The field of the invention is subterranean debris cleanup tools and more particularly the type of tools that direct debris with flow into the lower end of the tool and retain the debris in a collection volume around an inlet tube and most particularly also employ a swirling movement of the incoming debris laden stream to enhance separation in the tool.
Milling operations at subterranean locations involve fluid circulation that is intended to remove cuttings to the surface. Some of these cuttings do not get transported to the surface and settle out on a wellbore support such as a packer or bridge plug that is below. In open hole situations the wellbore can collapse sending debris into the borehole. Over time sand and other debris can settle out on a borehole support and needs to be removed for access to the support or to allow further subterranean operations.
Wellbore cleanup tools have been used to remove such debris. Different styles have developed over time. In a traditional style the motive fluid goes through the center of the tool and out the bottom to fluidize the debris and send the debris laden stream around the outside of the tool where a diverter redirects flow through the tool body. A receptacle collects the debris as the clean fluid passes through a screen and is discharged above the diverter for the trip to the surface.
Another type of tool has a jet stream going downhole outside the tool to drive debris into the lower end of the tool where debris is collected and clean fluid that passes through a screen is returned to the surface outside the tool through ports located near the downhole oriented jet outlets. The jet outlets act as an eductor for pulling in debris laden flow into the lower end of the tool. Some examples of such tools are U.S. Pat. Nos. 6,176,311; 6,607,031; 7,779,901; 7,610,957; 7,472,745; 6,276,452; 5,123,489. Debris catchers with a circulation pattern that takes debris up on the outside of the tool body and routes it into the tool with a diverter are illustrated in U.S. Pat. Nos. 4,924,940; 6,189,617; 6,250,387 and 7,478,687.
The use of centrifugal force to separate components of different densities is illustrated in a product sold by Cavins of Houston, Tx. under the name Sandtrap Downhole Desander for use with electric submersible pump suction lines. U.S. Pat. No. 7,635,430 illustrates the use of a hydro-cyclone on a wellhead. Also relevant to the subterranean debris removal field is SPE 96440; P. Connel and D. B. Houghton; Removal of Debris from Deep Water Wellbore Using Vectored Annulus Cleaning System Reduces Problems and Saves Rig Time. Also relevant to the field of subterranean debris removal are U.S. Pat. Nos. 4,276,931 and 6,978,841.
Current designs of debris removal devices that take in the debris with fluid reverse circulating into the lower end of the tool housing have used a straight shot for the inlet tube coupled with a deflector at the top that can be a cone shape 10 as in
The present invention seeks to enhance the separation effect and do so in a smaller space and in a manner that can advantageously use higher velocities to enhance the separation. This is principally accomplished by inducing a swirl to the incoming debris laden fluid stream. A turbine wheel imparts the spiral pattern to the fluid stream so that the solids by centrifugal force are hurled to the outer periphery of a down flow tube before reversing and turning up on the way to the outlet of the housing and the downstream screen. These and other aspects of the present invention will be more readily apparent to those skilled in the art from a review of the description of the preferred embodiment and the associated drawings while understanding that the full scope of the invention is to be determined from the appended claims.
A subterranean debris catcher takes in debris laden fluid at a lower end. The inlet flow is induced with an eductor whose discharge goes around the housing to the lower end inlet for the debris. The eductor suction induces flow into the lower end of the housing as well. Incoming debris goes up an annular space around the collection receptacle and turns to pass through a bladed wheel that imparts a spin to the flowing stream. The flow direction reverses from up before the wheel to down through a tube after the wheel. The solids are flung to the tube periphery and the fluid reverses direction to go back up to a screen before reaching the eductor suction connection. The debris swirls down an open bottom tube and is collected in a housing surrounding the down tube.
The manner in which the separation occurs in the housing 66 and the configuration of the internal components of housing 66 represents the departure from the previous designs. The incoming flow stream 62 brings in the debris and is channeled into an annular flow path 68 as represented by arrow 70. Flowing through the annular path 68 upon entry maintains the fluid velocity to keep the solids entrained on the way to the first direction reversal represented by arrow 72. The open volume 74 above the upper end 76 of the housing 64 allows for larger radius turns that reduce flow resistance and effects of erosion from entrained solids making a direction change. As an alternative the upper end 76 could extend to top cover 78 and instead have a port aligned with inlets 80 of a stationary turbine wheel 82. The wheel 82 is mounted over exit tube 84 and has a seal 86 in between. Alternatively to a fixed mounting that induces spin due to its shape the wheel assembly 82 can rotate on a sealed bearing as schematically represented by circular arrow 88. In that case the shroud 90 for the wheel assembly 82 is fixed to collection housing 64. The flow into inlets 80 spins the wheel 82 about a vertical axis. The flowing stream exits the wheel 82 with an imparted spin and heads down annular passage 92 formed between exit tube 84 and down tube 94. Curved arrow 96 illustrates how the solids 98 are propelled by centripetal force outwardly against the wall of down tube 94. The flowing stream finds its exit at the lower end of exit tube 84 and reverses direction again to go up the tube 84 as illustrated by arrow 100. The debris 98 due to its weight and the spinning action continues moving down to the bottom to form a collection pile 102. Arrow 105 represents the clean flow stream with hopefully a small quantity of fines that will either be small enough to pass screen S without damage to the eductor above or will be of such a small quantity that the debris collection job can be accomplished to the end without performance deterioration caused by impeded flow at screen S.
The design is focused at removal of more of the fine debris that in the past got carried up to the screen S. Part of that focus in the maintenance of velocity at entry using the annular space 68. Then there is the first direction reversal at open volume 74 leading right into the wheel 82 that in the preferred embodiment spins on its axis and accelerates the debris including the fines radially outwardly as the now spiraling flow stream continues down annular space 92 with the debris 98 rubbing on the wall of the tube 96 until landing in the pile 102 at the lower end of the chamber 64. Below the lower end of the exit tube 84 the fluid stream reverses direction to go up as indicated by arrow 100 and the debris that is moving down by gravity and spin as indicated by arrows 104 is now in a fairly quiescent zone with little turbulence to allow the debris 98 to continue on its spiral descent.
The apparatus 50 can be deployed in any orientation although the closer the orientation is to vertical the better the performance for removal of debris. For cleaning after removal from the subterranean location, the bottom 106 can be removed and the collected debris flushed out. The turbine wheel 82 preferably rotates in reaction to the passing flow. Rotation is preferred as the pressure drop for the flowing fluid is lower than in a static situation. However, the assembly will still impart a spin to the flowing fluid even if the wheel for any reason is jammed with debris or has a bearing failure. The advantage of the spinning flowing stream will still be there to aid in separation. As another alternative the mere number of direction reversals can also act as a separation technique to remove debris even without the spinning imparted by the use of the wheel 82. Clearly, adding the wheel and then allowing it to rotate represent an improvement over just relying on directional reversals. While reference is made to a wheel 82 that can resemble for example a closed impeller in a centrifugal pump or a turbine rotor, other structures that take an incoming stream and impart a spin to it are also contemplated. This can be as simple as a series of fixed or pivoting baffle plates or other shapes extending into a flow stream that impart rotation to the flow while not creating turbulence to the point of large pressure drops or velocities so high that erosion becomes an issue. Options to line impingement surfaces with hardened material can be deployed keeping in mind that space considerations may dictate the thickness of any such coating to protect the internal walls of the apparatus 50 from erosion from solids impingement.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
Number | Name | Date | Kind |
---|---|---|---|
4276931 | Murray | Jul 1981 | A |
4924940 | Burroughs et al. | May 1990 | A |
5123489 | Davis et al. | Jun 1992 | A |
5295537 | Trainer | Mar 1994 | A |
5662167 | Patterson et al. | Sep 1997 | A |
6170577 | Noles, Jr. et al. | Jan 2001 | B1 |
6176311 | Ryan | Jan 2001 | B1 |
6189617 | Sorhus et al. | Feb 2001 | B1 |
6250387 | Carmichael et al. | Jun 2001 | B1 |
6276452 | Davis et al. | Aug 2001 | B1 |
6382317 | Cobb | May 2002 | B1 |
6607031 | Lynde et al. | Aug 2003 | B2 |
6698521 | Schrenkel et al. | Mar 2004 | B2 |
6978841 | Hoffman et al. | Dec 2005 | B2 |
7472745 | Lynde et al. | Jan 2009 | B2 |
7478687 | Lynde et al. | Jan 2009 | B2 |
7610957 | Davis et al. | Nov 2009 | B2 |
7635430 | Mildren et al. | Dec 2009 | B2 |
7779901 | Davis et al. | Aug 2010 | B2 |
20010013413 | Ruttley | Aug 2001 | A1 |
20020074269 | Hensley et al. | Jun 2002 | A1 |
Entry |
---|
Connell, P., et al., “Removal of Debris From Deepwater Wellbores Using Vectored Annulus Cleaning System Reduces Problems and Saves Rig Time”, SPE 96440, Oct. 2006, 1-6. |
Number | Date | Country | |
---|---|---|---|
20120273278 A1 | Nov 2012 | US |