The present invention relates to material reduction, separation, and classification systems. In particular, the present invention relates to material reduction systems that micronize particles.
Conventional material processing systems are known for processing waste materials having high moisture content and non-uniform particle size. Such systems typically include a blower for generating an air stream that flows through a network of ducts and a collision chamber. The waste material is introduced to the air stream, which carries the material through the collision chamber. The air stream is diverted in the collision chamber, causing the particles contained within the material to collide. These collisions usually result in a reduction in size of the larger particles contained within the waste material. The waste material is eventually blown out of the collision chamber and carried to a thermal drying assembly. Thermal drying assemblies introduce heated air to the waste material in order to evaporate the moisture contained in the waste material. The dried waste material is then output from the processing system.
A number of problems exist with such prior processing systems. Many of the problems are associated with the thermal drying process. Such thermal drying processes produce undesirable emissions, such as volatile organic compounds (VOCs). As a result, further expense and system complexity is involved to process these emissions. For example, a thermal oxidizer may have to be added to the system to treat the VOCs. Also, such thermal drying processes are a problem when trying to biomass waste materials into biofuel. For example, the lower chained alphatics are denatured by the heat, so heavy doses of polymers are required to form briquets out of the processed material.
Although these systems represent great strides in the area of material reduction systems, many shortcomings remain.
The novel features believed characteristic of the invention are set forth in the appended claims. However, the invention itself, as well as, a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
Disclosed herein is a system and method suitable for particle reduction, classification, and/or separation. According to some aspects of the present disclosure, wet material such as sludge or slurry can be processed to separate the moisture from the solids using a non-thermal drying process, meaning that there is no need for a heat source. By eliminating the thermal drying process found in prior system, the present system and method provides for a cleaner system that offers a number of advantages. For example, a system according to the present disclosure can be implemented that produces significantly fewer volatile organic compounds (VOCs) compared to systems incorporating thermal drying processes, thereby reducing or eliminating the need for an air-pollution processing unit, such as a thermal oxidizer. Also, the moisture removed from the solid material remains in liquid form rather than being evaporated, so it can be captured and, if necessary treated, for re-use.
Another advantage is that the solid discharge retains nutrient values better than if it had undergone a thermal drying process. In thermal drying, dissolved inorganic and organic salts scale out onto the suspended solids being dried. The inorganic salts in particular then can cause major corrosion problems if the dried suspended solids are used for fuel. In fact, there are many potential biomass to biofuel projects that are made non-economical by this corrosion. However, with the presently disclosed system and method, the moisture remains in liquid form when it is separated from the suspended solids and exits with a discharge air stream. Consequently, the dissolved solids, inorganic and organic, leave with the moisture and are not scaled out onto the dried solids end product. Also, because the lower chained alphatics are not denatured by heat and remain with the solids, they act as a polymer and help bind the solids into briquets for use as biofuel.
There are many applications where salt contents of biomass prevent the biomass from being considered as a biofuel. The presently disclosed system and method allows for the drying of the biomass in an initial pass to remove an initial percentage of the salts, then soak the dried biomass, for example to 90% moisture, then centrifuge the slurry, and then dry the centrifuge cake—effectively washing the biomass of the salts.
Referring first to
In the input stage 12, raw material to be treated by the system 10 is input into the system 10 through feeder assemblies 30. Each feeder assembly 30 can include such things as an auger, a hopper, and ducts, for example according to the more detailed description provided below. The raw material is channeled from the feeder assemblies 30, through wheel locks 50, into an accelerated air flow, sometimes referred to herein as a conveying air stream, that is created by positive displacement pumps 20a. Wheel locks 50 help to maintain pressure within the centrifugal particle reduction system 10 by preventing the accelerated air in the system conduit from escaping through the feeder assemblies 30. The raw material is carried by the conveying air stream from the wheel locks 50 to the first particle-reduction stage 14.
In the first particle-reduction stage 14, the conveying air stream carries the raw material first through an upstream particle conditioning assembly 60a, then through a downstream particle conditioning assembly 60b, and then through a dryer assembly 70a. As the raw material passes through the particle conditioning assemblies 60a and 60b, the size of the particles within the raw material is gradually reduced. Moisture is then extracted and separated from these particles in the dryer assemblies 70a. This moisture/solids separation occurs, in large part, due to a head-on collision of two conveying air streams. The collision creates a large squeezing force, much higher than a centrifuge or filter. This impact squeezing in the dryer assemblies 70a acts to squeeze the moisture out of the raw material.
Note that the same high velocity also creates a centrifugal separating force in the final dryer assembly 70b, separating the moisture from the solids. Moisture and air then exit from one opening in the dryer assembly 70b, and the dried solids exit from another opening. For example, in some embodiments of the dryer assembly, such as those described in greater detail below, moisture and the accelerated air stream exit from the top of the dryer assembly 70, and the dried solids drop out of the bottom.
The moisture and air from the dryer assemblies 70 are conveyed to one or more wet scrubbers 72a, 72b which separate the moisture from the air. The accelerated air is then reconveyed back through one or more of the positive displacement pumps 20.
Before the raw material arrives at the final dryer assembly 70b, the material can be conveyed through one or more polishing assemblies 75a and 75b. As the material passes through the polishing assemblies 75a and 75b, the size of the particles within the raw material is further reduced in size.
Note that alternative embodiments can include more or fewer positive displacement pumps 20, can include more or fewer particle conditioning assemblies 60, and can include more, fewer, or none of the polishing assemblies 75.
More specific embodiments of each of the stages 12, 14, and 16 will now be described in greater detail. An embodiment of the input stage 12 is shown in greater detail in
Referring first to
Each of the positive displacement pumps 220 operates to push gas, for example ambient air, through the various conduits 222, thereby creating the conveying air stream through the conduit 222. Alternatively, vacuum systems and/or various other types of pumps can be used in place of, or in combination with, to push and/or pull gas through the conduit 222.
In some embodiments, each of the positive displacement pumps 220 is operable to provide a gasflow of over 1000 cubic feet per minute (CFM), for example in a range of 3000 CFM to 6000 CFM, or in a range of 4000 CFM to 5000 CFM. In one implementation of the system shown in
Raw material is input into a feeder assembly 230 by placing the material into a hopper 255. The hopper 255 acts to funnel material towards the auger 235. The auger 235 grinds the raw material, thereby reducing the size of the particles within the raw material until it is sufficiently small enough to further progress through the wheel lock 250. Once particles have been conveyed through augers 235, wheel locks 250 convey particles to ducts 254 to facilitate their release into the conveying air stream within the conduit 222.
In this embodiment, the auger 235a is at least substantially horizontally positioned and drives raw material towards the wheel locks 250a. The hopper 255a has an inner chamber open to the auger 235a so that raw material fed into the hopper 255a is channeled towards the auger 235a. The auger 235a can be driven, for example using a motor (not shown), to rotate about an axis extending along its longitudinal shaft, and includes a number of blades about the shaft for breaking up the raw material and driving the raw material towards the wheel locks 250a.
The wheel locks 250a also rotate about respective longitudinal axes. In this embodiment, each wheel lock 250a has an axis of rotation that is at least substantially perpendicular to the axis of rotation of the auger 235a. The wheel locks 250a each include a plurality of cavities 251a that extend in a longitudinal direction that is at least substantially parallel to the axis of rotation of the respective wheel lock 250a. The cavities 251a are filled with raw material when facing the hopper 255a and discharge the raw material into the conveying air stream when facing the ducts 254a.
In this embodiment, the auger 235b extends upwardly into the inside of the hopper 255b and drives the raw material in the hopper 255b towards the wheel lock 250b. The auger 235b is oriented so as to allow material input into the hopper 255b to self-compress, thereby allowing for an increased amount of material input. That is to say, as material is input into the feeder assembly 230b and accumulates within hopper 255b, the weight of the material assists in compressing the material towards auger 235b and eventually through the wheel lock 250b. The auger 235b can be driven, for example using a motor (not shown), to rotate about an axis extending along its longitudinal shaft, and includes a number of blades about the shaft for breaking up the raw material and driving the raw material towards the wheel lock 250b.
The wheel lock 250b also rotates about its longitudinal axis. In this embodiment, the wheel lock 250b has an axis of rotation that is at least substantially perpendicular to the axis of rotation of the auger 235b. The wheel lock 250b includes a plurality of cavities 251b that extend in a longitudinal direction that is at least substantially parallel to the axis of rotation of the wheel lock 250b. The cavities 251b are filled with raw material when facing the hopper 255b and discharge the raw material into the conveying air stream when facing the duct 254b.
The wipers 274 divide the inner chamber of the wheel lock assembly 250c into a plurality of discrete pockets 276 that are substantially sealed from each other. The wiper assembly 270 rotates about a center axis at hub 278. As material is input into the inner chamber through the input port 268, the material is disposed within one or more of the pockets 276 that are aligned with the input port 268 at the time. As the wiper assembly 270 continues to rotate, the pocket or pockets 276 containing the input material eventually align with the through ports 269. At this point, the conveying air stream traveling through the through ports 269 propels the material out of the wheel lock assembly 250 to the ducts 266 and 254c.
Referring next to
As shown and described above in connection with
While the raw material particles are conveyed through the particle conditioning assemblies 360, particle collisions occur and cause a reduction in the size of the material particles. The particle conditioning assemblies 360 can each include one or more vibrating mechanisms for vibrating the particle conditioning chamber 360. Such vibrations are useful for disturbing moisture-laden particles that accumulate on the inside surfaces of the particle conditioning chamber 360, causing them to be dislodged from the wall and discharged from the chamber 360 by the conveying air stream. Additionally, air-stream obtrusions such as plates, blocks, or other objects can be disposed within the particle conditioning chamber 360 in order to disturb the air stream and, as a result, cause additional particle collisions to occur, thereby enhancing the particle reduction process. A more detailed description of an embodiment of the particle conditioning assemblies 360 is described below.
After the material particles have passed through the particle conditioning assemblies 360, the material particles are received by the dryer assembly 370. The dryer assembly 370 is configured for extracting and separating moisture from the solid particles in the raw material. This moisture/solids separation occurs, in large part, due to a head-on collision of two conveying air streams—the conveying air stream carrying the material from the conditioning chambers 360 to the dryer assembly 370, and the conveying air stream generated by positive displacement pump 320 and passed through conduit 322 which is in fluid communication with both of the dryer assemblies 370. The collision creates a large squeezing force, much higher than a centrifuge or filter. This impact squeezing in the dryer assemblies 370 acts to squeeze the moisture out of the raw material. Moisture and air is forced out of the top of the dryer assembly 370 through duct 372, which carries the air and moisture to a wet scrubber. Dried or at least partially-dried particles having a moisture content that has been reduced since entering the dryer assembly 370 exit through the bottom of the dryer assembly 370 and enter the conveying air stream flowing through the conduit 322.
Referring next to
As shown and described above in connection with
As particles of material are channeled through polishing assembly 475, additional particle collisions occur that further reduce the size of the particles. Vibrating mechanisms may be operatively associated with the periphery of polishing assembly 475 to further assist in reducing the size of the particles.
In the illustrated embodiment, particles are passed through first and second polishing assemblies 475 that are disposed in series such that the second polishing assembly 475 allows for additional particle size reduction. Alternative embodiments can include any number of polishing assemblies.
The high-velocity conveying air stream creates a centrifugal separating force in the final dryer assembly 470, separating most of the remaining moisture from solids in the conveyed material. Moisture and air then exit from the top of the dryer assembly 470 through conduit 471, which carries the moisture and air to a wet scrubber. The dried solids drop out of the bottom through a wheel lock 450 and auger 435.
The moisture and air from the dryer assembly 470 is conveyed to a wet scrubber that separates the moisture from the air. The air is then reconveyed back through one or more of the positive displacement pumps 20 and the moisture is discharged from the system.
Referring next to
Flow is created by positive displacement pump 520. Particles enter centrifugal particle reduction system 510 by being placed into feeder assembly 530. After being conveyed through feeder assembly 530, particles are conveyed into variable speed wheel lock 550 and then released into a fluid flow created by the positive displacement pump 520. Flow created by positive displacement pump 520 in turn conveys the particles into the particle conditioning assembly 560. Solid particles that are small enough to escape centrifugal particle reduction system 510 are left behind in particle conditioning assembly 560 and allowed to escape the centrifugal particle reduction system 510 through the variable speed wheel lock 550. Particles which are not sufficiently reduced are conveyed back into the fluid flow created by the positive displacement pump 520, and then reconveyed through the centrifugal particle reducer 510. This process can thus be repeated until the particles are sufficiently reduced to exit the centrifugal particle reduction system 510.
Referring now to
The end wall 668 can be hingedly attached, or otherwise capable of being opened or removed, allowing the end wall 668 to serve as an access door. During normal operation, the end wall 668 is in the closed position shown in solid lines. When the system is not operating, the end wall 668 can be opened to the position shown in phantom. This allows access to the chamber 662, for example for cleaning, for adjusting the length of the shaft 664 (as described below), or for other maintenance.
The distance between the end wall 668 and the hollow shaft 664 is spaced for minimizing head loss and entraining particle flow. Additionally, the distance between annular chamber 662 and hollow shaft 664 dictates the degree to which particle reduction occurs within the chamber 662. The present particle conditioning assembly 660 is provided with an adjustable hollow shaft 664, which allows for the particle conditioning assembly 660 to be tuned according to different particle reduction needs. Alternatively, or in addition to providing a shaft having an adjustable length, other adjustable provisions can be provided for adjusting the distance between the end wall 668 and the shaft 664.
Referring now also to
Referring again to
The conveying air stream enters particle conditioning assembly 660 generally normal to or generally tangential to the orientation of annual chamber 662 or hollow shaft 664. Hollow shaft 664 may be generally aligned with the orientation of annular chamber 662, or may deviate substantially therefrom. Also, more than one airflow may enter and exit annular chamber 662, as other embodiments may have additional openings 665 and additional hollow shafts 664.
The side wall 663 and end wall 668 are capable of vibrating or having a vibrating device attached to them. In some embodiments, a regular vibrating mechanism may be coupled to the side wall 663 and/or the end wall 668. In other embodiments, an ultrasonic vibrating mechanism may be coupled to the side wall 663 and/or the end wall 668. In certain embodiments an Etrema CU18 magnetorestrictive transducer may be coupled to the side wall 663 and/or the end wall 668 for transmitting vibrations.
The path followed by raw material and the conveying air stream through the particle conditioning assembly 660 is as follows: the material and air enters through opening 665, travels around the hollow shaft 664 several times while at the same time approaching the end wall 668, enters the hollow shaft 664 at opening 672, travels the length of hollow shaft 664, then exits the conditioning assembly 660 at opening 667.
As raw material carried by the conveying air stream enters the particle conditioning assembly 660 through opening 665, particles of the raw material begin to collide with one another as they are entrained to flow about the shaft 664 and along the annular chamber 662. The generally tangential orientation of opening 665 relative to side wall 663 allows for a smooth transition into the existing flow regime. If opening 665 is oriented generally normal to the location of annular chamber 662, the transition into the existing flow regime is not as smooth, but additional particle collisions may occur. The side wall 663 is generally conical, gradually decreasing the amount of available space between the side wall 663 and the shaft 664 closer to the opening 672 in the shaft. This means that as particles travel towards the opening 672 in the shaft, the volume of space in which particles can flow is gradually decreased, which results in a gradual increase in the number of particle collisions. Also, the interior side of the wall 663 can be provided with one or more air-stream obstructions such as blocks 675. Such obstructions disturb the airstream as it cycles around the outside of the shaft 664, causing an increased number of particle collisions. In some embodiments, the blocks 675 can include one or more grooves 675a, which create eddies and thereby cause an increased number of particle collisions. In embodiments that include a vibrating device for vibrating the side wall 663 and/or end wall 668, vibrations in the side wall 663 and/or end wall 668 assist in removing particle buildup on the inner side of the side wall 663 and/or end wall 668.
In some embodiments, end wall 668 and/or side wall 663 can have an additional opening smaller than hollow shaft 664 to allow sufficiently conditioned particles to escape annular chamber 662, and maintain insufficiently conditioned particles within annular chamber 662.
Referring now to
In some embodiments, hopper 755 and duct 754 may be shaped in a generally tubular fashion. Additionally, other embodiments each hopper 755 may employ multiple ducts 754 and multiple augers 735. Augers 735 may be positioned to convey particles towards variable speed wheel lock 750 or may be positioned within hopper 755 to reduce particles. Augers 735 may churn, rotate, or revolve in any position, direction, or manner.
Raw material is input into the feeder assembly 730. Auger 735 rotates, in turn compacting the raw material that is too large to pass through wheel lock 750, and conveys the raw material towards wheel lock 750. Wheel lock 750 opens intermittently, and releases reduced particles into the conveying air stream. The duct 754 assists in releasing particles into the conveying air stream by releasing particles about the orientation of wall 756, which is contoured to transition into the conduit. As the raw material accumulates within the feeder assembly 730, particles of the raw material compress against one another, walls 757 and 759 of hopper 755, and auger 735. As particle compression occurs, the weight of the particles and shape and orientation of walls 757 and 759 assist auger 735 in compacting and breaking down the size of the particles and funneling them towards the wheel lock 750.
Referring next to
As positive displacement pump 820 conveys particles through centrifugal particle reducer 810, variances occur throughout the system. Accordingly, feedback transmitters 880 may be located throughout the system to detect and convey these variances, while controllers 890 may be utilized to control other components capable of compensating for such variances.
Raw material is input into feeder assembly 830 and released via wheel lock 850 into a conveying air stream created by positive displacement pump 820. Feedback transmitter 880 is configured to detect and convey data associate with wheel lock 880 and feeder assembly 830. For example, feedback transmitter 880 can be configured to collect, create, and/or transmit data representative of whether wheel lock 880 needs to open or close, and/or representative of a need to adjust the rate at which wheel lock 770 opens and closes, for example according sensors that can detect the accumulation of particles within feeder assembly 830.
Due to the opening and closing of wheel lock 850, pressure variances occur as particles are released into the stream. Accordingly, feedback transmitter 880 and controller 890 can be connected between wheel lock 850 and positive displacement pump 820. As pressure changes occur during the release of raw material into the conveying air stream, feedback transmitter 880, in concert with one or more sensors for sensing these pressure changes, can convey these variances to controller 890. In turn, the controller 890 can be configured to respond appropriately, for example by adjusting the operational rate of positive displacement pump 820.
As raw material is released into the conveying air stream by wheel lock 850, the raw material is conveyed through an initial particle conditioning assembly 860 and a subsequent particle conditioning assembly 860. Feedback transmitter 880 is employed to collect and transmit data associated with the particle conditioning assembly 860 to the controller 890, which in turn is configured to adjust the operation of the positive displacement pump 820. Accordingly, if it is detected that the particle conditioning assembly 860 is not sufficiently reducing the size of the particles, an appropriate signal may be conveyed to indicate that the rate at which the positive displacement pump 820 is operating needs to be increased or decreased.
Similarly, feedback transmitter 880 may be connected between dryer assembly 870 and controller 890. As particles are dried, feedback transmitter 880 can be configured to convey associated data to controller 890. For example, feedback transmitter 880 can be configured to detect and convey to controller 890 the temperature inside dryer assembly 870. For example, if feedback transmitter 880 senses that the dryer assembly 870 is operating at a greater temperature than anticipated, perhaps due to friction occurring within the system, data representative of this event can be transmitted to the controller 890, which in turn can be configured to adjust the operation of the positive displacement pump 820 as necessary. Additionally or alternatively, feedback transmitter 880 can be configured to detect and convey data representative of the rate at which particles are leaving dryer assembly 870, the size of the particles within the dryer assembly 870, and/or the moisture content within the dryer assembly 870 to controller 890. The controller 890 can be configured to receive such data and take appropriate action if necessary. For example, if feedback transmitter 880 conveys data to controller 890 representative of a situation wherein the moisture content of particles leaving dryer assembly 870 is not sufficient, controller 890 can be configured to react by adjusting the operation of the positive displacement pump 820 as necessary. Similarly, if feedback transmitter 880 conveys data to the controller 890 representative of a situation wherein the rate or size of particles leaving the dryer assembly 870 is insufficient or undesirable, the controller 890 can be configured to react by adjusting the operation of the positive displacement pump 820 as necessary.
Referring next to
In some embodiments, at block S901 an auger can be employed to initially reduce materials so materials may be input into a conveying air stream that carries the particles through a centrifugal particle reducer. In some embodiments, at block S901 a vibrating mechanism can be employed to assist in funneling materials towards an auger. In some embodiments, at block S902 vibrating mechanisms may be coupled to the particle conditioning chamber to transmit vibrations into a fluid flow through which particles are being conveyed. In some embodiments, at block S902 obstructing elements such as blocks or plates can be attached about the walls of a particle conditioning chamber to further particle reduction as described above. In some embodiments, at block S902 material can be conveyed the length of the particle conditioning chamber to allow for additional particle to particle collisions. In some embodiments, at block S903 as the particles are dried, the moisture content can be conveyed through a feedback transmitter, to inform and adjust various other components of the centrifugal particle conditioning chamber. In some embodiments, at block S904 the moisture content may be measured at incremental nodes to allow only particles of specified moisture contents to be released from the drier at block S906 or reconveyed for additional conditioning and drying at block S905.
In addition to the foregoing, it should be understood that an auger 35 and a hopper 55 need not necessarily be oriented or shaped as such in alternate embodiments. Any auger 35 may be maneuvered at any angle relative to any variable speed wheel lock 50 or any hopper 55. Additionally, a hopper 55 may be shaped in any manner so long as particles may pass through it. Additionally, it should be understood that in alternate embodiments, the variable speed wheel lock 50 may be positioned before or after the feeder assembly 30.
Also, any positive displacement pump 20, feeder assemblies 30, variable speed wheel locks 50, particle conditioning assemblies 60, dryer assemblies 70, variable speed wheel locks 50, or polishing assembly 75 may be shaped to any form, including being generally triangularly formed, trapezoidally formed, circularly formed, so long as they may accommodate particles.
Any number of feeder assemblies 30 may be employed. Each feeder assembly 30 may be associated with any number of augers 35 or any number of hoppers 55. Additionally, each feeder assembly 30 may be associated with any number of variable speed wheel locks 50. Each hopper 55 may be associated with any number of augers 35. Furthermore, each feeder assembly 30 need not necessarily be operably associated with a variable speed wheel lock 50.
While this particular embodiment depicts particles flowing through a minimum of two particle conditioning assemblies 60 before flowing through a drying mechanism 70, it should be understood this embodiment is not limited. For example, particles could be passed through one or more particle conditioning assemblies 60 before being passed through one or more drying chambers 70. In other embodiments, particles may be passed only through one or more particle conditioning chambers 60 without being passed into any drying chambers 70. Yet in other embodiments, particles may be passed through one or more drying chambers 70 without being passed through any particle conditioning chambers 60.
Furthermore, it should be understood that the relative sequence of any particle conditioning assembly 60 and any drying chamber 70 is not limited. Any particle conditioning assembly 60 may be followed by any number of particle conditioning assemblies 60 or any number of drying chambers 70. Any drying chamber 70 may be followed in sequence by any number of drying chambers 70 or any number of particle conditioning chambers 60.
This embodiment also depicts multiple positive displacement pumps 20. It should be understood that the number, sequence, and location of the positive displacement pumps 20 should not be construed as limiting and that any number of positive displacement pumps 20 may be located in any sequence relative to any other component. It should be understood that any number of a positive displacement pumps 20 may be used to create airflow.
Additionally, it should be understood that the position, location, and number of augers 35 is not limited. If should be understood that an auger 35 may precede or follow. the location other member of the centrifugal particle reducer 10 equipment, including, but not limited to, a particle conditioning assembly 60, a drying mechanism 70, a variable speed wheel lock 50, or an auger 35.
Still in other embodiments, any number of positive displacement pumps 20, feeder assemblies 30, variable speed wheel locks 50, particle conditioning assemblies 60, or dryer assemblies 70, variable speed wheel locks 50, hoppers 55, and augers 35 may be employed and connectively related positive displacement pumps 20, feeder assemblies 30, variable speed wheel locks 50, particle conditioning assemblies 60, or dryer assemblies 70, variable speed wheel locks 50, hoppers 55, and augers 35.
For example, particles may be released from hopper 55 and auger 35, past a variable speed wheel lock 50 sent into an additional passage, distributed by an additional auger 35, and then passed through an additional variable speed wheel lock 50, before being released into the flow.
Alternatively, particles may be conveyed from a dryer assembly 70 into another dryer assembly 70, through an auger 35, and then a variable speed wheel lock 50 before being conveyed into a feeder assembly 30.
It is apparent that an invention with significant advantages has been described and illustrated. Although the present invention is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/072746 | 8/11/2008 | WO | 00 | 2/10/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/019129 | 2/18/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2014764 | Gram | Sep 1935 | A |
3143428 | Reimers et al. | Aug 1964 | A |
3212764 | Muller et al. | Oct 1965 | A |
3345323 | Endres et al. | Oct 1967 | A |
3512340 | Friedrich et al. | May 1970 | A |
4126946 | Buffington et al. | Nov 1978 | A |
4128404 | Stamatiou et al. | Dec 1978 | A |
4445976 | LaDelfa et al. | May 1984 | A |
4526804 | Escallon | Jul 1985 | A |
5194275 | Greer | Mar 1993 | A |
6491242 | Dingee, IV et al. | Dec 2002 | B1 |
6517015 | Rowley, Jr. | Feb 2003 | B2 |
6588686 | Dingee, IV et al. | Jul 2003 | B2 |
6715705 | Rowley, Jr. | Apr 2004 | B2 |
20040200910 | Graham et al. | Oct 2004 | A1 |
20080028633 | Dingee | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
1136129 | Apr 2008 | EP |
2008005097 | Jan 2008 | WO |
2008016623 | Feb 2008 | WO |
Entry |
---|
International Search Report mailed by ISA/USA, U.S. Patent and Trademark Office on Nov. 5, 2008 for International Patent Application No. PCT/US08/72746. |
International Search Report mailed by ISA/EP, European Patent Office on Feb. 8, 2008 for International Patent Application No. PCT/US07/17147. |
Number | Date | Country | |
---|---|---|---|
20110146495 A1 | Jun 2011 | US |