The invention relates to a high-pressure discharge lamp according to the preamble of claim 1. Lamps of this type are in particular high-pressure discharge lamps having a ceramic discharge vessel or quartz glass vessel for general lighting.
EP 1 153 415B1 discloses a high-pressure discharge lamp in which a metal halide filling is used. The high-pressure discharge lamp uses a filling composed of Na or Li together with Hg and TbJ3. The color temperature lies in the daylight range between 4825 and 7070 K. The CRI is in the range of 87 to 93. Efficiency is only 61 to 76 lm/W. Also cited therein is JP 51-086281, which uses NaJ, GdJ3 and TlJ together with Hg and Ar.
The object of the present invention is to provide a high-pressure discharge lamp with metal halide filling which achieves a color temperature in the daylight range of at least 5000 K.
This object is achieved by means of the characterizing features of claim 1.
Particularly advantageous embodiments are set forth in the dependent claims.
According to the invention a filling for the luminous perceived color daylight, preferably 5500 to 6500 K, is now employed which uses halides of Na and Tm as well as Gd as metal halides.
The discharge vessel consists of ceramic. The aspect ratio (internal length/internal diameter) preferably lies between 2 and 8. Inert gas, preferably xenon or argon having a pressure between 50 and 500 hPa, is used (cold) as the filling gas. In general an inert gas mixture having only or mainly xenon can also preferably be used. Xenon provides somewhat more light yield than argon as a result of lower heat losses (about 1 to 3 lm/W), but is more expensive than argon.
The wall load measured in the area between the electrodes lies preferably between 20 and 40 W/cm2.
The filling includes proportions of sodium and rare earths (REs) as metal halides. At least Tm and Gd are used as rare earths. In this case the molar ratio between Gd and Tm lies between 0.1 and 1, particularly preferably between 0.2 and 0.8. The molar ratio between the sum of all rare earths and sodium lies preferably between 0.2 and 5, particularly preferably between 0.3 and 3. Pr and/or Ho are also suitable as additional REs, the proportion of the total amount of RE amounting to max. 10 mol % in each case.
The filling can also include In and Tl. It is particularly preferred for 2 to 20 mol % of the filling to be In.
Iodine and/or bromine are used as halogens. Particularly preferably the molar percentage of bromine is less than 50%.
The color temperature lies in the daylight range starting from 5000 K, preferably 5500 to 6500 K. With the metal halide filling according to the invention the color rendering index is greater than 80 and the light yield is in excess of 90 lm/W.
The inventive concept is suitable primarily for low-power lamps in the range from 15 to 400 W.
The invention shall be explained in more detail below with reference to several exemplary embodiments and the figures, in which:
The discharge vessel 2 is surrounded by an outer bulb 7. The discharge vessel 2 is retained in the outer bulb by means of a frame which contains a short and a long current feed 11a and 11b and is sealed by means of a screw base 5.
The discharge vessel contains a filling which typically comprises Hg (1 to 10 mg/cm3) and 5 to 50 mg/cm3 iodides of Tm,
Tl, Na, In and Gd. Xenon is used cold under a pressure of 250 hPa as the inert gas.
The exact dosage is shown in Tab. 1.
This results in the following characteristic data for the lamp:
With this filling, TlJ and InJ can be dispensed with where appropriate. Possible additives in terms of RE metals are also Ho and Pr.
A spectrum of a lamp of this kind is shown in
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2008 056 173.8 | Nov 2008 | DE | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/EP2009/064032 | 10/26/2009 | WO | 00 | 5/4/2011 |