This application is the US-national stage of PCT application PCT/EP2013/003626 filed 2 Dec. 2013 and claiming the priority of German patent application 102012023734.0 itself filed 5 Dec. 2012.
The invention relates to a centrifugal pump, in particular a sewage or waste-water motor pump having an impeller whose end face turned toward the pump intake is open and only the impeller end face opposite the intake is covered by a circular coaxial support disk on which curved vanes are fixed and particularly integrally formed.
Sewage often contains coarse solids such as long-fiber admixtures that can clog a centrifugal pump. To reduce this risk of clogging, it is known to provide a large gap between the base plate having the intake and the impeller, so that larger solid particles flow laterally past the impeller without blocking it. The efficiency of such a non-clogging centrifugal pump is thereby substantially reduced.
The object of the present invention is to improve a centrifugal pump of the above-described type such that a high operational reliability and a low risk of clogging exist at high pumping efficiency.
This object is achieved according to the invention in that the base plate turned radially inward toward the impeller and having a intake, or at least a segment thereof, is movably adjustable and/or deformable and/or movable against spring pressure such that it varies its spacing from the impeller and thus from the impeller vanes.
Such a construction makes it possible for the gap between impeller and base plate to adapt automatically to the degree of soiling and to the size of the conveyed solids and/or can be accordingly optimally adapted by adjustment.
It is proposed for this purpose that the base plate and/or the segment(s) of the base plate are mounted on the pump housing by at least one screw. A particularly simple and sturdy construction is provided when the screw(s) penetrate/penetrates the base plate and their heads rest in a widened part of the bore that opens toward the impeller.
It is preferably proposed that the screw(s) is/are surrounded by a helical compression spring that generates/generate the spring pressure on the base plate.
An advantageous construction with optimal movability and adaptability to the degree of soiling is obtained if the base plate has a first region movable or fixed relative to the pump housing and at least one plate-shaped region movable against the first region and/or against the housing wall against spring pressure. Here, the movable second region can be held by at least one screw with limited movement against the fixed region and/or against the housing wall.
It is preferably proposed that the gap between the vanes and the base plate increases from the leading edge of the vane to the trailing edge of the vane. It is advantageous if the gap between the vanes and the base plate is 0.5 to 2 mm. The impeller preferably has two of the curved vanes.
An advantageous embodiment is that the base plate is trough-shaped, in particular concavely curved on its side turned radially inward toward the impeller, and the axial height of the vanes decreases radially outward complementarily to the base plate curvature.
A low-vibration, straight-line input flow is achieved if the intake has flow grooves in its inner wall that preferably extend parallel to the primary flow direction in the intake. It is preferably proposed here that the inner wall of the intake is cylindrical and the flow grooves extend parallel to the axis of the cylinder inner wall.
It is particularly advantageous,
These curves formed in the base plate improve the transport of solids radially outward and thus greatly reduce the risk of clogging of the pump.
It is preferably proposed that from the two side walls of the grooves, those side walls that were last traversed by a vane form an inclined surface that extends from the groove outward.
Several embodiments are shown in perspective and sectional views in the drawings and are described in more detail below.
The centrifugal pump according to the invention is particularly suitable for pumping sewage and waste water containing solid particles. It is preferably part of a submersible water pump.
The pump impeller 1 is driven by the shaft of an unillustrated electric motor and is in a pumping chamber between an axially centered intake 8 in a base plate 7 and a wall that separates the electric motor from the pumping chamber. The impeller 1, made of plastic or metal, draws the pumped medium in axially through the intake 8 and expels it radially to a helical channel 14 formed by a pump housing 13 surrounding the impeller 1 and emptying at a pump output. The base plate 7 is concave on its side turned axially inward toward the impeller 1, in particular concavely curved, and the height of vanes 3 and 4 of the pump decreases outwardly corresponding to the base-plate curvature.
The impeller 1 is one-sided, i.e. it has a circular support disk (cover plate) 2 on the back turned toward a rim of the housing 13 and has no front cover plate. On the front face turned toward the intake 8, the support disk 2 carries the two vanes 3 and 4 that are curved (in particular C-shaped), and the concave side of each vane 3 and 4 is directed radially inward toward the unillustrated impeller shaft. Instead of two vanes, one, three or more vanes can also be fixed, in particular integrally formed on the support disk 2.
The approximately C-shaped curved vanes 3 and 4 extend from the inside outward to the outer edge of the impeller 1, and the generatrix of the vane extends parallel or at an acute angle to the pump axis and thus to the impeller shaft, so that each vane is at a right or acute angle to a planar rear face 2a of the support disk 2 on front face 2b of the support disk that rises toward the middle of the disk. The free outer edge of each vane 3 and 4 forms an elongated region 12 of increased thickness that extends as a profile along the vane edge in the embodiment according to
In embodiments not shown, the thick region 12 is not formed with a profile with a cross-section that remains uniform across its length, but rather the thick region 12 is either only partially, in particular in sections, profile-shaped or its cross-section increases or decreases in size from one end to the other. In all embodiments, the largest cross-section of the elongated region 12 of increased thickness is always greater than the width and thickness D of the vane 3 and 4. Here, the region 12 of increased thickness projects on both or at least one side of the vane.
An inner end 9a of each vane 3 and 4 shown in
In this embodiment, both regions of increased thickness 9 are formed with profiles with a circular cross-section. The profile may however also have differently-shaped cross-sections instead, in particular oval or elliptical. Furthermore, the cross-section can change in shape and/or size along its length, in particular in sections. In all embodiments of the elongated regions of increased thickness 9 and 12, these are preferably of the material of the vane and thus of the same plastic or metal as the vane, and are preferably unitarily formed therewith.
The gap between the base plate 7 and the vanes 3 and 4 is adjustable such that the pump is adaptable to the various admixtures in the sewage or waste water. Either the entire base plate is axially adjustable, or at least the region juxtaposed with the vanes. The adjustment is carried out, for example, by hand by screwthreads, screws 16 or wedge surfaces, in particular with tools, but also by a hydraulic or pneumatic actuator, in particular computer- and/or remote-controlled.
In the embodiment according to
In the embodiment according to
The inner base plate 7 is supported by at least one, preferably three or four screws 16 seated in the housing wall and surrounding the intake 8. Here, each screw 16 fits in a bore 17 of the base plate 7. The bore 17 has a counterbore 18 that opens toward the impeller and in which the screw head 21 is engaged. Another bore 19 opening toward the base plate also has a threaded region in the housing wall, and a counterbore of the 19 holds a helical compression spring 20 that bears against the bottom face the base plate 7 in order to push the base plate toward the impeller 1. Since there is a gap of several millimeters between the underside of the base plate 7 and the inside of the housing wall, the base plate can move downward (in
The embodiment according to
The base plate 7 has, as shown in
Instead of three grooves, one, two, four or more grooves can also be incorporated into the base plate.
The preferably cylindrical intake 8 has in its inner wall flow grooves 11 that preferably extend parallel to the primary flow direction in the intake, so that solids in the sewage or waste water are led away from the impeller and the risk of clogging is reduced. Here, the flow grooves 11 are distributed at equal angular intervals across the inner wall of the intake. In the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
10 2012 023 734 | Dec 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/003626 | 12/2/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/086472 | 6/12/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6139260 | Arbeus | Oct 2000 | A |
6390768 | Muhs | May 2002 | B1 |
6951445 | Burgess | Oct 2005 | B2 |
8608428 | Andersson | Dec 2013 | B2 |
20040146416 | Burgess | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
201401341 | Feb 2010 | CN |
7212196 | Mar 1972 | DE |
4142120 | Jun 1993 | DE |
19823603 | Dec 1999 | DE |
102005056200 | Jun 2007 | DE |
102010026176 | Jan 2012 | DE |
1538338 | Dec 2003 | EP |
1906025 | Apr 2008 | EP |
1906026 | Apr 2008 | EP |
2681906 | Apr 1993 | FR |
2681906 | Apr 1993 | FR |
00197033091 | Sep 1997 | WO |
2003081050 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20150292519 A1 | Oct 2015 | US |