This application is related to U.S. patent application Ser. No. 09/568,094, entitled “DEVICE AND METHOD FOR PROVIDING A TRUE SEMICONDUCTOR DIE TO EXTERNAL FIBER OPTIC CABLE CONNECTION,” filed on May 9, 2000, to U.S. patent application Ser. No. 09/568,558, entitled “ARRAYABLE, SCALABLE AND STACKABLE MOLDED PACKAGE CONFIGURATION,” filed on May 9, 2000, to U.S. patent application Ser. No. 09/713,367, entitled “MINIATURE OPTO-ELECTRIC TRANSCEIVER,” filed on Nov. 14, 2000, to U.S. patent application Ser. No. 09/922,358, entitled “M
The present invention relates generally to transduction modules, and more specifically, to ceramic optical sub-assemblies for use with opto-electronic modules.
Most computer and communication networks today rely on copper wiring to transmit data between nodes in the network. Since the data transmitted over the copper wire and the data processed within the nodes are both represented in the form of electrical signals, the transfer of data at the node-copper wire interface is straight forward. Other than perhaps a level shift and signal amplification, no other signal processing is required for data transmitted over the copper wire to be decoded by the node. The drawback with using copper wire is its relatively low bandwidth. Copper's ability to transmit data is significantly limited compared to other media, such as fiber optics. Accordingly much of the computer and communication networks being built today, including the Internet, are using fiber optic cabling instead of copper wire.
With fiber optic cabling, data is transmitted using light signals, not electrical signals. For example, a logical one may be represented by a light pulse of a specific duration and a logical zero may be represented by the absence of a light pulse for the same duration. In addition, it is also possible to transmit at the same time multiple colors of light over a single strand of optic fiber, with each color of light representing a distinct data stream. Since light is attenuated less in fiber than electrons traveling through copper, and multiple data streams can be transmitted at one time, the bandwidth of optic fiber is significantly greater than copper.
While fiber optic cabling is very efficient for transferring data, the use of light signals to process data is still very difficult. Data is typically transferred and stored in various locations before, during and after it is operated on in a computer. There still is no efficient way to “store” light signals representative of data. Networks will therefore likely continue using fiber optics for transmitting data between nodes and silicon chips to process the data within the nodes for the foreseeable future. The interface between the fiber optic cable and the nodes that process the data is therefore problematic because signals need to be converted between the electrical and the light domains.
Fiber optic transceivers, which convert light signals from a fiber optic cable into electrical signals, and vice versa, are used as the interface between a fiber optic line and a computer node. A typical transceiver includes a substrate, grooves etched in the substrate to receive the individual fiber optic strands, one or more semiconductor devices mounted on the substrate, one or more discrete optical detectors for converting light signals received over the fiber optic cables into electrical signals, one or more discrete optical emitters for converting electrical signals from the semiconductor devices into light signals. A number of fiber optic transceivers are commercially available from Hewlett Packard, AMP, Sumitomo, Nortel, and Siemens. The problem with all of these fiber optic transceivers is that they are expensive and difficult to fabricate. With each transceiver, the semiconductor devices, emitters, and optical detectors have to be individually mounted onto the substrate, which is a costly and time-consuming process. This limits the applications in which optical interconnects could be substituted for traditional copper usage. Furthermore, the use of discrete emitters and optical detectors adversely affects the performance of the transceiver because electrical parasitics between discrete components are sources of electrical attenuation of inter-chip signals at Gigabit per second speeds that are generally used with such transceivers. To compensate for the electrical parasitics, more power is required to drive these traces than would be needed for an integrated device. The form factor of the on-board optical transceiver is relatively large and therefore does not facilitate inter-board and chip-to-chip optical interconnectability. Also, current opto-electronic packages have relatively large form factors. For instance, some opto-electronic packages and their attachment configurations require optical fibers to bend in order to be connected to the active facets of the optical device. Unfortunately, optical fibers can only bend with relatively large radii, thereby causing the opto-electronic packages to occupy large amounts of space.
A low cost semiconductor device that has a small form factor and that provides a true die to external fiber optic connection is therefore needed.
The present invention pertains to an optical sub-assembly (OSA), which is an interface device for translating high-speed electrical data signals into optical data signals (and vice versa). The optical sub-assembly has a supporting wall with photonic devices that are mounted in a normal orientation with respect to the supporting wall. The optical sub-assembly is designed to couple tightly to the semiconductor chip sub-assembly (CSA) so that the electrical path lengths between the photonic devices and the semiconductor chip are minimized. Specifically, the OSA is formed of ceramic. A ceramic OSA provides for various advantages such as easier and more efficient manufacturing techniques, tighter metalization line densities, tighter dimensional tolerances and better thermal behavior. The optical sub-assembly can be used to form optical-electrical modules for transceiver, transmitter and receiver applications. Such applications include, but are not limited to, chip-to-chip, board-to-board, chassis-to-chassis, and system-to-system inter-networking.
One aspect of the invention pertains to an optoelectronic package that includes a backing block, an electrical circuitry set, a semiconductor chip assembly and a photonic device. The backing block has a front face and a bottom face that are each angled relative to one another, wherein the front face and bottom face interface along a 90-degree corner. The electrical circuitry set is formed on the front and bottom face, the circuitry set including a metal pad formed on the front face and traces that extend from the front face to the bottom face. The semiconductor chip assembly is mounted to the bottom face of the backing block. The semiconductor chip assembly has a first surface having a plurality of first contacts that are electrically coupled to associated traces on the bottom face of the backing block by direct soldering and a second surface opposite the first surface, the second surface of the semiconductor chip assembly having plurality of second contacts that are suitable for electrical connection to external devices. The photonic device has at least one active facet thereon and a cathode and at least one anode, the photonic device being mounted to the metal pad on the front face of the backing block such that the cathode is in contact with the metal pad.
Another aspect of the invention pertains to a ceramic support structure for use in an optoelectronic package. The ceramic support structure includes a front and bottom face, an electrical circuitry set formed on both the front and bottom faces, a pair of alignment holes, and an alignment slot. The front face is suitable for supporting a photonic device and the bottom face is suitable for attachment to a semiconductor device, wherein the bottom face is angled relative to the front face. The pair of alignment holes are located in the front face and are suitable for receiving associated alignment pins for engaging an optical fiber termination device. The alignment slot is positioned in the front face.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known operations have not been described in detail so not to unnecessarily obscure the present invention.
The present invention pertains to an optical sub-assembly (OSA), which is an interface device for translating high-speed electrical data signals into optical data signals (and vice versa). The optical sub-assembly has a supporting wall with photonic devices that are mounted in an orientation that is rotated with respect to the top surface of the chip sub-assembly. The optical sub-assembly is designed to couple tightly to the semiconductor chip sub-assembly (CSA) so that the electrical path lengths between the photonic devices and the semiconductor chip are minimized. In this manner, electrical interference from parasitic inductance and capacitance is minimized, signal integrity is maximized, and power requirements are reduced. The optical sub-assembly can be used to form transudction modules such as optical-electrical modules for transceiver, transmitter and receiver applications. Such applications include, but are not limited to, chip-to-chip, board-to-board, chassis-to-chassis, and system-to-system inter-networking. More generally stated, the concepts of the present invention can be used to conveniently arrange devices for the transduction of signals to and from voltage and current domains to infrared radiation domains.
The OSA of the present invention is specifically formed of ceramic. A ceramic OSA provides for various advantages such as simple and efficient manufacturing techniques, tighter metalization line densities, tighter dimensional tolerances, better thermal behavior, and short interconnect distances between the photonic devices and the chip sub-assembly. These advantages will be further discussed below.
The optical coupling interface 110 is the structural interface where the photonic devices 108 connect to the optical fiber connector 106. The electrical interface 112 is the structural interface that allows the photonic devices 108 to be electrically connected to the CSA 102.
The ceramic backing block 120 is the main structural component that forms OSA 104. Backing block 120 is a substantially rectangular block with a front surface 132 for supporting photonic devices 108 that are attached to circuitry set 122, and alignment pins 126. In
Backing block 120 need not have a strictly block shape as shown in
Slot 134 is formed in the top surface of the backing block 120 for the purpose of attaching a protective case or sleeve over the opto-electronic module 100. Slot 134 also provides general alignment between the case and the OSA. The case or sleeve protects optoelectronic module 100 during handling and operation. For more detail regarding the case or sleeve, refer to U.S. patent application Ser. No. 09/713,367, entitled “MINIATURE OPTO-ELECTRIC TRANSCEIVER”.
Circuitry set 122 forms the electrical interface, which connects the photonic devices 108 to CSA 102. Circuitry set 122 covers a portion of the front surface 132 of backing block 120, wraps around the bottom-front corner 133 of the backing block 120, and covers a portion of the bottom surface of backing block 120. The traces within circuitry set 122 run from the photonic devices 108 on the front surface to the bottom surface of the backing block 120 where they make contact with up-linking, electrical contacts on the CSA 102. Circuitry set 122 can be either embedded within or formed on the surface backing block 120. Traces within 122 are formed of conductive materials that can be metal or non-metal. Circuitry set can be formed through various methods including metal deposition processes and pre-forming the traces and pads.
Alignment pins 126 are inserted into the front face 132 of backing block 120. Pins 126 serve to align the connection between photonic devices 108 of OSA 104 and optical fibers to be connected to OSA 104. Tolerances for the alignment between OSA 104 and an optical fiber connector are very high, therefore, the positioning of the holes into which the alignment pins are inserted and the alignment pins themselves must be manufactured with precision. Preferably, pins 126 are formed of ceramic such that their coefficient of thermal expansion substantially matches that of backing block 120. Otherwise, non-matching coefficients of thermal expansion can allow pins 126 to cause cracking within backing block 120. Pins 126 can take on various shapes and forms in alternative embodiments. For instance, pins 126 can be integrally formed from the ceramic material of backing block 120. Alignment pins 126 can extend from backing block 120 at a variety of predetermined angles, not necessarily perpendicular to the front surface of backing block 120, to serve the alignment function.
Two photonic devices 108 are connected to circuitry set 122. Photonic devices 108 are blocks of semiconductor material having optical circuitry formed within it. Commonly, the semiconductor material is Gallium-Arsenide. The bottom surface of photonic devices 108 form respective cathodes, which are bonded to circuitry set 122. The backside or cathode of devices 108 are attached by one of several adhesives such as Epoxy (e.g., Epotek H20E, E3001, EG11-3, EMI Emcast 501, 550) or eutectic solder.
In this embodiment, photonic devices 108 contain an array of VCSELs and the other contains an array of optical detectors. The combination of laser emitters and detectors on OSA 104 makes the optoelectronic module 100 a transceiver. For instance a 4-channel transceiver may be formed of one 1×4 laser emitter array and one 1×4 detector array. However, in alternative embodiments, only one array of laser emitters may be connected to the OSA 104, thereby making the module 100 a transmitter. For instance, a twelve-channel transmitter can have a single 1×12 VCSEL array module with 12 fiber connections. Likewise, in another alternative embodiment, only one array of detectors is connected to the OSA 104, thereby making the module 100 a receiver. For instance, a twelve-channel detector can have a single 1×12 detector array module with 12 fiber connections.
A shim 411 is attached to front surface 402 of OSA 400 alignment holes 406. Shim 411 acts as a spacer to prevent a ferrule, such as ferrule 106 in
A method of forming backing block 401 of OSA 400 is by injection molding of ceramic material into a molding chamber. After injection molding, metalization techniques are used to create circuitry set 408 on backing block 401. High purity alumina is preferably used to form backing block 401 in order to obtain smooth surfaces that are required for subsequent metalization processes. Specifically, high purity alumina reduces surface porosity. High purity alumina is considered to be approximately in the range of being greater than 95% pure. Preferably, alumina of 99.6-99.98% purity can be used. With ceramic thin film processing, typically a thin adhesion layer (e.g., chrome, titanium, or tungsten) is sputtered before the metalization process to ensure that the metal bonds well to the ceramic surface. On the other hand, with ceramic thick film processing, an acid etch is typically used to clean the ceramic surface prior to the printing of the metalization paste for firing.
A molding chamber for injection molding can be configured to create various features in backing block 401. The molding tool can be designed to hold multiple cavities so to yield multiple units with repeatable tolerances. Ceramic molding processes allow for repeatability to be achieved within +/−4 microns.
Formation of alignment holes 406 must be performed with precision so that optical fibers can be properly aligned with the photonic devices to be attached to OSA 400. Proper formation of the alignment holes allows the alignment pins to extend from the OSA 400 in the correct orientation such that a ferrule can be secured to OSA 400 in the correct position. A ceramic injection molding process can be performed to comply with very high tolerances such that alignment holes 406 can be formed with a high degree of precision. One of the various requirements of manufacturing precision is that of alignment hole “parallelism.” One requirement of parallelism is that the entire length of alignment holes 406 should maintain a uniform distance from the bottom surface 404 of backing block 401. A measure of this aspect of parallelism is the difference between the distance between each of the alignment hole 406 openings on the front 402 and back surfaces of backing block 401 to the bottom surface 404. Preferably, the difference between the distances should be approximately less than or equal to 10 um.
In some manufacturing processes, the alignment holes 406 are used as reference points by the cameras of alignment systems in order to properly position, for example, the circuitry set 408 and the photonic devices onto the backing block. However, OSA 400 contains fiducials 410, which can also be used by alignment systems during manufacturing processes. Alignment systems can more easily utilize fiducials 410, rather than alignment holes 406, because fiducials 410 are sized more closely to the features of other reference points (e.g., the anode pad of a photonic device). Alignment processes using fiducials 410 are easier to utilize because the cameras of alignment systems can focus on similarly sized objects. In comparison, it is more difficult to adjust a camera of an alignment system to sequentially focus on objects having very different sizes. For example, an alignment hole and an anode pad of a photonic device can have very different respective diameters of 700 and 70 um. Fiducials 410 can be easily formed on a surface of OSA 400 during the injection molding manufacturing process of backing block.
Circuitry set 408 includes a metal pad 412 that serves as a cathode and individual traces 414. Photonic devices are attached to metal pad 412 such that their cathode contact surfaces make contact with metal pad 412. Cathode traces 416 connect metal pad 412 to cathode contact pads 418 on the bottom surface 404 of backing block 401. Cathode contact pads 418 provide the contact surfaces that will be connected to the contact surfaces on the chip sub-assembly. Traces 414 provide the electrical connection between the anodes of the photonic devices and the contact surfaces on the chip sub-assembly. Each of the traces 414 have a contact pad 420 on the end of the traces on the front surface 402 and a contact pad 422 on the bottom surface 404 to facilitate electrical connections.
Circuitry set 408 needs to be compatible with wirebonding on the front surface 402 and solder connections on the bottom surface 404. On the front surface 402, the anode pads of the photonic devices will be wirebonded to contact pads 420 of traces 414. While, on the bottom surface 404, cathode contact pads 418 and contact pads 422 will be connected to the contact surface of a chip sub-assembly through solder balls, wirebond studs and/or anisotropic conductive film. The contact pads 420 preferably have a nickel/gold plating. The thin nickel layer acts as a barrier metal underneath the thicker gold layer required so that pads 420 can withstand the forces experienced during wirebonding processes. A layer of gold can also be formed over the cathode contact pads 418 and contact pads 422 on the bottom surface 404. The layer of gold on the bottom surface 404 can be thinner than the layer on contact pads 420 on the front surface since wirebonding is not involved. Actually, the gold layer on the bottom surface should not be overly thick as excessive gold can cause solder material to become brittle.
Standard metalization of the contact areas 418, 420 and 422 can be titanium tungsten and gold (TiW/Au) with a barrier layer of either nickel (Ni) or palladium (Pd). The resulting TiW/Ni/Au or TiW/Pd/Au can have the following representative thicknesses: TiW approximately 600 Angstroms; Ni or Pd approximately 2000 Angstroms; Au approximately 100 micro-inch or 2.54 um. In particular implementations, solder masks can be applied at selected locations over circuitry set 408 to facilitate the soldering process. For example, solder masks having holes that expose only the contact surfaces such as 418 and 422 can prevent short circuits for forming. Also, solder masks can prevent the copper metal of the circuitry sets from oxidizing.
Thin film application techniques can be used to form circuitry set 408 on backing block 401. Such techniques include sputtering, electro and electroless plating, the use photoresist techniques, among others. The metalization techniques can produce line pitches between the pad and individual traces of approximately 20 microns (line width) on 10 microns if the gold thickness is approximately 4 microns or less. Since the metalization techniques can form circuitry set 408 around sharp corners, it is preferable that the corner of the front 402 and bottom 404 surfaces of backing block 401 have a right-angled corner. In this manner, the interconnection distance between the photonic devices and the chip sub-assembly is minimized. This, in turn, beneficially improves the electrical performance of the entire opto-electronic module because electrical interference due to inductance and capacitance is reduced.
For manufacturing purposes, it is preferable to leave a flat area 808 on the top surface of the bottom panel 806 so that vacuum-based pick-and-place machines can pick up OSA 800. Preferably, OSA 800 has a flat area having a minimum 250 um diameter to ensure pick and place compatibility. Of course, OSA 800 can be handled by alternative pick-and-place machines that do not require flat surfaces to be effective.
In alternative embodiments, the bottom surface of the backing block can have a structure that creates a reproducible standoff height between the OSA and a CSA. This can be achieved for example by forming legs or pedestals of a known height on the bottom panel 806, or by precisely controlling the positioning of the OSA on the CSA during the solder reflow attach process.
In an alternative embodiment of the present invention, a hinge can be formed on the backing block into which a pin on the ferrule can be inserted. This hinge configuration allows for the ferrule to swing about the backing block in a similar manner to a door in a doorframe. The purpose of this configuration is to allow the optical fiber(s) to be brought into and out of optical communication with the photonic device through this swinging action. Location of the hinge, which determines the axis about which the ferrule rotates, should be offset from the photonic device. For example, the hinge can be formed at a side or above the photonic device. The hinge can be formed so that the swinging ferrule can be removed when desired, or the swinging ferrule can be permanently attached to the hinge of the backing block.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This application is a divisional application of U.S. patent application Ser. No. 10/165,711, filed on Jun. 6, 2002, now U.S. Pat No. 7,023,705, entitled “CERAMIC OPTICAL SUB-ASSEMBLY FOR OPTOELECTRONIC MODULES”, which is a continuation-in-part application of U.S. patent application Ser. No. 10/165,553, filed on Jun. 6, 2002, now U.S. Pat. No. 6,916,121, entitled “OPTICAL SUB-ASSEMBLY FOR OPTOELECTRONIC MODULES,” which claims priority of U.S. provisional patent application No. 60/331,339, filed Aug. 3, 2001, entitled “OPTICAL SUB-ASSEMBLY FOR OPTOELECTRONIC MODULES,” all of which are hereby incorporated by reference. This application claims priority of U.S. provisional patent application No. 60/331,338, filed Nov. 20, 2001, entitled “CERAMIC OPTICAL SUB-ASSEMBLY FOR OPTO-ELECTRONIC MODULES,” which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3749882 | Pilkington et al. | Jul 1973 | A |
4152711 | Nakata | May 1979 | A |
5011246 | Corradetti et al. | Apr 1991 | A |
5019673 | Juskey et al. | May 1991 | A |
5054870 | Losch et al. | Oct 1991 | A |
5076688 | Bowen et al. | Dec 1991 | A |
5139969 | Mori | Aug 1992 | A |
5208879 | Gallo et al. | May 1993 | A |
5325455 | Henson et al. | Jun 1994 | A |
5349317 | Notani et al. | Sep 1994 | A |
5352926 | Andrews | Oct 1994 | A |
5487124 | Bowen et al. | Jan 1996 | A |
5515467 | Webb | May 1996 | A |
5519205 | Rostoker | May 1996 | A |
5521992 | Chun et al. | May 1996 | A |
5535296 | Uchida | Jul 1996 | A |
5579208 | Honda et al. | Nov 1996 | A |
5590232 | Wentworth et al. | Dec 1996 | A |
5608262 | Degani et al. | Mar 1997 | A |
5621837 | Yamada et al. | Apr 1997 | A |
5625734 | Thomas et al. | Apr 1997 | A |
5723369 | Barber | Mar 1998 | A |
5726079 | Johnson | Mar 1998 | A |
5744827 | Jeong et al. | Apr 1998 | A |
5768456 | Knapp et al. | Jun 1998 | A |
5774616 | Matsuda | Jun 1998 | A |
5780875 | Tsuji et al. | Jul 1998 | A |
5790384 | Ahmad et al. | Aug 1998 | A |
5798567 | Kelly et al. | Aug 1998 | A |
5821615 | Lee | Oct 1998 | A |
5864642 | Chun et al. | Jan 1999 | A |
5896479 | Vladic | Apr 1999 | A |
5933558 | Sauvageau et al. | Aug 1999 | A |
5949135 | Washida et al. | Sep 1999 | A |
6027254 | Yamada et al. | Feb 2000 | A |
6030246 | Kunishi | Feb 2000 | A |
6043430 | Chun | Mar 2000 | A |
6054759 | Nakamura | Apr 2000 | A |
6075284 | Choi et al. | Jun 2000 | A |
6086263 | Selli et al. | Jul 2000 | A |
6201704 | Poplawski et al. | Mar 2001 | B1 |
6236109 | Hsuan et al. | May 2001 | B1 |
6239427 | Mizue | May 2001 | B1 |
6258630 | Kawahara | Jul 2001 | B1 |
6281568 | Glenn et al. | Aug 2001 | B1 |
6305848 | Gregory | Oct 2001 | B1 |
6316837 | Song | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6318902 | Igl et al. | Nov 2001 | B1 |
6318909 | Giboney et al. | Nov 2001 | B1 |
6356686 | Kuczynski | Mar 2002 | B1 |
6364542 | Deane et al. | Apr 2002 | B1 |
6450704 | O'Connor et al. | Sep 2002 | B1 |
6497518 | Deane | Dec 2002 | B1 |
6583902 | Yuen | Jun 2003 | B1 |
6595699 | Nguyen et al. | Jul 2003 | B1 |
6599033 | Pohnke | Jul 2003 | B1 |
6619858 | Lytel et al. | Sep 2003 | B1 |
6624507 | Nguyen et al. | Sep 2003 | B1 |
6635866 | Chan et al. | Oct 2003 | B2 |
6655854 | Nguyen et al. | Dec 2003 | B1 |
6702480 | Sparacino | Mar 2004 | B1 |
6703561 | Rosenberg et al. | Mar 2004 | B1 |
6707140 | Nguyen et al. | Mar 2004 | B1 |
6737931 | Amparan et al. | May 2004 | B2 |
6792171 | Hargis et al. | Sep 2004 | B2 |
6821027 | Lee et al. | Nov 2004 | B2 |
6916121 | Mazotti et al. | Jul 2005 | B2 |
20010013645 | King et al. | Aug 2001 | A1 |
20010048151 | Chun | Dec 2001 | A1 |
20020136502 | Bachl et al. | Sep 2002 | A1 |
20030026081 | Liu et al. | Feb 2003 | A1 |
20030026556 | Mazotti et al. | Feb 2003 | A1 |
20030169980 | Yang | Sep 2003 | A1 |
20030201462 | Pommer et al. | Oct 2003 | A1 |
20040091208 | Doi | May 2004 | A1 |
Number | Date | Country |
---|---|---|
60-202956 | Oct 1985 | JP |
08125066 | May 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20060140534 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60331339 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10165711 | Jun 2002 | US |
Child | 11344721 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10165553 | Jun 2002 | US |
Child | 10165711 | US |