The present invention relates to a centrifugal pump, and more particularly to a centrifugal pump whose components such as an impeller and a casing are manufactured from a sheet metal and a method of manufacturing such a centrifugal pump.
Generally, in order to efficiently convert velocity energy of a fluid into pressure energy, a centrifugal pump is required to have a mechanism for decreasing a velocity of the fluid discharged from an impeller so as to recover a pressure head. Further, a multistage centrifugal pump having a plurality of impellers disposed in series is required to have a mechanism for leading a fluid from a certain-stage impeller to a next-stage impeller.
Thus, in a multistage centrifugal pump, a guide vane is widely used as a mechanism for decreasing a velocity of a fluid and leading the fluid to a next-stage impeller. This guide vane comprises diffuser passages for decreasing a velocity of a fluid discharged from an impeller, and return passages for leading the fluid, which has passed through the diffuser passages, to the next-stage impeller, as disclosed in the Japanese laid-open utility model publication No. 6-40958.
Since the above-mentioned diffuser passages and the return passages have a complicated shape, it has been customary to form the guide vane by using resin or by casting. The resin guide vane and the cast guide vane can have smooth passages therein for leading the fluid to a suction port of the next-stage impeller, and hence an excellent pump performance can be obtained.
However, the resin guide vane may be corroded depending on characteristic of the fluid. Therefore, the types of fluids which the pump can treat with are limited. Further, if the pump is used for delivering waste water, the resin guide vane is worn by suspended substances such as sands contained in the waste water. On the other hand, in a case of using the cast guide vane, the corrosion and the wear can be prevented from occurring. However, the cast guide vane causes a manufacturing cost to increase.
In order to solve such problems, there has been proposed a centrifugal pump having a diffuser section for decreasing a velocity of a fluid discharged from a rotating impeller, a plurality of return vanes for leading the fluid, which has passed through the diffuser section, toward a discharge side, and a main plate to which the diffuser section and the return vanes are fixed, all of which are manufactured from a sheet metal.
The centrifugal pump having the diffuser section, the return vanes, and the main plate, which are manufactured from a sheet metal, are excellent in corrosion resistance and wear resistance, and can pressurize the fluid with a high efficiency. An object of the present invention is to provide a centrifugal pump which has such advantages and can further improve a pump performance, and to provide a method of manufacturing such a centrifugal pump.
In order to achieve the above object, according to one aspect of the present invention, there is provided a centrifugal pump for pressurizing a fluid by rotating an impeller, the centrifugal pump comprising: a diffuser section for decreasing a velocity of the fluid discharged from the impeller; a return vane for leading the fluid which has passed through the diffuser section to a discharge side; a main plate to which the diffuser section and the return vane are fixed; and a structural member for smoothening a step formed in a passage extending from the diffuser section to the return vane.
According to the present invention, because the structural member smoothens the step formed in the passage extending from the diffuser section to the return vane, a resistance against the fluid flowing through the passage can be small and a loss can thus be small. Therefore, a high-efficient centrifugal pump can be achieved.
In a preferred aspect of the present invention, the diffuser section, the return vane, the main plate, and the structural member are formed from a sheet metal.
In a preferred aspect of the present invention, the structural member is a cover plate formed from a single sheet metal.
In a preferred aspect of the present invention, the return vane engages with the cover plate to prevent the cover plate from moving.
According-to the present invention, because all the components such as the diffuser section, the return vane, the main plate, and the structural member are formed from a sheet metal such as stainless steel, a centrifugal pump having an excellent corrosion resistance and an excellent wear resistance can be achieved.
According to another aspect of the present invention, there is provided a method of manufacturing a centrifugal pump for pressurizing a fluid by rotating an impeller, the method comprising: forming a diffuser section from a sheet metal, the diffuser section being provided for decreasing a velocity of the fluid discharged from the impeller; forming a return vane from a sheet metal, the return vane being provided for leading the fluid which has passed through the diffuser section to a discharge side; forming a main plate from a sheet metal, the diffuser section and the return vane being fixed to the main plate; forming a structural member from a sheet metal, the structural member being provided for smoothening a step formed in a passage extending from the diffuser section to the return vane; and assembling the diffuser section, the return vane, the main plate, and the structural member by welding processes, the welding processes being performed from the same side.
According to the present invention, because all the components are formed from a sheet metal and are assembled by the welding processes which are performed from the same side, the centrifugal pump having an excellent corrosion resistance and an excellent wear resistance can be easily manufactured.
In a preferred aspect of the present invention, the structural member and the return vane are integrally assembled by a single welding process.
According to the present invention, the structural member and the return vane can be easily assembled.
A centrifugal pump according to an embodiment of the present invention will be described below with reference to the drawings. As shown in
The diffuser section 11 is divided into each of the diffuser passages 15, and is fixed to the main plate 12 by welding. The return vanes 14 are divided into each of the return passages 16, and are fixed to the main plate 12 by welding. In the structures of these components, as shown in
As shown in
As described above, the guide vane 10 comprises the diffuser section 11 for forming the diffuser passages 15, the return vanes 14 for forming the return passages 16, the main plate 12 for fixing the diffuser section 11 and the return vanes 14, and the cover plate 13 interposed between the return vanes 14 and the main plate 12. Therefore, as indicated by the arrow A, a liquid discharged from a rotating impeller (described later) changes its course and flows into the return passages 16, and is then led to a discharge side (i.e., a discharge port of the pump or a next-stage impeller).
In a welding portion L1 shown in
The impellers 51 are disposed at equal intervals on the main shaft 53, and are integrally rotated with the main shaft 53. The suction ports 51a of the impellers 51 are in the same direction, and the impellers 51 are disposed on the main shaft 53 in series. The main shaft 53 is coupled to a motor (not shown), and the impellers 51 are rotated by the motor through the main shaft 53. The impeller 51 and the casing 52 are formed from a sheet metal such as stainless steel.
The multistage centrifugal pump 50 has a plurality of guide vanes 56 each having the same structure as the above-mentioned guide vane 10. Each of the guide vanes 56 comprises a diffuser section 57 for forming diffuser passages, a plurality of return vanes 58 for forming return passages, and a main plate 59 to which the diffuser section 57 and the return vanes 58 are fixed. Although not shown in
A first annular partition wall 60 constituting a part of each of the return passages is fixed to the backside (discharge side) of the return vanes 58. The first partition wall 60 has a first through-hole 60a having a small inner diameter. A second annular partition wall 61 is provided at the discharge side of the first partition wall 60, and a space 62 is defined between the first partition wall 60 and the second partition wall 61. The second partition wall 61 has a second through-hole 61a having an inner diameter substantially equal to the inner diameter of the first through-hole 60a. In this embodiment, the first partition wall 60 and the second partition wall 61 are formed from a sheet metal such as stainless steel. In this embodiment, a portion extending from the interstage casing 52A constitutes the second partition wall 61.
With the multistage centrifugal pump having the above structure, when the impellers 51 are rotated by the motor, a liquid is introduced into the impeller 51 through the suction port 51a in the direction of arrow D shown in
As described above, the liquid is successively pressurized by each of the multistage impellers 51, and the liquids having different pressures are partitioned by the first partition wall 60 and the second partition wall 61 into a high-pressure side and a low-pressure side. According to the multistage centrifugal pump of the present embodiment, in order to prevent the liquid in the casing 52 from leaking from the high-pressure side toward the low-pressure side, a floating-type liner ring 63 is provided.
Although a certain preferred embodiment of the present invention has been described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims for patent, and the scope of the technical concept described in the specification and drawings.
The present invention is applicable to a centrifugal pump whose components such as an impeller and a casing are manufactured from a sheet metal and a method of manufacturing such a centrifugal pump.
Number | Date | Country | Kind |
---|---|---|---|
2004-130203 | Apr 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/17222 | 11/12/2004 | WO | 10/23/2006 |