1. Field of the Invention
The present invention relates generally to rotational pumps, for example a self-priming, centrifugal pump. The centrifugal pump can easily be reconfigured between high and low inlet configurations.
2. Description of the Related Art
Rotational pumps are commonly used for pumping fluids in a wide variety of applications. Rotational pumps generally include centrifugal, vane, gear, turbine and other types. Self-priming operation is required for many applications. Back-flushing capability is preferable for pump maintenance in many applications.
These considerations are addressed by the present invention. Heretofore there has not been available a rotational, self-priming, user-reconfigurable pump with the advantages and features of the present invention.
A rotational, e.g., centrifugal, pump includes a reconfigurable inlet adapter allowing a user to quickly and easily transform the pump inlet between high and low inlet positions. In the high-inlet position water is contained below the inlet, thus flooding the impeller and self-priming the pump. Moreover, the pump can be back-flushed in its high-inlet configuration. However, the high-inlet configuration creates a diversion in the flow path through the pump, thus compromising efficiency and throughput.
On the other hand, in the low-inlet configuration, the flow path is more direct for optimal efficiency and throughput. Fluid can be contained within the pump when not in operation with a flapper valve, which acts as a check valve capturing a volume of water within the pump for self-priming when operation starts. However, the flapper check valve adds complexity in the low-inlet configuration, and interferes with back-flushing pump maintenance.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.
As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately-detailed structure.
Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
Referring to the figures in more detail,
As shown in
As shown in
A scroll plate 20 is mounted within the pump housing 16. A scroll gasket 22 is clamped between the pump housing 16 and the scroll plate 20. A housing cover 24 encloses the pump housing 16. An impeller 26 is mounted in the pump 2. The impeller 26 connects to the scroll plate 20. A reservoir 28 is mounted about the impeller 26 and to the housing cover 24, with a gasket 30 located between the reservoir 28 and the housing cover 24. A rotary drive (e.g., engine or motor) adapter 32 is drivingly connected to the impeller 26 and is placed adjacent to the reservoir 28 with a gasket 30 placed between the two components. A mechanical double seal 5 is located therein. A clamp 34 secures this connection.
O-rings 8, or other suitable sealing means, can be installed between components of the pump 2 for maintaining water-tight integrity. Nominal pipe threaded (NPT) plugs 36 are inserted into plug holes within the housing 16 and the reservoir 28. The plugs 36 can be of varying sizes as required.
The low-inlet configuration of the pump 2, as described above, includes a backflow or check valve formed by the flapper 10. The low-inlet configuration optimizes fluid flow by providing a relatively direct path from the low-inlet passage 6 to the impeller 26. The high-inlet configuration pump 102 allows the outlet lines attached to the pump to drain when the pump 102 is not operating, while enabling self-priming with an internal quantity of fluid for instant pumping on start-up.
In operation, on activation the impeller 26 produces a pressure differential between the impeller 26 and mechanical seal 5. Fluid is pumped through the pump 2 along the flow path designated by flow arrows 40 (
As shown in
O-rings 108 and gaskets 130 are placed in the joints between the components of the pump 102 as necessary for maintaining water-tight integrity of the pump housing 116, including O-rings 108 between the inlet adapter 104 and the housing 116, and between the discharge flange 114 and the housing 116.
In operation, the high-inlet configuration pump 102 is configured for retaining fluid below the inlet 106, thus flooding the impeller 126 and self-priming the pump 102 on startup. On activation the impeller 126 produces a pressure differential between the impeller 126 and mechanical seal 105. Fluid is pumped through the pump 102 along the flow path designated by flow arrows 140 (
While an impeller-driven centrifugal pump with alternative configurations is shown and described, the present invention is not limited to any particular type of pump. Without limitation, other rotational pumps include vane, gear, turbine, screw and other types.
It is to be understood that while certain embodiments and/or aspects of the invention have been shown and described, the invention is not limited thereto and encompasses various other embodiments and aspects.
This application claims priority in U.S. Provisional Patent Application No. 62/263,281, filed Dec. 4, 2015, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3778181 | McFarlin | Dec 1973 | A |
4202654 | Marlow | May 1980 | A |
4726734 | Zientek et al. | Feb 1988 | A |
6920846 | Pawellek | Jul 2005 | B2 |
8123458 | Racer et al. | Feb 2012 | B2 |
8128340 | Racer et al. | Mar 2012 | B2 |
8182200 | Cox | May 2012 | B2 |
8414257 | Scott et al. | Apr 2013 | B2 |
20050013689 | Racer | Jan 2005 | A1 |
20150267714 | Irwin | Sep 2015 | A1 |
20160245291 | Carnes | Aug 2016 | A1 |
20160258340 | Klippert | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170159673 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62263281 | Dec 2015 | US |