1. Field of the Invention
This invention relates generally to centrifuges, and in certain particular aspects to decanting centrifuges with a rotating bowl, with or without a conveyor or scroll.
2. Description of Related Art
The prior art discloses a variety of decanter centrifuges or “decanters” which, in many embodiments, include a rotating centrifuge bowl rotating at one speed and in which a screw conveyor (“scroll”) revolves at a slightly different speed. Other centrifuges have no such screw conveyor or scroll. Centrifuges are capable of continuously receiving feed in the bowl and of separating the feed into layers of light and heavy phase materials (e.g. liquids and solids) which are discharged separately from the bowl. In those apparatuses with a screw conveyor structure that rotates at a differential speed with respect to the bowl, the conveyor moves or “scrolls” an outer layer of heavy phase or solids slurry material to a discharge port or ports usually located in a tapered or conical end portion of the bowl. Centrifugal force tends to make the light phase material discharge through one or more ports usually located at an opposite end of the bowl. Typically the bowl is solid. Some bowls have port(s) to reject the heavier solids phases.
Centrifugal separation results, preferably, in a discharge containing light phase material with little or no heavy phase material, and heavy phase material containing only a small amount of light phase material. When the light phase material is water and the heavy phase material contains soft solids, it is preferred that fairly dry solids and clean water be separately discharged.
Many different industries use decanter centrifuges in varied applications. They are used in the oil industry to process drilling mud to separate undesired drilling solids from the liquid mud. Some decanter centrifuges, because of their continuous operation, have the advantage of being less susceptible to plugging by solids. Also, they may be shut down for long or short periods of time and then restarted with minimum difficulty, unlike certain centrifuges which require cleaning to remove dried solids. Often the solids/liquid mixture is processed at extraordinarily high feed rates. To accommodate such feed rates, high torques are encountered, much energy is required to process the mixture, and the physical size of the centrifuge can become enormous.
As larger feed volumes are processed in a given centrifuge machine, the clarification capability of the centrifuge decreases due to decreased retention or residence time, partial-acceleration or nonacceleration (slippage) of the feed fluid (the solids/liquid mixture), radial deceleration of the fluid moving through the conveyor, and turbulence created by the movement and/or focusing of large volumes of fluid through ports that tend to transmit and/or focus a high volume flow in an area exterior to the conveyor that induces undesirable turbulence in that area and results in excess wear and abrasion to parts that are impacted by this flow. The turbulent fluid exiting from the ports impedes or prevents solids from flowing to solids exit ports and ports near the centrifuge's drainage deck or “beach” impedes solids flow up the beach.
The interior end of the feed tube is relatively close to a wall or member defining an end of an acceleration chamber, thus fluid exiting from the feed tube into the acceleration chamber has relatively little space in which to slow down. This relatively high speed fluid is, therefore, turbulent and can wear away parts of the acceleration chamber. Also exiting from the acceleration chamber via exit ports this turbulent-relatively-high-speed fluid can inhibit the desired flow of separated solids both in the bowl toward the solids exit ports and toward the beach area and can wear away parts of the conveyor and bowl adjacent the acceleration chamber exit ports. Rather than dispersing and slowing down the fluid exiting from the acceleration chamber, the exit ports focus and/or speed up the fluid flow.
The present invention discloses, in at least certain embodiments, acentrifuge for separating feed material into solid and fluid parts, the centrifuge having a conveyor rotatably mounted in a rotatable housing, the conveyor having a longitudinal axis and an interior and at least one impeller, the at least one impeller having an impeller length, the rotatable housing having a separating region with a pool area and a beach area between the conveyor and the rotatable housing so that feed material is passable through the interior of the conveyor and rotational speed is impartable to the feed material by the at least one impeller prior to treatment in the separating region, and so that the at least one impeller spreads feed material—in certain aspects along the conveyor or part thereof, onto part of the pool area, and/or in certain aspects onto the beach area—the beach area having a beach length, and the at least one impeller in certain aspects spreading feed material onto the beach area adjacent the length of the at least one impeller. The present invention discloses, in at least certain aspects, a conveyor for a centrifuge, the conveyor having a length and including a plurality of spaced-apart flight members spaced apart along the length of the conveyor or along a portion of the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart (interiorly or exteriorly) around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge introduced into the conveyor is flowable from within the conveyor, and at least one accelerating impeller within and connected to the conveyor for accelerating some or substantially all of the fluid (or a plurality of such accelerator impellers (two, three, four, five, six, seven, eight, nine, ten, or more and in some aspects up to fifty such impellers)).
The present invention discloses, in at least certain aspects, a centrifuge that has a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, and a conveyor rotatably mounted in the bowl, the conveyor having a length and including a plurality of spaced-apart flight members spaced apart along the length of the conveyor or along a portion of the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and at least one accelerating impeller within and connected to the conveyor for accelerating some or substantially all of the fluid (or a plurality of such accelerator impellers (two, three, four, five, six, seven, eight, nine, ten, or more and in some aspects up to fifty such impellers)).
The present invention discloses, in at least certain aspects, accelerator apparatus for accelerating fluid to be treated in a centrifuge (including a centrifuge with no conveyor or scroll and a centrifuge with a conveyor (including, but not limited to, a conveyor according to the present invention)) from an interior of a centrifuge (and from an interior of a conveyor when one is present) out therefrom into a centrifuge bowl, the accelerator apparatus having at least one accelerating impeller for accelerating fluid to be treated or a plurality of spaced-apart impellers, and the impeller(s) with a shape, viewed on end, that comprises a flowing curve extending out from a first central part (part of a center of a conveyor when one is present) and with a distal end aligned with an area on the bowl and/or conveyor not in alignment with the first central part, but radially spaced apart from the first central part; and, in certain particular aspects, between about 80 degrees and 110 degrees spaced apart; and in one particular aspect, about ninety degrees spaced-apart from said first central part.
The present invention discloses, in at least certain aspects, a central nose member for mounting within a bowl of a centrifuge and/or within a conveyor of a centrifuge, the central nose member removably or permanently connectible to the bowl and/or conveyor, the nose member with a nose end projecting from a plate, the nose end positionable to be contacted by fluid flowing from fluid entry apparatus into the centrifuge to direct and/or distribute fluid flow to enhance centrifugation, the plate secured to or formed of the nose member, the plate extendable across an inner space of the bowl and/or conveyor to prevent fluid flow past the plate; and, in certain aspects, the nose end having a curved surface that flows from the end of the nose member to the plate to facilitate fluid flow in a direction out from the bowl and/or conveyor.
The present invention discloses, in at least certain aspects, a flow enhancer connected to a bowl, to a conveyor, or to an accelerating impeller or, when present, a plurality of impellers, the flow enhancer for facilitating fluid flow out from the conveyor, the flow enhancer including a first ring spaced apart from a second ring, and a plurality of spaced-apart pins secured to and between the first ring and the second ring, the plurality of pins and portions of the interior surfaces of the first and second rings defining fluid flow passages through which fluid is accelerated by the flow enhancer, the first ring and the second ring each having a central opening through which fluid is flowable, fluid flowable through the central openings to the impeller(s), if present. Optionally, one of the rings can be deleted and the pins mounted to or formed of a single ring. In one aspect, the flow enhancer is used with impeller(s) that have a front end and a rear end, and the flow enhancer is connected to the front end (the end that initially is contacted by fluid from a feed tube or feed apparatus).
The present invention, in certain aspects, discloses a new decanting centrifuge which has a rotatable bowl within which rotates a caged conveyor at a different speed than the speed of rotation of the bowl. In certain aspects a caged or skeleton conveyor according to the present invention includes a plurality of spaced-apart flights within which and to which are secured a plurality of spaced-apart support beams, rods, or members so that fluid can flow freely with reduced turbulence between the beams, rods or members, into and out from the interior of the conveyor. The flights form a screw portion of the conveyor for conveying solids separated from fluid to be treated by the centrifuge from one end of the bowl to the other (at which there are one or more solids outlets). In one aspect the flights are in the form of a helix.
The present invention, in certain aspects, provides a decanting centrifuge with a relatively short feed tube or inlet nozzle (providing a larger or longer area for reduction of fluid velocity, reduction of feed tube vibration, and turbulence reduction) and one or more impeller's on the conveyor's interior which are impacted by fluid entering the centrifuge through the feed tube or inlet nozzle. In certain aspects the impellers (and related parts such as a nose member, chamber, and base) are made of material from the group of steel, stainless steel, hardfaced or carbide covered metal, plastic, molded poly urethane, fiberglass, polytetrafluoroethylene, aluminum, aluminum alloy, zinc, or zinc alloy, stellite, nickel, chrome, boron and/or alloys of any of these. The impellers (and related parts) may be removable and/or replaceable. Any part of a conveyor or centrifuge disclosed herein, especially parts exposed to fluid flow, may be coated with a protective coating, hardfaced, and/or covered with tungsten carbide or similar material.
A “velocity decrease” chamber or area, in certain embodiments, is, optionally, located past the nozzle (feed tube) (e.g. to the right of the interior end of the feed tube in
In certain embodiments fluid flows through the chamber and impacts a plurality of impellers that are connected to and rotate with the conveyor. The fluid impacts the impellers and is then moved radially outward by the blades toward the conveyor's flights. The impellers are configured and positioned to radially accelerate the fluid so that as the fluid passes the impellers outer edges, the fluid's speed (radial speed) is near or at the speed of a pool of material within the bowl—thus facilitating entry of this fluid into the pool or mass of fluid already in the bowl. By reducing or eliminating the speed differential between fluid flowing from the acceleration chamber and fluid already present in the bowl, turbulence is reduced, entry of solids of the entering fluid into the pool in bowl is facilitated, and more efficient solids separation results.
The present invention, in certain aspects, provides a centrifuge with a variable pneumatic backdrive or airbrake to control the differential speed of the conveyor. In one particular aspect a ROOTS XLP WHISPAIR (Trademark) blower available from the ROOTS DRESSER CO. is used to provide selectively variable braking for a gearbox pinion, thus varying the relative rotational speed of the conveyor in the bowl. In one aspect a typical known automatic boost system (e.g. to increase scroll-to-bowl speed or vice-versa) is used with the backdrive to inhibit or prevent plugging. Alternatively, for any embodiment herein the conveyor may be driven by a motor and a braking apparatus provided for the bowl to selectively adjust the conveyor/bowl rotative speed differential.
What follows are some of, but not all, the objects of this invention. In addition to the specific objects stated below for at least certain preferred embodiments of the invention, other objects and purposes will be readily apparent to one of skill in this art who has the benefit of this invention's teachings and disclosures. It is, therefore, an object of at least certain preferred embodiments of the present invention to provide:
New, useful, unique, efficient, nonobvious fluid accelerators for centrifuges; flow enhancers for centrifuges; nose members for centrifuges; and centrifuges with one, some or all these things;
New, useful, unique, efficient, nonobvious centrifuge conveyors with open fluid flow areas, in one aspect at a beach end, and centrifuges with such a conveyor;
New, useful, unique, efficient, nonobvious: devices and methods for centrifuges and for decanting centrifuges;
Such centrifuges with dispersed and/or non-focused flow of fluid from an interior entry area, through a conveyor, into a bowl;
Such centrifuges with a caged or skeleton conveyor;
Such centrifuges with reduced fluid turbulence, particularly at points or areas at which fluid exits a conveyor to enter a bowl;
Such centrifuges with a relatively short feed tube and/or one or more impellers impacted by fluid entering the centrifuge through a feed tube and/or with a chamber for dispersing fluid flow and/or to reduce its longitudinal velocity for directing fluid flow to the impeller(s);
Such centrifuges with a pneumatic backdrive to adjust and control conveyor speed or bowl speed;
Such centrifuges which effect increased settling and separation of solids;
Such centrifuges with one or more wear protectors or wear shields on areas of blades or flights and/or on structural members (e.g. rods or supports) of a conveyor for combatting effects of forceful erosive and/or abrasive fluid flow;
Such centrifuges with fluid drainage apparatus at a fluid introduction end around intercommunicating parts of a feed tube; and
Such centrifuges with a feed tube extending from a fluid introduction end of the centrifuge through the centrifuge, with a feed tube fluid exit end positioned so that fluid exits the feed tube and flows to a fluid accelerator apparatus and/or to a target end of a nose member, in one aspect the nose member within fluid accelerator apparatus.
Certain embodiments of this invention are not limited to any particular individual feature disclosed here, but include combinations of them distinguished from the prior art in their structures and functions. Features of the invention have been broadly described so that the detailed descriptions that follow may be better understood, and in order that the contributions of this invention to the arts may be better appreciated. There are, of course, additional aspects of the invention described below and which may be included in the subject matter of the claims to this invention. Those skilled in the art who have the benefit of this invention, its teachings, and suggestions will appreciate that the conceptions of this disclosure may be used as a creative basis for designing other structures, methods and systems for carrying out and practicing the present invention. The claims of this invention are to be read to include any legally equivalent devices or methods which do not depart from the spirit and scope of the present invention.
The present invention recognizes and addresses the previously-mentioned problems and long-felt needs and provides a solution to those problems and a satisfactory meeting of those needs in its various possible embodiments and equivalents thereof. To one skilled in this art who has the benefits of this invention's realizations, teachings, disclosures, and suggestions, other purposes and advantages will be appreciated from the following description of preferred embodiments, given for the purpose of disclosure, when taken in conjunction with the accompanying drawings. The detail in these descriptions is not intended to thwart this patent's object to claim this invention no matter how others may later disguise it by variations in form or additions of further improvements.
A more particular description of embodiments of the invention briefly summarized above may be had by references to the embodiments which are shown in the drawings which form a part of this specification. These drawings illustrate certain preferred embodiments and are not to be used to improperly limit the scope of the invention which may have other equally effective or legally equivalent embodiments.
FIGS. 5A′ and 5A″ are side cross-section views of a decanting centrifuge according to the present invention.
A plurality of support rods 49 are disposed within the helix 41 and are connected at points of contact to flights or sections 42 of the helix 41, e.g. by bolting and/or welding. The flights 42 are sized so that they are separated a desired distance from the interior surface of the bowl 20 along the bowl's length. As is well known, the edges of the flights may be lined with side-by-side pieces or tiles made of sintered tungsten carbide or the edges themselves may be handfaced (as may any part of the apparatus). An end plate 43 is at one end of the helix 41, connected e.g. by welding, and an end plate 47 is at the other end.
Baffles 43, 44, and 46 are attached to the rods 49. Viewed on end these baffles are similar to the section of the conveyor 40 shown in
Areas 51 between the rods 49 and the flights 42 (between each rod part and each flight part) are open to fluid flow therethrough. Alternatively portions of the conveyor may be closed off (i.e. areas between rod parts and flights are not open to fluid flow), e.g. but not limited to, closing off the left one quarter or one-third and/or the right one-quarter or one-third thereof; i.e., all or only a portion of the conveyor may be “caged”. Due to the openness of the caged conveyor (and the fact that, in certain aspects, fluid is fed in a nonfocused manner and is not fed at a point or points adjacent the pool in the bowl or prior to the beach, and fluid is not fed from within the conveyor through a number of ports or orifices—as in the prior art fluid is fed out through several ports or areas that tend to focus fluid flow from the conveyor), solids in this fluid do not encounter the areas of relatively high turbulence associated with certain of the prior art feed methods and solids tend more to flow in a desired direction toward solids outlet(s) rather than in an undesired direction away from the beach and toward liquid outlets. Consequently, in certain embodiments according to the present invention the relative absence or diminished presence of turbulence in the pool in the bowl permits the centrifuge to be run at relatively lower speed to achieve desired separation; e.g. in certain aspects of centrifuges according to the present invention a bowl may be run at between 900 and 3500 rpm and a conveyor at between 1 and 100 rpm.
The bowl 20 has a conical or “beach” end 24 with a beach section 25. The beach section 25 may be (and, preferably, is) at an angle, in certain preferred embodiments, of between 3 and 15 degrees to the longitudinal axis of the bowl 20.
A flange 26 of the bowl 20 is secured to a bowl head 27 which has a channel 28 therethrough. A flange 29 of the bowl 20 is secured to a bowl head 30 which has a channel therethrough. A shaft 32 is drivingly interconnected with a gear system 81 of a transmission 80. A shaft 31 has a channel 35 therethrough through which fluid is introduced into the centrifuge 10. A motor M (shown schematically) interconnected (e.g. via one or more belts) with a driven sheave 110 selectively rotates the bowl 20 and its head 27 which is interconnected with the gear system 81 of the transmission 80 (and turning the bowl 20 thus results in turning of a trunnion or shaft 34).
A shaft 32 projecting from the transmission 80 is connected to the shaft 34. The transmission 80 includes a gear system 81 interconnected with pinion shaft 82 which can be selectively backdriven by a ROOTS (Trademark) blower 140 or other suitable pneumatic backdrive device (shown schematically) connected thereto via a coupling 142 to change, via the gear system 18, the rotation speed of the shaft 32 and, therefore, of the conveyor 40. The blower 140 has an adjustable air inlet valve 144 and an adjustable air outlet valve 146 (the conveyor speed is adjustable by adjusting either or both valves). Alternatively a non-pneumatic backdrive may be used. The gear system 81 (shown schematically by the dotted line in the transmission 80) may be any known centrifuge gear system, e.g. but not limited to a known two-stage planetary star and cluster gear system.
Optionally, the shaft 82 is coupled to a throttle apparatus (not shown) which, in one aspect includes a pneumatic pump, e.g. an adjustable positive displacement pump (e.g. air, pneumatic, (according to the present invention) or non pneumatic) connected to the shaft 82 to provide an adjustable backdrive.
Solids exit through four solids outlet 36 (two shown) in the bowl 20 and liquid exits through liquid outlets 37 in the bowl 20. There may be one, two, three, four, five, six or more outlets 36 and 37. There are, in one aspect, four spaced-apart outlets 37 (two shown).
The shaft 34 extends through a pillow block bearing 83 and has a plurality of grease ports 84 in communication with grease channels 85, 86 and 87 for lubrication of the bearings and shafts. Bearings 100 adjacent the shaft 34 facilitate movement of the shaft 34. Internal bearings can be lubricated, ringed, and sealed by seals 102 (that retain lubricant).
An end 109 of the shaft 31 extends through the driven sheave 110.
Mount rings 120, 121 secured at either end of the bowl 20 facilitate sealing of the bowl 20 within the housing 12. Two plows 148 (one, two, three four or more) on the bowl 20 scrape or wipe the area around solids outlets 36 so the outlets are not plugged and maintain or increase product radial speed as the bowl rotates to facilitate solids exit. The plows also reduce bowl drag on the housing by reducing solids accumulation around solids exit points.
A feed tube 130 with a flange 147 extends through the interior of the input shaft 31. The feed tube 130 has an outlet end 131. Fluid to be treated flows into an inlet end (left side in
Optionally, one or a plurality of spaced-apart pool surface diffusers 125 are secured to the conveyor and diffuse or interrupt the unwanted flow of floating solids away from the beach area 24. The diffusers 125 are shown in
Optionally, a plurality of spaced-apart traction strips or rods 126 facilitate movement of the solids to the beach and facilitate agglomeration of solids and solids build up to facilitate solids conveyance.
FIGS. 5A′ and 5A″ illustrates a decanting centrifuge 210 like the centrifuge 10 of
The end of the feed tube 230 within the conveyor 40 extends through a mounting plate 242 and a hollow pipe 243. The pipe 243 and a portion of the chamber 240 are supported in a support member 244. A support ring 246, connected to rods 49 (two shown; four spaced-apart around the conveyor 40), supports the other end of the chamber 240. Impellers 250 secured to (welded, or bolted) (or the impellers and nose member are an integral piece, e.g. cast as a single piece) nose member 260 have forward end portions 252 that abut an end of the chamber 240 and project into a fluid passage end 247 of the chamber 240 from which fluid exits from the chamber 240. In one particular aspect the distance from the exit end 231 of the feed tube 230 to the fluid passage end 247 of the chamber 240 is about 36 inches. In other embodiments this distance is at least nineteen inches and preferably at least twenty inches. It is also within the scope of this invention for the exit end of the feed tube to be within the pipe 243. Alternatively, the chamber 240 may be deleted and the pipe 243 extended to any distance (to the right of the plate 242) within the conveyor 40 up to the impellers or to a point within them. The nose member 260 has a solid plate portion 262 and a nose 264. In one aspect all parts 240–260 are bolted or otherwise removably connected to the conveyor for easy removal and replacement. Alternatively, they may be welded in place.
In a typical prior art centrifuge the ratio of the internal diameter of the exit end of the feed tube to the length of free fluid travel within the conveyor (e.g. within a prior art acceleration chamber from the feed tube exit to the far end wall of the acceleration chamber) is about 4:1 or less. In certain embodiments according to the present invention this ratio is 7:1 or greater and in other aspects it is 10:1 or greater. In one particular centrifuge according to the present invention the internal feed tube exit diameter is about two and one-fourth inches and the distance from the feed tube exit to the leading edge (252) of an impeller (as in
The present invention, therefore, provides in certain, but not necessarily all embodiments, a conveyor for a centrifuge, the conveyor having a length and a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members (e.g. two, three, four, five or more) extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor. Such a method may include one or some of the following, in any possible combination: at least one pool surface diffuser connected to the conveyor; at least one accelerating impeller connected to the conveyor for accelerating the fluid; wherein the open areas extend along and around substantially the entire length of the conveyor or around only a part thereof; a hollow feed tube with a fluid exit end within the conveyor through which fluid to be treated by the centrifuge enters a space within the conveyor; at least one of the plurality of open areas located adjacent the fluid exit end of the feed tube; a chamber within the conveyor, part of the chamber having a fluid entry end encompassing the fluid exit end of the feed tube, the chamber for receiving fluid exiting from the fluid exit end of the feed tube, the fluid passing through the chamber and exiting a fluid passage end of the chamber, the fluid passage end spaced-apart from the chamber's fluid entry end, the fluid passage end within the conveyor; wherein the chamber is generally conical in shape with the fluid entry end smaller in diameter than the fluid passage end; wherein fluid exiting from the fluid exit end of the feed tube has an exit velocity and the fluid at the fluid passage end has a passage velocity, the exit velocity greater than the passage velocity; wherein the fluid exit end of the hollow feed tube has an internal diameter and the space within the conveyor includes an unobstructed space adjacent the feed tube fluid exit end, said space having a length, and a ratio of at least 7:1 or wherein the ratio is at least 10:1 of the internal diameter of the feed tube exit end the length of said space; at least one impeller for contacting fluid from the chamber, the impeller connected to the conveyor and for increasing the radial speed of the fluid prior to the fluid flowing out from the conveyor; wherein the at least one impeller is a plurality of spaced-apart impellers each with a central end connected to a central nose member mounted in the conveyor; wherein the impellers are for accelerating the fluid to a speed that is at least 95% of the speed of rotation of a pool of fluid to be treated in the bowl; wherein the chamber, the central nose member, and the at least one impeller are permanently secured to the conveyor; wherein the chamber, the central nose member, and the at least one impeller are removably connected to the conveyor; wherein the at least one pool surface solids diffuser is a plurality of spaced-apart pool surface solids diffusers (e.g. rings with openings therethrough); and/or the conveyor having a distal end smaller in diameter than an entry end at which fluid enters the conveyor, and at least one of the plurality of open areas at the distal end.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge including a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, a conveyor rotatably mounted in the bowl, the conveyor comprising a plurality of spaced-apart flight members each having a length, a plurality of support members extending between and connected to the spaced-apart flight members, the support members spaced-apart around the spaced-apart flight members, and the spaced-apart flight members and the plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor apparatus for selectively rotating the conveyor, and apparatus for material entry (e.g. a feed tube) and exit (e.g. solids and liquid outlets) from the bowl. Such a method may include one or some of the following, in any possible combination: wherein the conveyor further comprises at least one pool surface solids diffuser connected to the conveyor; the conveyor having a distal end smaller in diameter than an entry end at which fluid enters the conveyor, and at least one of the plurality of open areas at the distal end; a control apparatus interconnected with the conveyor for selectively adjusting speed of rotation of the conveyor relative to the bowl; a control apparatus interconnected with the conveyor for selectively adjusting speed of rotation of the bowl relative to the conveyor; the conveyor having at least one or a plurality of accelerating impellers connected to the conveyor for accelerating the fluid; the conveyor with a hollow feed tube with a fluid exit end within the conveyor through which fluid to be treated by the centrifuge enters a space within the conveyor; the conveyor with at least one of the plurality of open areas located adjacent the fluid exit end of the feed tube; the conveyor with a chamber within the conveyor, part of the chamber having a fluid entry end encompassing the fluid exit end of the feed tube, the chamber for receiving fluid exiting from the fluid exit end of the feed tube, the fluid passing through the chamber and exiting a fluid passage end of the chamber, the fluid passage end spaced-apart from the chamber's fluid entry end, the fluid passage end within the conveyor; the conveyor with the chamber generally conical in shape with the fluid entry end smaller in diameter than the fluid passage end; the conveyor's parts configured, sized and positioned so that fluid exiting from the fluid exit end of the feed tube has an exit velocity and the fluid at the fluid passage end has a passage velocity, the exit velocity greater than the passage velocity; wherein the fluid exit end of the hollow feed tube has an internal diameter and the space within the conveyor includes an unobstructed space adjacent the feed tube fluid exit end, said space having a length, and a ratio of at least 7:1 of the internal diameter of the feed tube exit end the length of said space; the conveyor with at least one impeller for contacting fluid from the chamber, the impeller connected to the conveyor and for increasing the radial speed of the fluid prior to the fluid flowing out from the conveyor; the conveyor in which the at least one impeller is a plurality of spaced-apart impellers each with a central end connected to a central nose member mounted in the conveyor; the conveyor's impellers for accelerating the fluid to a speed that is at least 95% (or at least 99%) of the speed of rotation of a pool of fluid to be treated in the bowl; the conveyor with the chamber and the at least one impeller permanently secured to the conveyor; the conveyor with the chamber and the at least one impeller removably connected to the conveyor; the conveyor with at least one pool surface solids diffuser connected to the conveyor; the centrifuge bowl having a beach area, the conveyor further comprising the conveyor having a distal end smaller in diameter than an entry end at which fluid enters the conveyor, and at least one of the plurality of open areas adjacent the beach area so material to be treated flows out from the conveyor through said at least one of the plurality of open areas; wherein there are a plurality of open areas of the conveyor adjacent the beach area; a control apparatus interconnected with the conveyor for selectively adjusting speed of rotation of the conveyor relative to the bowl; wherein the control apparatus is a backdrive apparatus; wherein the backdrive apparatus is pneumatically powered; a control apparatus interconnected with the conveyor for selectively adjusting speed of rotation of the bowl relative to the conveyor wherein the control apparatus is a backdrive apparatus; and/or wherein the backdrive apparatus is pneumatically powered.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, apparatus for providing unfocused feed material from within the conveyor into the bowl, and apparatus for material exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, apparatus for slowing down feed material within the conveyor before it exits the conveyor into the bowl, and apparatus means for material exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, apparatus for diffusing solids in a pool of feed material in the bowl, and apparatus for material exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, rotation apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, apparatus for pneumatically powered control apparatus for selectively controlling the differing rotation speed of the conveyor, and apparatus for material entry and exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, the bowl having a beach area, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, the conveyor including a plurality of spaced-apart conveying members each having a length, a plurality of support members extending between and connected to the spaced-apart conveying members, the support members spaced-apart around the spaced-apart conveying members, and the spaced-apart conveying members and the plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable out from within the conveyor to space between an exterior of the conveyor and an interior surface of the bowl and at least one of the open areas adjacent a portion of the beach area so that fluid to be treated by the centrifuge flows from said at least one open area to said portion of the beach area, and apparatus for material exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, the conveyor having a length and comprising a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, a hollow feed tube with a fluid entry end outside the first bowl end and a fluid exit end within the conveyor through which feed material to be treated by the centrifuge enters a space within the conveyor, at least one of the plurality of open areas located further away from the first bowl end than the fluid exit end of the feed tube, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, and apparatus for material exit from the bowl.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a centrifuge for separating components of a feed material, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, a conveyor within the bowl for moving separated material from the first bowl end to the second bowl end, the conveyor having a length and comprising a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, a hollow feed tube with a fluid exit end within the conveyor through which feed material to be treated by the centrifuge enters a space within the conveyor, a velocity decrease chamber in the conveyor, the fluid exit end discharging into the velocity decrease chamber within the conveyor, the velocity decrease chamber having an outer surface spaced-apart from an inner surface of the support members, apparatus for selectively rotating the bowl and the conveyor and for differing rotational speed of the conveyor with respect to the bowl, and apparatus for material exit from the bowl; and such a centrifuge with at least one of the plurality of open areas adjacent the outer surface of the velocity decrease chamber.
The present invention, therefore, provides in certain, but not necessarily all embodiments, a method for separating components of a feed material, the method introducing feed material into a centrifuge, the centrifuge like any disclosed herein according to the present invention separating components of the feed material within the centrifuge; and discharging from the bowl separated components of the feed material; and, such a method wherein the feed material includes liquid with solids entrained therein and the centrifuge separates solids from the liquid, the solids exiting from the bowl through at least one bowl solids exit port and the liquid exits from the bowl through at least one bowl liquid exit port which is spaced-apart from the bowl solids exit port; and any such method wherein the centrifuge includes a hollow feed tube with a fluid exit end within the conveyor through which fluid to be treated by the centrifuge enters a space within the conveyor, and the fluid exit end of the hollow feed tube has an internal diameter and the space within the conveyor includes an unobstructed space adjacent the feed tube fluid exit end, said space having a length, and a ratio of at least 7:1 of the internal diameter of the feed tube exit end the length of said space; and any such method wherein there is at least one impeller for contacting fluid from the chamber, the at least one impeller connected to the conveyor and for increasing the radial speed of the fluid prior to the fluid flowing out from the conveyor, wherein the at least one impeller is a plurality of spaced-apart impellers each with a central end connected to a central nose member mounted in the conveyor, and wherein the impellers accelerate the fluid to a speed that is at least 95% of the speed of rotation of a pool of fluid to be treated in the bowl and the method also includes radially accelerating with the impellers the fluid to at least 95% (or to at least 99%) of the rotational speed of the pool of fluid in the bowl prior to the fluid flowing out from the conveyor into space between the outer edge of the spaced-apart flight members and an interior surface of the bowl.
It is to be understood that although the centrifuges 270, 271 are not shown in their entirety in
In the centrifuges 210, 271, 271, due to the length and position of the conical chamber 240 (which may, according to the present invention, also be cylindrical), feed to the centrifuge exits the chamber 240 at the beach end area of the bowl. Optionally, the chamber 240 may be deleted and fluid flows out from the conveyor at locations in addition to those adjacent the beach area.
In certain embodiments of the present invention, the turbulence associated with prior art centrifuges due to the relatively high velocity of fluid exiting from a conveyor's feed ports into a bowl is reduced or substantially eliminated. With centrifuges according to the present invention, e.g. as in FIGS. 5A′, 5A″, 5D, 5E and 7E, accelerated feed is introduced at bowl's beach end (primarily or only) which allows the fluid stream to enter the bowl above or in a relatively shallow pool and solids are deposited at or near the bottom of the shallow pool and they do not have to settle through the main pool body. By spreading fluid feed over a relatively larger area, turbulent jetting effects associated with prior art feed ports that focus feed are reduced or eliminated. In some prior art machines some solids separated between feed zones and a liquid effluent end must pass through a turbulent area, compromising their separation. Using conveyors according to the present invention, high velocity axial fluid feed is converted to radial motion and the feed is spread over the width and length of the impellers; and the tangential speed of the fluid is increased slightly faster than the speed of the pool surface caused by bowl rotation, thus allowing the feed to fall into the bowl with reduced or no turbulence. Also, by feeding at a bowl beach area, the distance solids need to travel to reach a bowl wall is reduced and transport of solids to a solids discharge port is enhanced; and thus solids removal is not so dependent on fluid retention time. A thin sheet of material slides off the faces of the impellers and is deposited axially along the beach. Depending on the pool depth being used, some of the thin sheet of accelerated feed material enters the leading edge of the pool, some enters at the transition of the pool to the beach and the balance enters on the dry beach. As this thin layer contacts with the bowl wall or pool surface it is already accelerated to the full or nearly-full G-force. Solids particles have only to move through the fluid that they entered with to be discharged. Allowing much of the separation occuring on the beach reduces the amount of solids that normally would be held and transported from the cylinder section of the bowl; thus lowering torque, reducing the amount of solids held in the bowl and reducing the work load of the gearbox.
The centrifuge 320 according to the present invention is like the centrifuge 210, described above; but it also has an inner cylindrical shell 240a that closes off the conveyor from the fluid entry end (to the left in
The present invention, therefore, in at least certain embodiments, provides a conveyor for a centrifuge, the conveyor having a length and having a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, the open areas along substantially all of the length of the conveyor or along only a selected portion or portions of the conveyor's length, and at least one accelerating impeller within and connected to the conveyor for accelerating fluid to be treated by the centrifuge. Such a conveyor may have one or some (in any possible combination) of the following: a hollow feed tube with a fluid exit end within the conveyor through which fluid to be treated enters a space within the conveyor, the tube of any desired length and with an exit end at any desired location in the conveyor; wherein substantially all of the fluid to be treated is acceleratable by the at least one accelerating impeller or by multiple spaced-apart impellers; wherein the at least one accelerating impeller is a plurality of radially spaced-apart impellers; a chamber within the conveyor, part of the chamber having a fluid entry end adjacent the fluid exit end of the feed tube, and in one aspect the fluid exit end of the feed tube projecting into the chamber, the chamber for receiving fluid exiting from the fluid exit end of the feed tube, the fluid passing into the chamber and exiting therefrom; the at least one accelerating impeller positioned within the chamber; a central nose member within the conveyor and wherein the at least one accelerating impeller is a plurality of spaced-apart impellers each connected to the central nose member; the chamber, the central nose member, and/or the at least one impeller are permanently secured to the conveyor or are removably connected to it; the impellers having an impeller length and the nose member has a nose end with a nose end length, the nose end length at least fifty per-cent, sixty percent, or ninety percent of the impeller length wherein the nose member has a nose end and a plate secured to or formed of the nose member, the nose end projecting away from the plate, the plate extending across an inner space of the conveyor to prevent fluid from flowing past the plate; wherein the nose member has a curved surface to facilitate fluid flow in a direction out from the conveyor; wherein the at least one accelerating impeller has at least one flow diverter thereon for diverting fluid that contacts the flow diverter; wherein the at least one flow diverter is positioned so that a flight member of the plurality of spaced-apart flight members is adjacent the at least one flow diverter and the at least one flow diverter is able to divert fluid away from said flight member; wherein the at least one flow diverter is a plurality of flow diverters, each of the plurality of flow diverters positioned so as to divert fluid flow from a flight member of the plurality of spaced-apart flight members; wherein the conveyor has a conveyor end area positionable adjacent a beach end area of a centrifuge bowl and wherein the hollow feed tube is so configured and of sufficient length that the fluid to be treated exits the hollow feed tube adjacent the conveyor end area of the conveyor for flow to a beach end area of a centrifuge bowl; wherein the at least one accelerating impeller has a shape, viewed on end, that comprises a flowing curve extending out from a central first part of the conveyor and with a distal end on the conveyor at a radially spaced-apart location from the central first part (e.g., as in
The present invention, therefore, in at least certain embodiments, provides a centrifuge having a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, a conveyor rotatably mounted in the bowl, the conveyor comprising a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and at least one accelerating impeller within and connected to the conveyor for accelerating the fluid. Such a centrifuge may have a flow enhancer connected to the at least one impeller for facilitating fluid flow out from the conveyor, the flow enhancer connected to the at least one accelerating impeller, the flow enhancer for facilitating fluid flow out from the conveyor, the flow enhancer including ring apparatus, a plurality of spaced-apart pins secured to the ring apparatus, the plurality of pins spaced-apart to define fluid flow passages therebetween, the ring apparatus having a central opening through which fluid is flowable, fluid flowable through said central opening to the at least one accelerating impeller.
The present invention, therefore, in at least certain embodiments, provides a flow enhancer for a centrifuge, including, but not limited to, for decanting centrifuges, the flow enhancer connectible to any suitable structural part of a centrifuge, and in one aspect connectible to at least one accelerating impeller, the flow enhancer for facilitating fluid flow out from a bowl, a conveyor, or a centrifuge's interior, the flow enhancer including ring apparatus, a plurality of spaced-apart pins secured to the ring apparatus, the plurality of pins spaced-apart to define fluid flow passages therebetween, the ring apparatus having a central opening through which fluid is flowable, fluid flowable through said central opening. Such a flow enhancer may have ring apparatus that includes a first ring and a second ring, the first ring spaced-apart from the second ring by the pins of the plurality of pins, the pins of the plurality of pins secured to the first ring and the second ring and extending between the first ring and the second ring. The present invention also provides a centrifuge having a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, and such a flow enhancer; and such a centrifuge may have a conveyor within the bowl and the flow enhancer is within the conveyor.
The present invention, therefore, in at least certain embodiments, provides: a nose member for a centrifuge, including, but not limited to for a decanting centrifuge, the nose member having a nose end and, optionally, a plate secured to or formed of the nose member, the nose end projecting away from the plate, the plate extending across an inner space of the conveyor to prevent fluid from flowing past the plate, and the nose member with a curved surface to facilitate fluid flow in a direction out from the conveyor; and a centrifuge with such a nose member.
The present invention, therefore, in at least certain embodiments, provides: an accelerator apparatus for accelerating fluid in a housing or in a centrifuge bowl of a centrifuge, the accelerator apparatus having at least one accelerating impeller for accelerating fluid to be treated, and wherein the at least one accelerating impeller has a shape, viewed on end, that comprises a flowing curve extending out from a first part of a center of the accelerator apparatus and with a distal end at an area radially spaced-apart from said first part. Such an accelerator apparatus may have one or more accelerating impellers, each with front width, viewed one end, at a first end of the accelerator apparatus and a second width at a rear end, the first width less than the second width; and/or a plurality of spaced-apart impellers, each impeller spaced apart from adjacent impellers, each of the plurality of spaced-apart impellers having a first central end and a distal end radially spaced-apart from the first end, the first end of one impeller substantially diametrically aligned with the distal end of a next-adjacent impeller. A centrifuge is provided, according to the present invention, which has such accelerator apparatus.
The present invention, therefore, in at least certain embodiments, provides: a centrifuge having a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, the bowl having a beach area, apparatus for selectively rotating the bowl, a conveyor rotatably mounted in the bowl, the conveyor like any disclosed herein, and in one aspect the conveyor with a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and a feed tube for introducing fluid to be treated by the centrifuge into the conveyor, the feed tube having an exit end within the conveyor, the exit end adjacent a portion of the beach area of the bowl.
The present invention, therefore, in at least certain embodiments, provides: a conveyor for a centrifuge, the conveyor having a length and having a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and the plurality of open areas located so that in use the conveyor is positionable so that fluid flows out from the plurality of open areas adjacent a beach area of a centrifuge bowl or housing, and in one aspect, flows out only at a beach area.
The present invention, therefore, in at least certain embodiments, provides: a centrifuge having a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, the bowl having a beach area at a beach end of the centrifuge, apparatus for selectively rotating the bowl, a conveyor rotatably mounted in the bowl, the conveyor like any disclosed herein and in one aspect with a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and the plurality of open areas at the beach end of the centrifuge.
The present invention, therefore, in at least certain embodiments, provides: a method for separating components of a feed material, the method including introducing feed material into a centrifuge, the centrifuge with a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, optionally a conveyor rotatably mounted in the bowl, the conveyor like any disclosed herein and in one aspect with a plurality of spaced-apart flight members spaced apart along the length of the conveyor, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, the spaced-apart flight members and plurality of support members defining a plurality of open areas through which fluid to be treated by the centrifuge is flowable from within the conveyor, and at least one accelerating impeller within and connected to the conveyor for accelerating the fluid, separating components of the feed material within the centrifuge, and discharging from the bowl separated components of the feed material. Such a method may include: wherein the feed material includes liquid with solids entrained therein and the centrifuge separates solids from the liquid, the solids exiting from the bowl through at least one bowl solids exit port and the liquid exiting from the bowl through at least one bowl liquid exit port which is spaced-apart from the bowl solids exit port; and/or wherein the at least one accelerating impeller is a plurality of radially spaced-apart impellers each with a central end connected to a central nose member mounted in the conveyor, and wherein the impellers accelerate the fluid to a speed that is at least 95% of the speed of rotation of a pool of fluid to be treated in the bowl, and the method further including radially accelerating with the impellers the fluid to at least 95% of the rotational speed of the pool of fluid in the bowl prior to the fluid flowing out from the conveyor into space between the outer edge of the spaced-apart flight members and an interior surface of the bowl.
Optionally, as shown in
The wear protectors 341 and 342 may be held in position by a friction fit; a suitable adhesive, e.g. epoxy adhesive; and/or welded in place. The wear protectors 341 may be like that of
Wear protectors according to the present invention (e.g. but not limited to those shown in
The cone 374 is mounted to a support member 375 (like the support member 244, FIG. 5A′). An end member 378 is secured to the support member 375. The end member 378 has an opening 377 for receiving a feed tube end, preferably with a tight friction fit. One or more plates may be used as the supports 376.
With a feed tube in place within the support member 375 and the adapter 371, a chamber 380 is formed between the exterior surface of the feed tube and the interior surface of the adapter. In one particular aspect with a feed tube having an outer diameter and an adapter 371 with a corresponding inner diameter, a chamber of about nineteen cubic inches is present. Fluid is flowable between a feed tube's outer surface and an inner surface of the feed tube extension 372 into the chamber 380. Drainage tubes 382 are in fluid communication with the chamber 380. Fluid exits from the chamber 380 via the drainage tubes 382. The drainage tubes extend from the chamber 380, in one aspect to a point above a fluid pool in the centrifuge.
One or more supports 379 support the support member 375 and an end supports 385 provide a mounting structure for the end of the cone 374. Drainage tubes 382 (any desired number) may be shaped to extend between blades or flights of a conveyor. In one particular aspects, a feed tube apparatus 370 is used to extend a feed tube of an existing centrifuge to relocate the feed tube fluid exit end so that it is closer to an accelerator and/or closer to a target end of a nose member to reduce abrasive and/or erosive effects of fluid fed to a centrifuge.
As shown in
The feed tube extension 402 is, in one aspect, sufficiently long that a fluid exit end 414 projects between impellers 416 of an accelerator apparatus 420 (like any impellers and any accelerator disclosed herein) and is spaced-apart from a target end 417 of a nose member 418 (shown partially) of the accelerator apparatus 420 (shown partially). The fluid exit end is supported by a support member 422 which fits into a bore of a conveyor (not shown—like any disclosed herein). Any nose member disclosed herein may be used for the nose member 418. Edges of the impellers 416 contact the support member 422.
It is within the scope of the present invention for the exit end of a feed tube to be positioned as desired in a centrifuge and, in certain aspects, to maximize the amount of fluid hitting the impellers, for the feed tube's fluid exit end to be between the outer end (e.g. tips furthest to the left in
The present invention, therefore, in at least certain embodiments, provides a conveyor apparatus for a centrifuge, the conveyor apparatus having a length and a plurality of spaced-apart flight members spaced apart along the length of the conveyor apparatus, a plurality of support members extending between, and connected to the spaced-apart flight members, the support members spaced-apart around the plurality of spaced-apart flight members, a nose member with a target end mounted within the plurality of support members, and a feed tube for feeding fluid to be treated into the conveyor apparatus, the feed tube having a fluid exit end within the conveyor, fluid exiting the fluid exit end flowable to the target end of the nose member. Such a conveyor apparatus may have one or some, in any possible combination, of the following: wherein the spaced-apart flight members and plurality of support members define a plurality of open areas through which fluid to be treated by the centrifuge is flowable out from the conveyor apparatus into a bowl or other receptacle of a centrifuge; accelerating apparatus within the conveyor for accelerating fluid to be treated by the centrifuge, the accelerating apparatus having a plurality of spaced-apart impellers, a nose member with a target end within the spaced-apart flight members, each impeller of the plurality of spaced-apart impellers having a first end and a second end; wherein the fluid exit end of the feed tube is between the first end of the accelerating apparatus and the target end of the nose member; wherein the fluid exit end of the feed tube is positioned so that substantially all of the fluid to be treated is acceleratable by the accelerating apparatus; wherein flow direction of fluid exiting the fluid exit end of the feed tube is changed upon the fluid impacting the target end of the nose member; at least one wear protector on at least one flight member of the spaced-apart flight members, the at least one wear protector positioned for protecting the at least one flight member from flowing fluid impacting the at least one flight member; wherein the conveyor apparatus has fluid accelerating apparatus and the at least one wear protector is positioned adjacent the accelerating apparatus; the at least one wear protector is a plurality of wear protectors each on a flight member of the plurality of spaced-apart flight members; wherein the target end of the nose member is semi-spherical in shape; wherein the target end of the nose member is closer to the first end of the impellers than to the second end of the impellers; wherein the target end of the nose member has a curved surface to facilitate fluid flow in a direction out from the accelerating apparatus; at least one wear shield on at least one of the support members, the at least one wear shield positioned for protecting the at least one support member from flowing fluid impacting the at least one support member; wherein the conveyor apparatus has a fluid accelerating apparatus and the at least one wear shield is positioned adjacent the accelerating apparatus; wherein the at least one wear shield is a plurality of wear shields each on a support member of the plurality of support members; wherein the feed tube has a first feed tube portion with a fluid exit end and the conveyor apparatus further includes adapter apparatus with a bore therethrough, the first feed tube portion passing through the bore, the first feed tube portion positioned so that fluid is flowable from the fluid exit end into the conveyor apparatus, the adapter apparatus having an inner chamber therein and an inner wall, the first feed tube portion having an outer surface with a space between said inner wall and said outer surface so that fluid from the fluid exit end of the first feed tube portion is flowable into the space and from the space into the inner chamber, and drain apparatus (e.g., a hole or holes and/or a tube or tubes connected to the hole or holes) for draining fluid from the inner chamber; the adapter apparatus's drain apparatus including at least one drain tube for draining fluid from the inner chamber; the at least one drain tube has an exit end disposable above a pool of fluid in a centrifuge which contains the conveyor apparatus; wherein the feed tube also has a second feed tube portion secured to the adapter apparatus with an inner surface of the second feed tube portion spaced-apart from an outer surface of the first feed tube portion so that fluid is passable between said inner surface and said outer surface into the inner chamber; chamber apparatus encircling a portion of the feed tube for containing fluid exiting from the feed tube within the conveyor apparatus; wherein the chamber apparatus is cylindrical or conical; and/or wherein the feed tube has a plurality of hollow tube sections in fluid communication with each other.
The present invention, therefore, in at least certain embodiments, provides a centrifuge with any conveyor apparatus disclosed herein according to the present invention and a bowl with a hollow interior and a first bowl end spaced-apart from a second bowl end, apparatus for selectively rotating the bowl, the conveyor apparatus rotatably mounted in the bowl.
The present invention, therefore, in at least certain embodiments, provides a feed apparatus for feeding and accelerating fluid in a centrifuge, the feed apparatus having feed tube apparatus for feeding fluid to be treated into a centrifuge, the feed tube having a fluid exit end, a plurality of accelerating impellers for accelerating the fluid to be treated, the feed tube exit end adjacent the accelerating impellers, a nose member with a target end positioned within the accelerating impellers, and the feed tube exit end positioned so that fluid is flowable therefrom to impact the target end of the nose member; and a centrifuge with such feed apparatus.
A method for separating components of a feed material, the method including introducing feed material into a centrifuge, the centrifuge like any disclosed herein, and separating components of the material with the centrifuge.
A helical screw apparatus 543 is secured to the outside of the conveyor 540. An accelerator apparatus 570 is mounted within a mounting apparatus 580. The accelerator apparatus 570 is secured with bolts 592 passing into holes 587 of the mounting apparatus 580. A nose apparatus 590 is formed integrally of or with (or is secured to) the accelerator apparatus 570. The accelerator apparatus 570 (and/or the nose apparatus 590) is insertable through an end opening 545 of the conveyor 540 and movable to the location as shown in
Between the end plate 591 and an end plate 541 is an empty space 542. This empty space may be of any desired length and volume. In one aspect, the emnpty space is deleted and the vanes of the accelerator apparatus extend along substantially the entire length of the conveyor. In one particular aspect in a conveyor that is about 4 feet long and 1.5 feet in diameter, the empty space is about 2 feet long and about 1 foot in diameter. A shaft 544 projecting from the conveyor 540 is driven by motor and gearing apparatus (not shown; e.g. like that in
Material to be treated in the system 500 is fed into the conveyor 540 through a feed tube 501. The majority of this fluid initially encounters an end 593 of the nose apparatus 590. Fluid is dispersed by the end 593 to vanes 572 of the accelerator apparatus 570. As shown the vanes 572 are relatively long (particularly as compared to parts of accelerating apparatus in various prior art centrifuges) and the vanes 572 traverse multiple openings (about five as shown in
As fluid moves down along the nose apparatus 590 it moves outwardly and is directed radially by the vanes 572. The S-curved shape of the vanes 572 (as viewed, e.g. in
The relatively long length of the vanes 572 also provides for spreading out of fluid flow along a relatively longer length of the bowl. As shown in
In one aspect, the vanes 572 have a relatively uniform width along their entire length and ends 574 of the vanes 572 are as wide as a body 575 of the vanes 572. In other aspects the vanes gradually widen as they project out from the nose apparatus 590. The vanes 572 may be any desired width. As viewed in
In one particular aspect with a conveyor 540 that is about 4 feet long, the accelerator vanes 572 are about 1.5 feet long, and the beach 521 is about 2 feet long. In certain aspects the length of the vanes 572 is at least 50%, at least 75% or is between 50% and 95% of the length of the beach 521. However, it is also within the scope of the present invention to position the accelerator apparatus adjacent portions of the bowl other than (or in addition to) adjacent a beach area of a bowl.
In certain aspects the vanes 572 accelerate fluid to 90%, to 95%, or up to 99%, or up to more than 100% (e.g. up to 105%, 110%, 115%, 120% or more) of the rotating speed of the bowl 520. Thus the spread out fluid enters the bowl 520 at a speed greater than, equal to or almost equal to the speed of the bowl 520. By introducing fluid into the bowl at such velocities, fluid slippage (fluid rotating at less than bowl speed) within the bowl itself is reduced and the fluid is processed more more efficiently receiving the benefit of forces generated within the bowl by fluid movement; separated solids moving within the bowl to a discharge outlet are not as disturbed by fluid exiting the conveyor (as can occur due to the focused feed and jetting effects of fluid with various prior art systems); and solids within the pool that have not yet been efficiently separated are relatively undisturbed.
The channels 585 are sized to facilitate the flow of fluid from the vanes 572 and out from the mounting apparatus 580. In one aspect with a conveyor 4 feet long, vanes 1.5 feet long, and a beach 2 long, the channels 585 are 1.5 feet long.
Although the mounting apparatus 580 as shown in
Any suitable known motor, transmission, gear apparatus, housing, supports, etc. may be used with the centrifuge system 500 including, but not limited to, those disclosed and referred to herein. Also, the accelerator apparatus 570 may be used in centrifuges which have either a generally vertical or generally horizontal configuration; or in any suitable centrifuge, including, but not limited to, those disclosed and referred to herein.
Liquids are discharged from the bowl 520 through ports 506 (five present, one shown). Solids are discharged from solids discharge ports (not shown in
As shown in
In one particular aspect the lobes 584 (e.g. in FIG. 15D) have sufficient mass that parts of the lobes adjacent the fluid exit channels 576 can be worn down without adversely affecting system performance.
The S-curved shape of the vanes 572 forces fluid to follow a path to the fluid channels 576 which facilitate conversion of axially-directed flow to radially-directed flow and also accelerates material.
In various prior art apparatuses a separate centrifuge case is bolted to a skid base or other support and supports for motor(s) are also bolted to such a skid or support. According to the present invention various pieces are parts of the integral housing 610 in which the mass required (as compared to the compound prior art apparatus) is reduced resulting in more efficient assembly and ease of transport. Due to reduced overall weight, transport is facilitated and is less expensive.
The present invention, therefore, provides a centrifuge for separating feed material into solid and fluid parts, the centrifuge hav a conveyor rotatably mounted in a rotatable housing, the conveyor having a longitudinal axis and an interior and at least one impeller having an impeller length, the rotatable housing having a separating region with a pool area and a beach area between the conveyor and the rotatable housing so that feed material is passable through the interior of the conveyor and rotational speed is impartable to the feed material by the at least one impeller prior to treatment in the separating region, and so that the at least one impeller spreads feed material onto the beach area, the beach area having a beach length, and the at least one impeller spreading feed material, incertain aspects onto a portion of the interior of the rotatable housing, onto a portion of the pool area, and/or onto the beach area adjacent the length of the at least one impeller. Such a centrifuge may have one or some, in any possbile combination, of the features and aspects of any of the dependent claims below.
In conclusion, therefore, it is seen that the present invention and the embodiments disclosed herein and those covered by the appended claims are well adapted to carry out the objectives and obtain the ends set forth. Certain changes can be made in the subject matter without departing from the spirit and the scope of this invention. It is realized that changes are possible within the scope of this invention and it is further intended that each element or step recited in any of the following claims is to be understood as referring to all equivalent elements or steps. The following claims are intended to cover the invention as broadly as legally possible in whatever form it may be utilized. The invention claimed herein is new and novel in accordance with 35 U.S.C. § 102 and satisfies the conditions for patentability in § 102. The invention claimed herein is not obvious in accordance with 35 U.S.C. § 103 and satisfies the conditions for patentability in § 103. This specification and the claims that follow are in accordance with all of the requirements of 35 U.S.C. § 112. The inventors may rely on the Doctrine of Equivalents to determine and assess the scope of their invention and of the claims that follow as they may pertain to apparatus not materially departing from, but outside of, the literal scope of the invention as set forth in the following claims.
This is a continuation-in-part of U.S. Ser. No. 10/272,535 filed Oct. 16, 2002 (U.S. Pat. No. 6,790,169 issued Sep. 14, 2004) which is a continuation-in-part of U.S. Ser. No. 10/109,617 filed Mar. 28, 2002 (U.S. Pat. No. 6,780,147 issued Aug. 24, 2004) which is a continuation-in-part of U.S. Ser. No. 09/652,418 filed Aug. 31, 2000 (U.S. Pat. No. 6,605,029 issued Aug. 12, 2003), all incorporated herein fully for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
832191 | Holzer | Oct 1906 | A |
924376 | Phillips | Jun 1909 | A |
1027134 | Leitch | May 1912 | A |
1572299 | McEntire | Feb 1926 | A |
1659683 | Dougan | Feb 1928 | A |
1806241 | Dupuis | May 1931 | A |
1885154 | Strezynski et al. | Nov 1932 | A |
2129992 | De Mattia | Sep 1938 | A |
2578456 | Smith | Dec 1951 | A |
2612314 | Huelsdonk | Sep 1952 | A |
2703676 | Gooch | Mar 1955 | A |
2711854 | Kjellgren | Jun 1955 | A |
2961154 | Bergey | Nov 1960 | A |
3070291 | Bergey | Dec 1962 | A |
3096282 | Trotter, Jr. | Jul 1963 | A |
3170874 | Iono | Feb 1965 | A |
3228592 | Shapiro | Jan 1966 | A |
3268159 | Kern | Aug 1966 | A |
3398888 | Koenecke et al. | Aug 1968 | A |
3428246 | Finkelston | Feb 1969 | A |
3474955 | Lang et al. | Oct 1969 | A |
3568920 | Nielsen | Mar 1971 | A |
3620442 | Halloran | Nov 1971 | A |
3764062 | Brautigam | Oct 1973 | A |
3788392 | Abbott et al. | Jan 1974 | A |
3795361 | Lee | Mar 1974 | A |
3831764 | Humphrey | Aug 1974 | A |
3885734 | Lee | May 1975 | A |
3934792 | High et al. | Jan 1976 | A |
3937317 | Fleury, Jr. | Feb 1976 | A |
3967778 | Hunwick | Jul 1976 | A |
3977515 | Lewoczko | Aug 1976 | A |
4000074 | Evans | Dec 1976 | A |
4003115 | Fisher | Jan 1977 | A |
4006855 | Merzenich | Feb 1977 | A |
4070290 | Crosby | Jan 1978 | A |
4085888 | Jager | Apr 1978 | A |
4120447 | Jager | Oct 1978 | A |
4142669 | Burlet | Mar 1979 | A |
4209128 | Lyons | Jun 1980 | A |
4228949 | Jackson | Oct 1980 | A |
4240578 | Jackson | Dec 1980 | A |
4251023 | Hohne et al. | Feb 1981 | A |
4262841 | Berber et al. | Apr 1981 | A |
4298160 | Jackson | Nov 1981 | A |
4298162 | Hohne | Nov 1981 | A |
4299353 | Bruning et al. | Nov 1981 | A |
4327862 | Jakobs | May 1982 | A |
4328925 | Shapiro | May 1982 | A |
4334647 | Taylor | Jun 1982 | A |
4335846 | Shapiro | Jun 1982 | A |
4339072 | Hiller | Jul 1982 | A |
4378906 | Epper et al. | Apr 1983 | A |
4411646 | Cyphelly | Oct 1983 | A |
4449967 | Caldwell | May 1984 | A |
4451247 | Ostkamp et al. | May 1984 | A |
4466533 | Shwayder | Aug 1984 | A |
4743226 | Day et al. | May 1988 | A |
4961722 | Taylor et al. | Oct 1990 | A |
5147277 | Shapiro | Sep 1992 | A |
5151079 | Flanigan et al. | Sep 1992 | A |
5160441 | Lundquist | Nov 1992 | A |
5182020 | Grimwood | Jan 1993 | A |
5203762 | Cooperstein | Apr 1993 | A |
5354255 | Shapiro | Oct 1994 | A |
5364335 | Franzen et al. | Nov 1994 | A |
5374234 | Madsen | Dec 1994 | A |
5378364 | Welling | Jan 1995 | A |
5380266 | Leung et al. | Jan 1995 | A |
5401423 | Leung et al. | Mar 1995 | A |
5403260 | Hensley | Apr 1995 | A |
5403486 | Leung | Apr 1995 | A |
5423734 | Leung | Jun 1995 | A |
5429581 | Michaud et al. | Jul 1995 | A |
5520605 | Leung et al. | May 1996 | A |
5527258 | Leung et al. | Jun 1996 | A |
5527474 | Leung | Jun 1996 | A |
5545119 | Schilp et al. | Aug 1996 | A |
5551943 | Leung et al. | Sep 1996 | A |
5586966 | Wood | Dec 1996 | A |
5632714 | Leung et al. | May 1997 | A |
5643169 | Leung et al. | Jul 1997 | A |
5651756 | Leung | Jul 1997 | A |
5653674 | Leung | Aug 1997 | A |
5658232 | Leung | Aug 1997 | A |
D386874 | Glaun | Nov 1997 | S |
5683343 | Leung | Nov 1997 | A |
D387534 | Glaun | Dec 1997 | S |
D388583 | Glaun | Dec 1997 | S |
5695442 | Leung et al. | Dec 1997 | A |
D388924 | Glaun | Jan 1998 | S |
5769776 | Leung et al. | Jun 1998 | A |
5771601 | Veal et al. | Jun 1998 | A |
5772573 | Hao | Jun 1998 | A |
5814230 | Willis et al. | Sep 1998 | A |
5840006 | Leung et al. | Nov 1998 | A |
5865539 | Rogers | Feb 1999 | A |
5913767 | Feldkamp et al. | Jun 1999 | A |
5942130 | Leung | Aug 1999 | A |
5948256 | Leung | Sep 1999 | A |
5948271 | Wardwell et al. | Sep 1999 | A |
5958235 | Leung | Sep 1999 | A |
5971907 | Johannemann et al. | Oct 1999 | A |
6063292 | Leung | May 2000 | A |
6077210 | Leung et al. | Jun 2000 | A |
6109452 | Leung et al. | Aug 2000 | A |
6110096 | Leung et al. | Aug 2000 | A |
6123656 | Michelsen | Sep 2000 | A |
6143183 | Wardwell et al. | Nov 2000 | A |
6145669 | Leung | Nov 2000 | A |
6182817 | Rinker et al. | Feb 2001 | B1 |
6193070 | Rowney et al. | Feb 2001 | B1 |
6193076 | Hensley | Feb 2001 | B1 |
6206818 | Deschamps | Mar 2001 | B1 |
6230899 | Hensley | May 2001 | B1 |
6241901 | Leung | Jun 2001 | B1 |
6248055 | Ostkamp | Jun 2001 | B1 |
6267250 | Leung et al. | Jul 2001 | B1 |
D448488 | Chaffiotte et al. | Sep 2001 | S |
6432299 | Hensley et al. | Aug 2002 | B1 |
6561965 | Corner-Walker et al. | May 2003 | B1 |
6605029 | Koch et al. | Aug 2003 | B1 |
6780147 | Koch et al. | Aug 2004 | B1 |
6790169 | Koch et al. | Sep 2004 | B1 |
20040029697 | Hermeler et al. | Feb 2004 | A1 |
20050245381 | Tettleton et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
193997 | Jul 1904 | DE |
2057555 | Jun 1972 | DE |
2152839 | Apr 1973 | DE |
3723864 | Jan 1989 | DE |
4041868 | Jul 1992 | DE |
0602766 | Jun 1994 | EP |
1053222 | Dec 1966 | GB |
54-139167 | Oct 1979 | JP |
2-160063 | Jun 1990 | JP |
2004-290832 | Oct 2004 | JP |
2004-290833 | Oct 2004 | JP |
WO 9313865 | Jul 1993 | WO |
WO 0218055 | Mar 2002 | WO |
03082474 | Oct 2003 | WO |
2004035219 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20030228966 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10272535 | Oct 2002 | US |
Child | 10407819 | US | |
Parent | 10109617 | Mar 2002 | US |
Child | 10272535 | US | |
Parent | 09652418 | Aug 2000 | US |
Child | 10109617 | US |