comprises a nozzle housing, itself comprising a proximal end 200 adapted for receiving a delivery portion of a multi-lumen dispenser 500, a distal end 300 defining an exit orifice 310, and a sidewall 110 extending from proximal end to distal end; and a break-up insert 400, itself comprising a proximal end, a distal end further defining at least three fluted channels 402 and a central, recessed swirl chamber 404, and a sidewall 406 extending between the proximal end and distal end; wherein the sidewall 406 of the break-up insert 400 and the sidewall 110 of the nozzle housing define a channel 600 therebetween for fluid communication between the lumen and the at least three fluted channels 402.
In some embodiments, the swirl chamber 404 is defined by a substantially centrally located semi-spherical recess in the distal end of the break-up insert. By semi-spherical it is meant that the base is circular and the recess essentially domed, a true semi-sphere is not required. Additionally, any geometric shape may be used. While it is contemplated that a semi-spherical shape enhances the swirling and mixing effect, mixing could also be facilitated by turbulence created in a swirl chamber having a straight side, such as a square or rectangle, or a cylindrical or cone shape may also be used. The applied force which drives the multi-component fluids into the swirl chamber also forces mixed material out through the exit orifice which is substantially aligned centrally with respect to the swirl chamber.
In some embodiments, each of the fluted channels approaches 402 the swirl chamber 404 at an angle to facilitate mixing of the pre-cursor fluids in the swirl chamber. (The swirl chamber is denoted with dotted lines for illustrative purposes in
In some embodiments, the distance between the sidewall 406 of the break-up insert 400 and the nozzle housing sidewall 110 decreases from proximal end 200 to distal end 300. As depicted, the break-up insert 400 comprises one or more sloped shoulders 420 to decrease the distance between the sidewall of the break-up insert and the nozzle housing sidewall, a smoother transition may also be employed. The gradual reduction increases back pressure and increases fluid velocity as the components approach the swirl chamber.
In some embodiments, the at least three fluted channels 402 are equidistant from one another. In a three fluted design, the fluted channels are approximately 120 degrees from one another. In theory, two fluted channels could be used, but three fluted channels are believed to achieve more even mixing and better flow characteristics.
As should be appreciated, the nozzle tip assembly can be coupled to a multi-component delivery device comprising a multi-lumen delivery device. Although it is contemplated that the nozzle tip assembly can be easily removed and replaced, for example during a surgical procedure, without having to replace the entire product delivery device, it is possible that the nozzle tip assembly could be permanently affixed to a single use device.
The nozzle tip assembly is configured to accept fluid with multiple discrete pathways from a manually operated applicator system capable of transmitting force to accelerate fluid from still to a high velocity. The fluids enter into the nozzle tip where flow continues toward the break-up insert which may have upper baffles 450 but has effectively blocked the central pathway having only small channels 460 along the outer wall which accelerates fluids while providing resistance to the applicator. These fluids continue along the channel between the break-up insert and the nozzle wall until nearly reaching an exit orifice at the distal end of the nozzle. Just proximal of the housing wall of the nozzle distal end exit orifice, the channels direct the fluid into substantially radial fluted channels on the distal end of the break-up insert into a common zone referenced here as the swirl chamber. In some embodiments, there are at least three fluted channels. The swirl chamber is a general semi-spherical carve out substantially at the center of the distal end of the break-up insert. The heretofore substantially unmixed pre-cursor components meet in the swirl chamber and are forced together in a swirling manner due to the angles in which they enter the swirl chamber via the fluted channels. The depth of the swirl chamber is designed for each set of chemistry formulations to enable proper mixing. The center of the swirl chamber is aligned with the exit orifice, which typically is smaller than the swirl chamber, at the tip of the nozzle housing. The shape and size (diameter or slot or other geometry) of the exit orifice affects the spray pattern desired by the user while providing counter resistance to the applicator.
This design allows for minimal mixing of the pre-cursor components prior to reaching the fluted channels or swirl chamber, thus minimizing the likelihood that the pre-cursor components will mix and cure in the nozzle. This allows for extended use without fear of clogging between applications during the same procedure. Simply wiping the tip of the nozzle is sufficient in most cases to prevent clogging of the tip. This, for example, allows a surgeon to apply sealant, review the surgical site, and re-apply if necessary, without replacing the nozzle in most instances.
In some embodiments, the fluted channels 402 are approximately 120° from each other. In some embodiments, the fluted channels 402 narrow as they approach the swirl chamber, thus building pressure and fluid acceleration. As will be appreciated, the corners of the entry end of the fluted channel 402 may be rounded to facilitate fluid flow into the fluted channel.
The swirl chamber design is not limited to use with multi-component syringes, but may be adapted for use with any multi-lumen delivery system. For example, some systems have a longer extended delivery tip including multiple delivery lumens. These require a different nozzle, one example being depicted in
Although the embodiments disclosed and depicted herein employ a break-up insert that essentially blocks any fluid flow through its center, it is also contemplated that a dedicated lumen could pass through the center right to the swirl chamber for addition of another pre-cursor fluid but avoiding the other fluids entirely until at the swirl chamber. This could be used to apply a later addition of an additional component, to introduce a pulse of gas or solvent to dislodge a clogged tip or put to other use.
Any number of variations are possible in light of the disclosure herein. Nothing herein is meant to limit the possible combinations of numbers of lumen, number of fluted channels, or the size and shape of any of the relevant parts of the apparatus.
This application claims priority to U.S. Provisional Patent Application No. 61/788,311, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4260110 | Werding | Apr 1981 | A |
4923448 | Ennis, III | May 1990 | A |
5116315 | Capozzi | May 1992 | A |
5605255 | Reidel | Feb 1997 | A |
6517012 | Slowik et al. | Feb 2003 | B1 |
20030069537 | Spero | Apr 2003 | A1 |
20080067265 | Songbe et al. | May 2008 | A1 |
20090230214 | Keller | Sep 2009 | A1 |
20100065660 | Hull | Mar 2010 | A1 |
20100096481 | Hull | Apr 2010 | A1 |
20100114158 | Hattan | May 2010 | A1 |
20110319930 | Roush | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2163204 | Mar 2010 | EP |
2009-537291 | Oct 2009 | JP |
2010-148855 | Jul 2010 | JP |
2011-083615 | Apr 2011 | JP |
WO 2007131371 | Nov 2007 | WO |
WO 2011127045 | Oct 2011 | WO |
Entry |
---|
International Search Report dated Jul. 9, 2014 for corresponding PCT Application No. PCT/US2014/028783. |
Supplemental European Search Report for EP14763389 dated Sep. 9, 2016. |
Number | Date | Country | |
---|---|---|---|
20140263749 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61788311 | Mar 2013 | US |