The invention relates to centrifugal separators for separation of a liquid mixture of components into at least a first component and a second component.
Some liquid mixtures are sensitive to high shear forces which may cause a disruption of droplets, particles or agglomerates of particles in the liquid mixture. For example shearing of an emulsion of two immiscible liquids such as oil and water reduces drop sizes and makes separation more difficult. It may therefore be an object to provide gentle acceleration of the liquid mixture when entering into the rotor of the separator, rotating at high speed.
An example of a centrifugal separator having an inlet which is gentle to the liquid mixture of components is disclosed in EP 0225707 B1. This document discloses a centrifugal separator provided with an inlet arrangement in the form of a set of annular discs arranged coaxially with the rotor and forming passages for liquid between them.
Another example of a centrifugal separator having an inlet which is gentle to the liquid mixture of components is disclosed in EP 1105219 B1. This document discloses a centrifugal separator provided with an inlet arrangement in the form of a helically shaped element extending along the inlet pipe, forming passages for liquid between adjacent windings of the element.
A further example of a centrifugal accelerator is disclosed in WO 91/12082, in which the inlet comprises a smooth baffle disc and a number of entraining discs for gently entraining a supplied liquid.
However, in some applications, an inlet arrangement as disclosed in prior art may cause an internal overflow within the centrifugal separator, in particular at high inlet flow. Upon such conditions, the unseparated liquid mixture may overflow into the outlet for separated liquid, thereby impairing the separation quality.
It is an object of the present invention to provide a centrifugal separator with an inlet which is gentle to the liquid mixture which is to be separated while minimising the risk of internal overflow in the separator rotor.
Thus, the present invention relates to a centrifugal separator comprising a rotor arranged to be rotatable around an axis of rotation (x), and an inlet chamber formed in the rotor. The separator is provided with an inlet pipe extending into the rotor having an opening in the inlet chamber for supply of a liquid mixture of components and an inlet arrangement in the inlet chamber. The inlet arrangement comprises a set of annular discs coaxial with the rotor and forming passages for liquid between the discs, or a helically shaped element arranged coaxial with the rotor and forming passages for liquid between the windings of the helically shaped element. The separator further comprises vanes arranged upstream of the inlet arrangement such as to cause a pre-rotation and pre-acceleration of the liquid mixture.
Thus, by causing a pre-rotation and pre-acceleration of the liquid mixture the centrifugal forces acting on the liquid mixture will to a greater extent force the liquid mixture between the passages for liquid between the discs of the inlet arrangement, thereby minimising the risk of internal overflow, short circuiting the inlet with the separator outlet. In other words, the vanes are arranged to cause pre-acceleration of the supplied liquid, in contrast to e.g. a prior art smooth baffle as disclosed in WO 91/12082. A smooth baffle may instead in itself cause retardation of the incoming liquid, i.e. the opposite of acceleration.
An inlet arrangement in the form of a set of annular discs may be an inlet arrangement as further disclosed in EP 0225707 B1 and an inlet arrangement in the form of a helically shaped element may be an inlet arrangement as further disclosed in EP 1105219 B1.
The vanes may be comprised in the rotor. Thus the pressure needed to feed liquid into the rotor may be limited since the motor of the centrifugal separator is used to accelerate the liquid.
The vanes may be arranged on an element forming part of the wall of the inlet chamber facing the opening of the inlet pipe. Thus the liquid mixture meets the vanes and is accelerated upon entry into the inlet chamber.
The element may be a removable element of the rotor. Further, the element may be sleeve-shaped. As an alternative, the removable element may be disc shaped. Thus the form and dimensions of the vanes may be altered to reflect different operating conditions. The element may thus also be replaceable if subjected to wear.
The vanes may extend inwards to a radial position inside the inlet pipe wall at the opening of the inlet pipe and/or extend outwards to a radial position outside the inlet pipe wall at the opening of the inlet pipe. Thus, the inlet flow will pass the vanes upon passing a passage between the inlet pipe and the wall of the inlet chamber facing the opening of the inlet pipe.
Further, the vanes may extend radially outwards to a radial position that leaves a passage for the liquid mixture between the vanes and the wall of the inlet chamber, thereby allowing supplied liquid mixture to pass the passage after passing the vanes, i.e. before passing the inlet arrangement. This may decrease the risk of further mixing the inlet liquid. In other words, the inlet chamber may have a radius of Rchamber from rotational axis X at the position of the vanes, and the vanes may extend radially outwards in the inlet chamber to position Rout from rotational axis X, wherein Rout<Rchamber. The radial extension may be the extension along the flow of liquid. The position of the vanes may be a position vertically below the opening of the inlet pipe if the inlet pipe extends into the separator from the top. Consequently, Rout may be located such that a passage is formed between the vanes and the inlet chamber wall, wherein the passage is large enough to allow passage of the liquid mixture. This is advantageous in that the vanes then both provide acceleration of the inlet mixture and still allow a suitable inlet pressure. As an example, Rout may extend to less than 90% of Rchamber, such as about 30-85% of Rchamber, such as about 50-75% of Rchamber. It should be understood that the radial extension of the vanes does not have to “start” from rotational axis X, but the vanes may start from a radial position Rstart that leaves a passage or distance to rotational axis X. As an example, the central nave nut or a part of the central nave nut of the separator, such as the top of the central nave nut, may extend into the passage between the vanes and rotational axis X. As discussed above, the vanes may extend inwards to a radial position that is inside the inlet pipe wall at the opening of the inlet pipe, i.e. Rstart may be located radially inside the opening of the inlet pipe. With the terminology used above, the extension of a vane Rvane is Rout-Rstart. As an example, Rvane may be about 5-80% of Rchamber, such as about 10-70% of Rchamber, such as about 20-50% of Rchamber, such as about 25-35% of Rchamber.
The removable element may be fastened to the rotor at a central nave portion of the rotor. The centrifugal separator may further comprise a spindle, wherein the rotor is attached to the spindle at the central nave portion by means of a nave nut and wherein the removable element is fastened to the rotor by means of the nave nut. Thus the removable element may be replaceable in a simple manner.
The inlet arrangement may comprise a plurality of walls connecting adjacent annular discs or windings. The walls may extend in a radial direction, extend in a direction having an angle with the radial direction, or be curved. The plurality of walls may be arranged such that a plurality of channels is formed between each annular disc or along each winding revolution. Thus the acceleration of the liquid mixture is improved when entering the passages between the discs or windings of the inlet arrangement.
The vanes may be comprised in the rotor and may, in a plane perpendicular to the axis of rotation (x), be arranged in a radial direction, arranged in a direction having an angle to the radial direction or be curved.
As an alternative, the vanes may be formed in the inlet pipe and arranged in such a manner as to cause the pre-rotation and pre-acceleration of the liquid mixture. Thus the liquid mixture may be provided with a pre-rotation and pre-acceleration caused before entering the rotor. Such vanes may be curved or arranged at an angle to the flow of liquid mixture.
Each vane may have an extension along the flow of liquid mixture during operation of the separator, and each vane may have a substantially rectangular or wing profiled cross-section along this extension. Such a wing profile cross-section may comprise a rounded leading edge meeting the flow of liquid, and a sharp trailing edge. Thus, the hydrodynamic properties of the vanes may be optimised.
Further, the centrifugal separator may comprise at least three vanes, such as at least five vanes, such as at least eight vanes, such as at least ten vanes, such as at least twelve vanes, such as at least fifteen vanes. The vanes may be of the same radial length.
Furthermore, the centrifugal separator may be adapted for an inlet flow of liquid mixture that is at least 80 m3/hour, such as at least 100 m3/hour, such as about 150 m3/hour.
As a further aspect of the invention, there is provided a method for separating components in a liquid mixture comprising the steps of
Step b) may comprise supplying the separator with the liquid mixture at an inlet flow of at least 80 m3/hour, such as at least 100 m3/hour, such as about 150 m3/hour.
The liquid mixture may comprise solids. As an example, the liquid mixture may comprise water, naphtha and bitumen. For example, the water content of the liquid mixture may be about 25-30% (w/w). The naphtha may be full range naphtha and may comprise a fraction of hydrocarbons in petroleum that boils between 30° C. and 200° C. Further, the naphtha may comprise light naphtha, which may be the fraction of hydrocarbons boiling between 30° C. and 90° C. The light naphtha may comprise molecules with 5-6 carbon atoms. Further, the naphtha may comprise heavy naphtha, which may be the fraction of hydrocarbons boiling between 90° C. and 200° C. The heavy naphtha may comprise molecules with 6-12 carbons.
Bitumen, sometimes referred to as asphalt, refers to a highly viscous liquid, semi-solid or solid form of petroleum. Bitumen may be sticky and black. Consequently, solids of the liquid mixture may comprise bitumen. The bitumen may originate from oil sands, tar sands and/or bituminous sands. Bitumen may be petroleum that exists in the semi-solid or solid phase in natural deposits. Bitumen may thus be a thick, sticky form of hydrocarbon, and may have a density and/or viscosity high enough such that it does not flow unless heated or diluted with lighter hydrocarbons. Bitumen may be oil having a viscosity greater than 10,000 centipoises under reservoir conditions and an API gravity of less than 10° API.
The separator of the present disclosure may be efficient for separating components of a liquid mixture comprising solids, such as a liquid mixture comprising water, naphta and bitumen. Thus, the separator of the present disclosure may be used in the extraction of oil from oil sands, tar sands and/or bituminous sands.
Still other objectives, features, aspects and advantages of the invention will appear from the following detailed description as well as from the drawings.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying schematic drawings, in which
With reference to
The inlet pipe has an opening 4 for supply of a liquid mixture of components into the inlet chamber. The opening is directed towards a part of the wall of the inlet chamber comprising a nave nut 9 and a removable element in the form of a nave sleeve 8. The nave nut is arranged to fasten the rotor to the spindle, and to fasten the nave sleeve to the rotor. The nave sleeve is provided with vanes 7 protruding from the sleeve element and directed towards the inlet pipe. With reference to
The rotor shown in
In the separation space 11, a stack of frusto-conical separation discs 12 is arranged, along and coaxial with the rotational axis (x). The outer portion of the separation space, radially outside the separation discs, forms a sludge space 13 for a first separated component of the liquid mixture having a higher density (a heavy phase). Outlets 14 in the form of nozzles extend from the sludge space for discharge of separated components collected therein. The inner portion 15 of the separation space, radially inside the separation discs, constitutes a space for a second separated component of the liquid mixture having a lower density (a light phase). The inner portion 15 of the separation space communicates with an outlet for light phase 16.
During operation of the centrifugal separator according to
If the liquid mixture of components is not subjected to the described pre-rotation, there is a risk that it overflows the radially inner edge of the distributor 17 (between the distributor 17 and the inlet pipe 3), in particular at high flow of liquid mixture. Upon such conditions, unseparated liquid mixture may overflow from the inlet chamber 2 into the outlet chamber 16 for light phase, thereby impairing the separation quality.
Number | Date | Country | Kind |
---|---|---|---|
12155584.1 | Feb 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/053097 | 2/15/2013 | WO | 00 |