This invention relates to centrifugal pumps, and more particularly the use of self-priming centrifugal pumps for de-watering scenarios.
Centrifugal pumps have high capacity, measured in gallons per hour (gph), are readily available, and are generally inexpensive. They are, however, unsuitable for de-watering because de-watering requires intermittent to extended periods of dry operation. An example of a de-watering scenario is the draining of a thin mud slurry sloughed onto a recovery mat while washing trucks, or other vehicles.
Reciprocating diaphragm pumps can be operated dry and are suitable for dewatering. They have low capacity, however, and can be quite expensive. Compared to the least expensive diaphragm pump, a centrifugal pump could cost 70%-80% less while having twice the head and nearly four times the capacity for throughput.
The impeller of a centrifugal pump has a shaft which extends through a housing to an external motor. The housing, which is a chamber containing the volute, is rendered water-tight by means of a seal surrounding the shaft, or the bearing in which the shaft is situated. The seal can be degraded by the heat of friction, which is normally dissipated by the circulation of fluid through the chamber. The seal can be quickly destroyed, however, during a period of dry running, such as may occur when water is draining from a slurry into a pool which is periodically pumped dry.
U.S. Pat. No. 5,667,357 to Buse et al discloses a system for providing a flow of water to the bearing seal during intermittent periods of dry running. The water is recycled from a reservoir connected to the output port of the pump. The reservoir is effectively a bulge in an ascending pipe which retains a body of water therein. The pressure gradient, or head, caused by the rotating impeller, drives a recirculation current from the body of water through a pre-existing channel system, designed to externally irrigate the bearing casing, back to the volute chamber.
U.S. Pat. No. 4,773,823 to Pease teaches a similar system, except that the object in this case is to increase the life of the seal rather than to sustain dry running periods. The re-circulated water is drawn not from a reservoir, but directly from the volute. Since there is always a torus of water in the volute, even during dry running, conceptually there is a supply, at least for short periods, for continuous recirculation.
In both Buse and Pease, the cooling effect is achieved by water which has been previously heated and recycled. The system, therefore, is thermally inefficient and, in some sense, self-defeating. In addition, the porting through the bearing housing for channeling the recirculation would weaken the very structure which is under dynamic stress. What is needed is a simple method of providing a continuous flow of fresh water through the pump when the suction is otherwise dry-cycling.
It is accordingly an object of the invention to provide a method for cooling the shaft seal of a self-priming centrifugal pump during intermittent dry running.
It is a second object to provide a simple method, which can be easily implemented on any existing self-priming pump.
It is a third object to provide a flush of fresh water under pressure through the pump at all times during running, whether running wet or dry.
It is a fourth object to provide a sufficient flow of water to ensure that the pump does not lose its capability to re-prime.
These and other objects of the invention to become apparent hereinafter in accordance with the invention in a method of dewatering an intermittently dry pool, comprising the steps of providing a self-priming centrifugal pump having inlet and discharge ports and an impeller; connecting the impeller to an engine through a shaft fitted with a seal providing water-tight isolation, the impeller creating a head manifest as suction in the inlet port; establishing fluid communication between the inlet port and the pool; and introducing a means for continuously cooling the shaft seal without occluding the suction, whereby degradation of the seal by heat of friction is avoided.
In a preferred embodiment of the method of dewatering, the means for continuously cooling is provided by a pressurized source of liquid introduced to the inlet port at a fraction of the pump capacity, the liquid streaming continuously regardless of dry or wet operation. In a particular preferred embodiment, the liquid is water under line pressure.
As this is not intended to be an exhaustive recitation, other embodiments may be learned from practicing the invention or may otherwise become apparent to those skilled in the art.
Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood through the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
In the preferred embodiment, a means for continuously cooling the seal 20 is facilitated by coupler 21 in inlet port 2. In a particularly preferred embodiment, said means is a pressurized source of liquid 22. The pressurized source of liquid 22 may be water under line pressure supplied by hose 23. Coupler 21 and hose 23 are connected in a manner that is sealed and prevents the suction from being vented.
The pressure in the pressurized source of liquid 22 must be such that only a fraction of the pump capacity is utilized in processing the flow of liquid there through during a dry cycle. In other words, it is required that suction remains available in inlet port 2 to resume pumping when the cycle returns to wet. In a particularly preferred embodiment, the fraction of pump capacity is defined by the pressure source delivering 3-10 gpm to a centrifugal pump operating at 100-150 gpm.
Construction materials are readily available. Centrifugal pumps, such as that shown in
A method of de-watering an intermittently dry pool 10 is shown in the process diagram of
While a particular form of the invention has been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. For example, the invention could be practiced with the pump located at an elevation below that of a body of water, such as a pond, by means of siphoning. Accordingly, it is not intended that the invention be limited, except as by the appended claims.