The present invention relates generally to a ceramic-to-metal turbine volute and shroud assembly attachment compatible with thermal cycling of a gas turbine engine.
The world requires ever-increasing amounts of fuel for vehicle propulsion. Means of utilizing fuels more efficiently and with substantially lower carbon dioxide emissions and air pollutants such as NOxs are essential. Vehicles powered by gas turbines can utilize multiple fuels since they are highly fuel flexible and fuel tolerant. In addition, gas turbine engines, because of their lower average operating temperatures compared to piston-based internal combustion engines, can reduce fuel consumption while also reducing carbon dioxide emissions and air pollutants such as NOxs.
The thermal efficiency of gas turbine engines has been steadily improving as the use of new materials and new design tools are being brought to bear on engine design. One of the important advances has been the use of ceramics in various gas turbine engine components which has allowed the use of higher temperature operation and reduced component weight. The efficiency of gas turbine engines can be improved and engine size can be further reduced by increasing the pressure and temperature developed in the combustor while still remaining well below the temperature threshold of significant NOx production. This can be done using a conventional metallic combustor or a thermal reactor to extract energy from the fuel. As combustor temperature and pressure are raised, new requirements are generated in other components, such as the recuperator and compressor-turbine spools.
The use of both metallic and ceramic components in an engine which may have wide variations in operating temperatures, means that special attention be given to the interfaces of the these different materials to preserve the intended component clearances. Control of clearances generally leads to fewer parasitic performance losses. Fewer parasitic performance losses incrementally improves engine efficiency. In addition, the differential expansion of metallic and ceramic components over many thermal cycles can lead to increased wear and degradation of component clearances which, in turn, can result in ceramic component failure either from increasing thermal stresses, crack growth or contact between moving parts.
There remains a need for innovative designs for gas turbine compressor/turbine spools fabricated from a combination of metallic and ceramic materials that maintain a desired control of clearances between various compressor and turbine components. These new designs will allow increased combustor temperatures which, in turn, can improve overall engine efficiency and reduce engine size while maintaining very low levels of NOx production.
These and other needs are addressed by the various embodiments and configurations of the present disclosure which are directed generally to a gas turbine spool design combining metallic and ceramic components in a way that controls clearances and maintains concentricity in the presence of relative motion between critical components over a range of operating temperatures and pressures.
In a high efficiency gas turbine engine, the turbine adjacent to the combustor may have a ceramic rotor and metallic volute and rotor shroud, a ceramic rotor and volute and metallic rotor shroud, a ceramic rotor and rotor shroud and metallic volute, or it may be an all-ceramic turbine (volute, rotor, rotor shroud). Examples of such turbine designs are disclosed in U.S. patent application Ser. No. 13/180,275 entitled “Metallic Ceramic Spool for a Gas Turbine Engine” filed Jul. 11, 2011 which is incorporated herein by reference.
In either of the above designs, the ceramic rotor is attached to a shaft which, in turn, is attached to a compressor which is comprised of a metallic rotor because the compressor blades see considerably lower temperatures than the turbine blades. An improvement to the attachment of the ceramic rotor to a metallic shaft was disclosed in U.S. patent application Ser. No. 13/476,754 entitled “Ceramic-to-Metal Turbine Shaft Attachment” filed May 21, 2012 which is incorporated herein by reference. The ceramic-to-metal attachment joint, if not designed correctly, can limit the allowable operating temperature of the turbine rotor especially in small turbo-compressor spools such as used in turbo-chargers and microturbines. Most prior art joints are limited to operating temperatures below 800° K. An approach to achieving increased engine efficiency is pushing the rotor temperatures to levels approaching 1,400° K and higher.
In the case of an integral volute/shroud assembly made of a ceramic material, the means by which the ceramic volute/shroud assembly is attached to the metallic base plate can be important since there is considerable differential thermal expansion as the engine is operated from a cold start to maximum operating temperature (typically from ambient temperature to temperatures in the range of about 1,200° K to about 1,500° K). The base plate is typically fabricated from a high temperature steel alloy and provides the means of attachment of the turbine assembly to the outer steel case which houses the turbine assembly as illustrated in
Current practice is to attach the ceramic volute/shroud assembly to the base plate by pins that can move within radial slots as illustrated in
In the present disclosure, a new means of attachment is disclosed which can substantially reduce the friction between the mating surfaces while still keeping the mating parts centered with respect to one another. The new approach is based on radial recessed faces wherein the radial faces slide relative to each other. There may be 3 or more recessed/raised segments which can maintain the alignment between the ceramic volute/shroud assembly and the steel baseplate while allowing differential growth of the parts. This approach can also provide a much larger bearing surface for the attachment than the radial pin/slot approach and substantially eliminates areas of stress concentration. It is thus a more robust design for components that undergo many thousands of thermal cycles.
In one embodiment, a gas turbine engine is disclosed, comprising a) at least one turbo-compressor spool assembly, wherein the at least one turbo-compressor spool assembly comprises a compressor in mechanical communication with a turbine, a ceramic volute directing an inlet gas towards an inlet of a ceramic rotor of the turbine and a ceramic shroud adjacent to the rotor of the turbine, the ceramic shroud directing an outlet gas towards an outlet of the at least one turbo-compressor spool assembly and b) a metallic housing comprising a metallic base plate having a metallic surface to engage a ceramic surface of at least one of the ceramic shroud and volute; wherein each of the engaged metallic and ceramic surfaces comprises at least one raised face and at least one recessed face, wherein, when the ceramic and metallic faces are engaged, the at least one raised face of the metallic surface opposes the at least one recessed face of the ceramic surface and the at least one recessed face of the metallic surface opposes the at least one raised face of the ceramic surface. In operation in a cool temperature state, a radial gap exists between an inner edge of the ceramic surface and an inner edge of the metallic base plate while in an intermediate temperature state, the radial gap is smaller than the radial gap in the cool temperature state and while in a high temperature state, the radial gap is smaller than the radial gap in the cool and intermediate temperature states.
In a second embodiment, a method is disclosed, comprising a) providing an engine comprising at least one turbo-compressor spool assembly, wherein the at least one turbo-compressor spool assembly comprises a compressor in mechanical communication with a turbine, a ceramic volute directing an inlet gas towards an inlet of a ceramic rotor of the turbine and a ceramic shroud adjacent to the rotor of the turbine, the ceramic shroud directing an outlet gas towards an outlet of the at least one turbo-compressor spool assembly and a metallic housing comprising a metallic base plate having a metallic surface to engage a ceramic surface of at least one of the ceramic shroud and volute, wherein each of the engaged metallic and ceramic surfaces comprises at least one raised face and at least one recessed face and b) maintaining, during engine operation, the at least one raised face of the metallic surface engaged with the at least one recessed face of the ceramic surface and the at least one recessed face of the metallic surface engaged with the at least one raised face of the ceramic surface to inhibit gas leakage at the engaged metallic and ceramic surfaces due to different coefficients of thermal expansion and contraction between the metallic and ceramic materials in the metallic housing and at least one of the ceramic shroud and volute, respectively. To better enable this method, the ceramic materials in the rotor and shroud preferably can have substantially similar thermal expansion characteristics and the ceramic materials in the shroud and volute preferably should each comprise a substantially identical ceramic composition.
The above-described embodiments and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below. These and other advantages will be apparent from the disclosure of the disclosure(s) contained herein.
The phrases at least one, one or more, and and/or are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The following definitions are used herein:
A bellows is a flexible or deformable, expandable and/or contractible, container or enclosure. A bellows is typically a container which is deformable in such a way as to alter its volume. A bellows can refer to a device for delivering pressurized air in a controlled quantity to a controlled location.
A ceramic is an inorganic, nonmetallic solid prepared by the action of heating and cooling. Ceramic materials may have a crystalline or partly crystalline structure, or may be amorphous (e.g., a glass). Examples are alumina, silicon carbide and silicon nitride.
An engine refers to any device that uses energy to develop mechanical power, such as motion in some other machine. Examples are diesel engines, gas turbine engines, microturbines, Stirling engines and spark ignition engines
A prime power source refers to any device that uses energy to develop mechanical or electrical power, such as motion in some other machine. Examples are diesel engines, gas turbine engines, microturbines, Stirling engines, spark ignition engines and fuel cells.
The term means shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.
A metallic material is a material containing a metal or a metallic compound. A metal refers commonly to alkali metals, alkaline-earth metals, radioactive and nonradioactive rare earth metals, transition metals, and other metals. Examples are aluminum, steel and titanium.
The no failure regime of a ceramic material, as used herein, refers to the region of a flexural strength versus temperature graph for ceramic materials wherein both the flexural stress and temperature are low enough that the ceramic material has a very low probability of failure and has a lifetime of a very large number of flexural and/or thermal cycles. Operation of the ceramic material in the no failure regime means that the combination of maximum flexural stress and maximum temperature do not approach a failure limit such as the Weibull strength variability regime, the fast fracture regime, the slow crack growth regime or the creep fracture regime as illustrated in
Power density as used herein is power per unit volume (watts per cubic meter).
A recuperator is a heat exchanger dedicated to returning exhaust heat energy from a process back into the process to increase process efficiency. In a gas turbine thermodynamic cycle, heat energy is transferred from the turbine discharge to the combustor inlet gas stream, thereby reducing heating required by fuel to achieve a requisite firing temperature.
A regenerator is a type of heat exchanger where the flow through the heat exchanger is cyclical and periodically changes direction. It is similar to a countercurrent heat exchanger. However, a regenerator mixes a portion of the two fluid flows while a countercurrent exchanger maintains them separated. The exhaust gas trapped in the regenerator is mixed with the trapped air later. It is the trapped gases that get mixed, not the flowing gases, unless there are leaks past the valves.
Specific power as used herein is power per unit mass (watts per kilogram).
A thermal oxidizer is a type of combustor comprised of a matrix material which is typically a ceramic and a large number of channels which are typically circular in cross section. When a fuel-air mixture is passed through the thermal oxidizer, it begins to react as it flows along the channels until it is fully reacted when it exits the thermal oxidizer. A thermal oxidizer is characterized by a smooth combustion process as the flow down the channels is effectively one-dimensional fully developed flow with a marked absence of hot spots.
A thermal reactor, as used herein, is another name for a thermal oxidizer.
A turbine is a rotary machine in which mechanical work is continuously extracted from a moving fluid by expanding the fluid from a higher pressure to a lower pressure. The simplest turbines have one moving part, a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades, or the blades react to the flow, so that they move and impart rotational energy to the rotor.
Turbine Inlet Temperature (TIT) as used herein refers to the gas temperature at the outlet of the combustor which is closely connected to the inlet of the high pressure turbine and these are generally taken to be the same temperature.
A turbo-compressor spool assembly as used herein refers to an assembly typically comprised of an outer case, a centrifugal compressor, a radial turbine wherein the centrifugal compressor and radial turbine are attached to a common shaft. The assembly also includes inlet ducting for the compressor, a compressor rotor, a diffuser for the compressor outlet, a volute for incoming flow to the turbine, a turbine rotor and an outlet diffuser for the turbine. The shaft connecting the compressor and turbine includes a bearing system.
A volute is a scroll transition duct which looks like a tuba or a snail shell. Volutes may be used to channel flow gases from one component of a gas turbine to the next. Gases flow through the helical body of the scroll and are redirected into the next component. A key advantage of the scroll is that the device inherently provides a constant flow angle at the inlet and outlet. To date, this type of transition duct has only been successfully used on very small engines or turbochargers where the geometrical fabrication issues are less involved.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and/or configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and/or configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
The present disclosure may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the disclosure. In the drawings, like reference numerals refer to like or analogous components throughout the several views.
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the disclosure or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the disclosure is not necessarily limited to the particular embodiments illustrated herein.
Exemplary Gas Turbine Engine
An exemplary engine is a high efficiency gas turbine engine. It typically has lower NOx emissions, is more fuel flexible and has lower maintenance costs than comparable reciprocating engines. For example, an intercooled recuperated gas turbine engine in the range of about 10 kW to about 750 kW is available with thermal efficiencies above 40%. A schematic of an intercooled, recuperated gas turbine engine is shown in
As can be appreciated, the engine illustrated in
A gas turbine engine is an enabling engine for efficient multi-fuel use and, in particular, this engine can be configured to switch between fuels while the engine is running and the vehicle is in motion (on the fly). In addition, a gas turbine engine can be configured to switch on the fly between liquid and gaseous fuels or operate on combinations of these fuels. This is possible because combustion in a gas turbine engine is continuous (as opposed to episodic such as in a reciprocating piston engine) and the important fuel parameter is the specific energy content of the fuel (that is, energy per unit mass) not its cetane number or octane rating. The cetane number (typically for diesel fuels and compression ignition) or octane rating (typically for gasoline fuels and spark ignition) are important parameters in piston engines for specifying fuel ignition properties.
The gas turbine engine such as shown schematically in
This engine operates on the Brayton cycle and, because combustion is continuous, the peak operating temperatures are substantially lower than comparably sized piston engines operating on either an Otto cycle or Diesel cycle. This lower peak operating temperature results in substantially less NOx emissions. This engine has a relatively flat efficiency curve over wide operating range (from about 20% of full power to about 85% of full power. It also has a multi-fuel capability with the ability to change fuels on the fly as described in U.S. patent application Ser. No. 13/090,104 entitled “Multi-Fuel Vehicle Strategy” filed Apr. 19, 2011 which is incorporated herein by reference.
Previously Disclosed Metallic and Ceramic Gas Turbine Components
In this embodiment, when the assembly is heated during engine operation, the ceramic rotor 203 and ceramic shroud 202 have approximately the same coefficient of thermal expansion and so they expand radially approximately by the same amount thus retaining the approximate initial radial clearance between rotor 203 and shroud 202. The right side of ceramic volute 201 expands at approximately the same rate as ceramic shroud 202 and tends to push shroud 202 to the right but only by a small amount. As the assembly is heated, case 205 and bellows 206 have coefficients of thermal expansion typical of metals. Case 205 and compliant metallic bellows 206 also expand away from metallic base plate 207 but the compliance of the bellows does not allow the case 205 to pull shroud 202 away from metallic base plate 207. The expansion of the ceramic volute 201 is relatively small and does not cause the axial clearance gap between rotor and shroud to increase beyond that which is desired.
The use of a rotor and volute/shroud fabricated from the same or similar ceramics adequately thus controls radial and axial shroud clearances between the rotor 203 and shroud 202 and maintains high rotor efficiency by controlling the clearance and minimizing parasitic flow leakages between the rotor blade tips and the shroud.
The advantages of this design approach can include:
The temperature of the flow exiting the combustor into the volute that directs the flow to the high pressure turbine may be substantially in the same range as the turbine inlet temperature. The temperature of the flow exiting the high pressure turbine into the shroud that directs the flow towards the low pressure turbine may be in the range of from about 1,000° K to about 1,400° K, more commonly from about 1,000° K to about 1,300° K, and even more commonly of approximately 1,200° K. Stated differently, the inlet temperature of the high pressure turbine is commonly higher than, more commonly about 5% higher than, more commonly about 10% higher than, more commonly about 15% higher than, and even more commonly about 20% higher than the high pressure turbine gas outlet temperature. A one-piece volute and shroud may be exposed to a temperature differential in the range of about 100° K to about 300° K and more commonly about 160° K to about 200° K.
This configuration is capable of operating safely at turbine inlet temperatures in the approximate range from about 850° K to about 1,400° K. The ceramic rotor may be fabricated from rotor fabricated from silicon nitride. The ceramic shroud and volute can be fabricated from silicon carbide. The use of a rotor and volute/shroud fabricated from the same or similar ceramics adequately thus controls radial and axial shroud clearances between the rotor 203 and shroud 202 and maintains high rotor efficiency by controlling the clearance and minimizing parasitic flow leakages between the rotor blade tips and the shroud. This design of a single piece ceramic volute and shroud for use with a ceramic turbine rotor is preferred if the ceramic material used can be operated well within the no-failure region of the ceramic. A flexure stress-temperature map illustrating failure regimes for typical ceramic materials is discussed in previously referenced U.S. patent application Ser. No. 13/180,275 and U.S. patent application Ser. No. 13/476,754. A flexure stress-temperature map shows that when flexure stress and temperature experienced by a ceramic component are high, the component operates in the fast-fracture regime and the ceramic component lifetime would be expected to be unpredictable and typically short. This graphic also shows that when flexure stress and temperature experienced by a ceramic component are low, then the component operates in the no-failure regime and the ceramic component lifetime would be expected to be predictable and typically long. When the flexure stress is high but the temperature is low, then the component operates in a regime characterized by Weibull strength variability and the ceramic component lifetime would be expected to be somewhat unpredictable and variable. When the flexure stress is low but the temperature is high, then the component operates in a regime characterized by slow crack growth or creep and the ceramic component lifetime would be expected to be somewhat unpredictable and variable.
The disadvantages of the design approach illustrated in
This design of a single piece or two piece ceramic volute and shroud for use with a ceramic turbine rotor is preferred if the ceramic material used can be operated well within the no-failure region discussed above.
The ceramic-to-metal attachment joint, limits the allowable operating temperature of the turbine rotor. Most joints of this type are limited to operating temperatures below 800° K. The drive for increased efficiency is pushing the rotor temperatures to levels approaching 1,400° K and higher. In the prior art, this ceramic-to-metal attachment is typically located close to the turbine rotor as shown in
Thermal Expansion of Metallic and Ceramic Materials
The coefficient of linear thermal expansion in μm/m/K for some typical metallic and ceramic materials used in turbine components and assemblies such as shown in
For all materials, the coefficient of area thermal expansion is approximately the square of the coefficient of linear thermal expansion and the coefficient of volume thermal expansion is approximately the cube of the coefficient of linear thermal expansion.
Prior Method of Attachment
Since the ceramic volute/shroud assembly is pressed against the metallic base plate by a compliant bellows (see item 206 in
Present Disclosure
This design creates a much more robust centering alignment between the two parts than the pin and slot design of
Since the ceramic volute/shroud assembly is pressed against the metallic base plate by a compliant bellows (see item 206 in
The disclosures presented herein may be used on gas turbine engines used in vehicles or in gas turbine engines used in stationary applications such as, for example, power generation and gas compression.
The exemplary systems and methods of this disclosure have been described in relation to preferred aspects, embodiments, and configurations. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. To avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scopes of the claims. Specific details are set forth to provide an understanding of the present disclosure. It should however be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
The disclosure has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
A number of variations and modifications of the disclosures can be used. As will be appreciated, it would be possible to provide for some features of the disclosures without providing others. For example, the means of attachment which is based on radial recessed faces wherein the radial faces slide relative to each other and which substantially reduces the friction between the mating surfaces while still keeping the mating parts centered with respect to one another can be applied to any mating parts which have substantially different coefficients of thermal expansion. While this means of attachment is illustrated for a ceramic component mated to a metallic component, this approach could also be used for metallic components such as for example, titanium and steel as well as other combinations of materials such as carbon fiber components mating with metallic components; carbon fiber components mating with ceramic components, and the like.
The present disclosure, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure. The present disclosure, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, for example for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover though the description of the disclosure has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application claims the benefits, under 35 U.S.C. § 119(e), of U.S. Provisional Application Ser. No. 61/675,247 entitled “Ceramic-to-Metal Turbine Volute Attachment for a Gas Turbine Engine” filed Jul. 24, 2012 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2463964 | Graf | Mar 1949 | A |
2543677 | Traupel | Feb 1951 | A |
2613500 | Lysholm | Oct 1952 | A |
2696711 | Marchant et al. | Dec 1954 | A |
2711071 | Frankel | Jun 1955 | A |
3032987 | Taylor | May 1962 | A |
3091933 | Wagner et al. | Jun 1963 | A |
3166902 | Maljanian et al. | Jan 1965 | A |
3204406 | Howes et al. | Sep 1965 | A |
3209536 | Howes et al. | Oct 1965 | A |
3237404 | Flanigan et al. | Mar 1966 | A |
3283497 | Kaplan | Nov 1966 | A |
3319931 | Bell, III | May 1967 | A |
3518472 | O'Callaghan | Jun 1970 | A |
3623318 | Shank | Nov 1971 | A |
3639076 | Rowen | Feb 1972 | A |
3646753 | Stearns et al. | Mar 1972 | A |
3660977 | Reynolds | May 1972 | A |
3706203 | Goldberg et al. | Dec 1972 | A |
3729928 | Rowen | May 1973 | A |
3742704 | Adelizzi | Jul 1973 | A |
3748491 | Barrigher et al. | Jul 1973 | A |
3764226 | Matto | Oct 1973 | A |
3764814 | Griffith | Oct 1973 | A |
3765170 | Nakamura | Oct 1973 | A |
3766732 | Woodcock | Oct 1973 | A |
3817343 | Albrecht | Jun 1974 | A |
3824030 | DeFeo | Jul 1974 | A |
3831374 | Nicita | Aug 1974 | A |
3848636 | McCombs | Nov 1974 | A |
3866108 | Yannone et al. | Feb 1975 | A |
3888337 | Worthen et al. | Jun 1975 | A |
3893293 | Moore | Jul 1975 | A |
3937588 | Kisslan | Feb 1976 | A |
3939653 | Schirmer | Feb 1976 | A |
3945199 | Bradley et al. | Mar 1976 | A |
3953967 | Smith | May 1976 | A |
3964253 | Paduch et al. | Jun 1976 | A |
3977183 | Stearns | Aug 1976 | A |
3986364 | Cronin et al. | Oct 1976 | A |
3986575 | Eggmann | Oct 1976 | A |
3999373 | Bell et al. | Dec 1976 | A |
3999375 | Smith et al. | Dec 1976 | A |
4002058 | Wolfinger | Jan 1977 | A |
4005946 | Brown et al. | Feb 1977 | A |
4027472 | Stearns | Jun 1977 | A |
4027473 | Baker | Jun 1977 | A |
4056019 | Ahlen | Nov 1977 | A |
4059770 | Mackay | Nov 1977 | A |
4067189 | Earnest | Jan 1978 | A |
4082115 | Gibb et al. | Apr 1978 | A |
4122668 | Chou et al. | Oct 1978 | A |
4183420 | Kinoshita | Jan 1980 | A |
4242042 | Schwarz | Dec 1980 | A |
4242871 | Breton | Jan 1981 | A |
4248040 | Kast | Feb 1981 | A |
4253031 | Frister | Apr 1981 | A |
4270357 | Rossi et al. | Jun 1981 | A |
4276744 | Pisano | Jul 1981 | A |
4277938 | Belke et al. | Jul 1981 | A |
4280327 | Mackay | Jul 1981 | A |
4282948 | Jerome | Aug 1981 | A |
4312191 | Biagini | Jan 1982 | A |
4336856 | Gamell | Jun 1982 | A |
4399651 | Geary et al. | Aug 1983 | A |
4411595 | Pisano | Oct 1983 | A |
4449359 | Cole et al. | May 1984 | A |
4467607 | Rydquist et al. | Aug 1984 | A |
4470261 | Kronogard et al. | Sep 1984 | A |
4474007 | Kronogard et al. | Oct 1984 | A |
4492874 | Near | Jan 1985 | A |
4494372 | Cronin | Jan 1985 | A |
4499756 | Medeiros et al. | Feb 1985 | A |
4509333 | Nussdorfer et al. | Apr 1985 | A |
4529887 | Johnson | Jul 1985 | A |
4552386 | Burchette | Nov 1985 | A |
4586337 | Fox | May 1986 | A |
4754607 | Mackay | Jul 1988 | A |
4783957 | Harris | Nov 1988 | A |
4815278 | White | Mar 1989 | A |
4819436 | Ahner et al. | Apr 1989 | A |
4858428 | Paul | Aug 1989 | A |
4864811 | Pfefferle | Sep 1989 | A |
5010729 | Adamson et al. | Apr 1991 | A |
5036267 | Markunas et al. | Jul 1991 | A |
5069032 | White | Dec 1991 | A |
5081832 | Mowill | Jan 1992 | A |
5083039 | Richardson et al. | Jan 1992 | A |
5090193 | Schwarz et al. | Feb 1992 | A |
5097658 | Klaass et al. | Mar 1992 | A |
5113669 | Coffinberry | May 1992 | A |
5129222 | Lampe et al. | Jul 1992 | A |
5144299 | Smith | Sep 1992 | A |
5181827 | Pellow et al. | Jan 1993 | A |
5214910 | Adair | Jun 1993 | A |
5231822 | Shekleton | Aug 1993 | A |
5253470 | Newton | Oct 1993 | A |
5276353 | Kobayashi et al. | Jan 1994 | A |
5301500 | Hines | Apr 1994 | A |
5329757 | Faulkner et al. | Jul 1994 | A |
5333989 | Missana et al. | Aug 1994 | A |
5343692 | Thomson et al. | Sep 1994 | A |
5349814 | Ciokajlo et al. | Sep 1994 | A |
5386688 | Nakhamkin | Feb 1995 | A |
5427455 | Bosley | Jun 1995 | A |
5448889 | Bronicki | Sep 1995 | A |
5450724 | Kesseli et al. | Sep 1995 | A |
5488823 | Faulkner et al. | Feb 1996 | A |
5497615 | Noe et al. | Mar 1996 | A |
5529398 | Bosley | Jun 1996 | A |
5549174 | Reis | Aug 1996 | A |
5555719 | Rowen et al. | Sep 1996 | A |
5564270 | Kesseli et al. | Oct 1996 | A |
5586428 | Asai et al. | Dec 1996 | A |
5586429 | Kesseli et al. | Dec 1996 | A |
5609655 | Kesseli et al. | Mar 1997 | A |
5610962 | Solorzano et al. | Mar 1997 | A |
5625243 | Lindgren et al. | Apr 1997 | A |
5667358 | Gaul | Sep 1997 | A |
5685156 | Willis et al. | Nov 1997 | A |
5697848 | Bosley | Dec 1997 | A |
5722259 | Sorensen et al. | Mar 1998 | A |
5742515 | Runkle et al. | Apr 1998 | A |
5752380 | Bosley et al. | May 1998 | A |
5784268 | Steffek et al. | Jul 1998 | A |
5791868 | Bosley et al. | Aug 1998 | A |
5819524 | Bosley et al. | Oct 1998 | A |
5820074 | Trommer et al. | Oct 1998 | A |
5827040 | Bosley et al. | Oct 1998 | A |
5850732 | Willis et al. | Dec 1998 | A |
5850733 | Bosley et al. | Dec 1998 | A |
5855112 | Bannai et al. | Jan 1999 | A |
5873235 | Bosley et al. | Feb 1999 | A |
5894720 | Willis et al. | Apr 1999 | A |
5899673 | Bosley et al. | May 1999 | A |
5903116 | Geis et al. | May 1999 | A |
5915841 | Weissert | Jun 1999 | A |
5918985 | Bosley | Jul 1999 | A |
5928301 | Soga et al. | Jul 1999 | A |
5929538 | O'Sullivan et al. | Jul 1999 | A |
5954174 | Costin | Sep 1999 | A |
5964663 | Stewart et al. | Oct 1999 | A |
5966926 | Shekleton et al. | Oct 1999 | A |
5983986 | Macintyre et al. | Nov 1999 | A |
5983992 | Child et al. | Nov 1999 | A |
5992139 | Kesseli | Nov 1999 | A |
6002603 | Carver | Dec 1999 | A |
6011377 | Heglund et al. | Jan 2000 | A |
6016658 | Willis et al. | Jan 2000 | A |
6020713 | Geis et al. | Feb 2000 | A |
6023135 | Gilbreth et al. | Feb 2000 | A |
6031294 | Geis et al. | Feb 2000 | A |
6037687 | Stewart et al. | Mar 2000 | A |
6049195 | Geis et al. | Apr 2000 | A |
6062016 | Edelman | May 2000 | A |
6065281 | Shekleton et al. | May 2000 | A |
6070404 | Bosley et al. | Jun 2000 | A |
6082112 | Shekleton | Jul 2000 | A |
6085524 | Persson | Jul 2000 | A |
6093975 | Peticolas | Jul 2000 | A |
6094799 | Stewart et al. | Aug 2000 | A |
6098397 | Glezer et al. | Aug 2000 | A |
6107693 | Mongia et al. | Aug 2000 | A |
6138781 | Hakala | Oct 2000 | A |
D433997 | Laituri et al. | Nov 2000 | S |
6141953 | Mongia et al. | Nov 2000 | A |
6155076 | Cullen et al. | Dec 2000 | A |
6155780 | Rouse | Dec 2000 | A |
6158892 | Stewart et al. | Dec 2000 | A |
6169334 | Edelman | Jan 2001 | B1 |
6170251 | Skowronski et al. | Jan 2001 | B1 |
6178751 | Shekleton et al. | Jan 2001 | B1 |
6190048 | Weissert | Feb 2001 | B1 |
6192668 | Mackay | Feb 2001 | B1 |
6194794 | Lampe et al. | Feb 2001 | B1 |
6205765 | Iasillo et al. | Mar 2001 | B1 |
6205768 | Dibble et al. | Mar 2001 | B1 |
6213234 | Rosen et al. | Apr 2001 | B1 |
6239520 | Stahl et al. | May 2001 | B1 |
6265786 | Bosley et al. | Jul 2001 | B1 |
6274945 | Gilbreth et al. | Aug 2001 | B1 |
6281596 | Gilbreth et al. | Aug 2001 | B1 |
6281601 | Edelman et al. | Aug 2001 | B1 |
6305079 | Child et al. | Oct 2001 | B1 |
6314717 | Teets et al. | Nov 2001 | B1 |
6316841 | Weber | Nov 2001 | B1 |
6324828 | Willis et al. | Dec 2001 | B1 |
6324846 | Clarke | Dec 2001 | B1 |
6325142 | Bosley et al. | Dec 2001 | B1 |
6349787 | Dakhil | Feb 2002 | B1 |
6355987 | Bixel | Mar 2002 | B1 |
6361271 | Bosley | Mar 2002 | B1 |
6381944 | Mackay | May 2002 | B2 |
6405522 | Pont et al. | Jun 2002 | B1 |
6410992 | Wall et al. | Jun 2002 | B1 |
6425732 | Rouse et al. | Jul 2002 | B1 |
6437468 | Stahl et al. | Aug 2002 | B2 |
6438936 | Ryan | Aug 2002 | B1 |
6438937 | Pont et al. | Aug 2002 | B1 |
6453658 | Willis et al. | Sep 2002 | B1 |
6468051 | Lampe et al. | Oct 2002 | B2 |
6487096 | Gilbreth et al. | Nov 2002 | B1 |
6489692 | Gilbreth et al. | Dec 2002 | B1 |
6495929 | Bosley et al. | Dec 2002 | B2 |
6499949 | Schafrik et al. | Dec 2002 | B2 |
6522030 | Wall et al. | Feb 2003 | B1 |
6526757 | Mackay | Mar 2003 | B2 |
6539720 | Rouse et al. | Apr 2003 | B2 |
6542791 | Perez | Apr 2003 | B1 |
6543232 | Anderson et al. | Apr 2003 | B1 |
6552440 | Gilbreth et al. | Apr 2003 | B2 |
6574950 | Nash | Jun 2003 | B2 |
6598400 | Nash et al. | Jul 2003 | B2 |
6601392 | Child | Aug 2003 | B2 |
6605928 | Gupta et al. | Aug 2003 | B2 |
6606864 | Mackay | Aug 2003 | B2 |
6612112 | Gilbreth et al. | Sep 2003 | B2 |
6629064 | Wall | Sep 2003 | B1 |
6634176 | Rouse et al. | Oct 2003 | B2 |
6638007 | Bartholomä et al. | Oct 2003 | B2 |
6639328 | Wacknov | Oct 2003 | B2 |
6644916 | Beacom | Nov 2003 | B1 |
RE38373 | Bosley | Dec 2003 | E |
6657332 | Balas | Dec 2003 | B2 |
6657348 | Qin et al. | Dec 2003 | B2 |
6663044 | Munoz et al. | Dec 2003 | B1 |
6664653 | Edelman | Dec 2003 | B1 |
6664654 | Wall et al. | Dec 2003 | B2 |
6670721 | Lof et al. | Dec 2003 | B2 |
6675583 | Willis et al. | Jan 2004 | B2 |
6683389 | Geis | Jan 2004 | B2 |
6684642 | Willis et al. | Feb 2004 | B2 |
6698208 | Teets | Mar 2004 | B2 |
6698554 | Desta et al. | Mar 2004 | B2 |
6702463 | Brockett et al. | Mar 2004 | B1 |
6709243 | Tan et al. | Mar 2004 | B1 |
6713892 | Gilbreth et al. | Mar 2004 | B2 |
6720685 | Balas | Apr 2004 | B2 |
6729141 | Ingram | May 2004 | B2 |
6732531 | Dickey | May 2004 | B2 |
6735951 | Thompson | May 2004 | B2 |
6745574 | Dettmer | Jun 2004 | B1 |
6747372 | Gilbreth et al. | Jun 2004 | B2 |
6748742 | Rouse et al. | Jun 2004 | B2 |
6751941 | Edelman et al. | Jun 2004 | B2 |
6766647 | Hartzheim | Jul 2004 | B2 |
6784565 | Wall et al. | Aug 2004 | B2 |
6787933 | Claude et al. | Sep 2004 | B2 |
6794766 | Wickert et al. | Sep 2004 | B2 |
6796527 | Munoz et al. | Sep 2004 | B1 |
6804946 | Willis et al. | Oct 2004 | B2 |
6810677 | Dewis | Nov 2004 | B2 |
6812586 | Wacknov et al. | Nov 2004 | B2 |
6812587 | Gilbreth et al. | Nov 2004 | B2 |
6815932 | Wall | Nov 2004 | B2 |
6817575 | Munoz et al. | Nov 2004 | B1 |
6819999 | Hartzheim | Nov 2004 | B2 |
6823675 | Brunell et al. | Nov 2004 | B2 |
6829899 | Benham, Jr. et al. | Dec 2004 | B2 |
6832470 | Dewis | Dec 2004 | B2 |
6834226 | Hartzheim | Dec 2004 | B2 |
6836720 | Hartzheim | Dec 2004 | B2 |
6837419 | Ryan | Jan 2005 | B2 |
6845558 | Beacom | Jan 2005 | B2 |
6845621 | Teets | Jan 2005 | B2 |
6847129 | McKelvey et al. | Jan 2005 | B2 |
6847194 | Sarlioglu et al. | Jan 2005 | B2 |
6848249 | Coleman et al. | Feb 2005 | B2 |
6863509 | Dewis | Mar 2005 | B2 |
6864595 | Wall | Mar 2005 | B2 |
6870279 | Gilbreth et al. | Mar 2005 | B2 |
6877323 | Dewis | Apr 2005 | B2 |
6883331 | Jonsson et al. | Apr 2005 | B2 |
6888263 | Satoh et al. | May 2005 | B2 |
6891282 | Gupta et al. | May 2005 | B2 |
6895741 | Rago et al. | May 2005 | B2 |
6895760 | Kesseli | May 2005 | B2 |
6897578 | Olsen et al. | May 2005 | B1 |
6909199 | Gupta et al. | Jun 2005 | B2 |
6911742 | Gupta et al. | Jun 2005 | B2 |
6931856 | Belokon et al. | Aug 2005 | B2 |
6951110 | Kang | Oct 2005 | B2 |
6956301 | Gupta et al. | Oct 2005 | B2 |
6958550 | Gilbreth et al. | Oct 2005 | B2 |
6960840 | Willis et al. | Nov 2005 | B2 |
6964168 | Pierson et al. | Nov 2005 | B1 |
6966173 | Dewis | Nov 2005 | B2 |
6968702 | Child et al. | Nov 2005 | B2 |
6973880 | Kumar | Dec 2005 | B2 |
6977446 | Mackay | Dec 2005 | B2 |
6979914 | McKelvey et al. | Dec 2005 | B2 |
6983787 | Schoenenborn | Jan 2006 | B2 |
6989610 | Gupta et al. | Jan 2006 | B2 |
6998728 | Gupta et al. | Feb 2006 | B2 |
7008182 | Kopp | Mar 2006 | B2 |
7019626 | Funk | Mar 2006 | B1 |
7053590 | Wang | May 2006 | B2 |
7059385 | Moilala | Jun 2006 | B2 |
7065873 | Kang et al. | Jun 2006 | B2 |
RE39190 | Weissert | Jul 2006 | E |
7092262 | Ryan et al. | Aug 2006 | B2 |
7093443 | McKelvey et al. | Aug 2006 | B2 |
7093448 | Nguyen et al. | Aug 2006 | B2 |
7112036 | Lubell et al. | Sep 2006 | B2 |
7117683 | Thompson | Oct 2006 | B2 |
7147050 | Kang et al. | Dec 2006 | B2 |
7166928 | Larsen | Jan 2007 | B2 |
7181337 | Kosaka | Feb 2007 | B2 |
7185496 | Herlihy | Mar 2007 | B2 |
7186200 | Hauser | Mar 2007 | B1 |
7211906 | Teets et al. | May 2007 | B2 |
7224081 | Larsen | May 2007 | B2 |
7244524 | McCluskey et al. | Jul 2007 | B2 |
7266429 | Travaly et al. | Sep 2007 | B2 |
7285871 | Derouineau | Oct 2007 | B2 |
7299638 | Mackay | Nov 2007 | B2 |
7304445 | Donnelly | Dec 2007 | B2 |
7309929 | Donnelly et al. | Dec 2007 | B2 |
7318154 | Tehee | Jan 2008 | B2 |
7325401 | Kesseli et al. | Feb 2008 | B1 |
7343744 | Abelson et al. | Mar 2008 | B2 |
7393179 | Kesseli et al. | Jul 2008 | B1 |
7398642 | McQuiggan | Jul 2008 | B2 |
7404294 | Sundin | Jul 2008 | B2 |
7415764 | Kang et al. | Aug 2008 | B2 |
7423412 | Weng et al. | Sep 2008 | B2 |
7464533 | Wollenweber | Dec 2008 | B2 |
7513120 | Kupratis | Apr 2009 | B2 |
7514807 | Donnelly et al. | Apr 2009 | B2 |
7518254 | Donnelly et al. | Apr 2009 | B2 |
RE40713 | Geis et al. | May 2009 | E |
7554278 | Wegner-Donnelly et al. | Jun 2009 | B2 |
7565867 | Donnelly et al. | Jul 2009 | B2 |
7572531 | Forte | Aug 2009 | B2 |
7574853 | Teets et al. | Aug 2009 | B2 |
7574867 | Teets et al. | Aug 2009 | B2 |
7595124 | Varatharajan et al. | Sep 2009 | B2 |
7605487 | Barton et al. | Oct 2009 | B2 |
7605498 | Ledenev et al. | Oct 2009 | B2 |
7607318 | Lui et al. | Oct 2009 | B2 |
7608937 | Altenschulte | Oct 2009 | B1 |
7614792 | Wade et al. | Nov 2009 | B2 |
7615881 | Halsey et al. | Nov 2009 | B2 |
7617687 | West et al. | Nov 2009 | B2 |
7656135 | Schram et al. | Feb 2010 | B2 |
7667347 | Donnelly et al. | Feb 2010 | B2 |
7671481 | Miller et al. | Mar 2010 | B2 |
7766790 | Stevenson et al. | Aug 2010 | B2 |
7770376 | Brostmeyer | Aug 2010 | B1 |
7777358 | Halsey et al. | Aug 2010 | B2 |
7804184 | Yuan et al. | Sep 2010 | B2 |
7841185 | Richards et al. | Nov 2010 | B2 |
7861696 | Lund | Jan 2011 | B2 |
7866532 | Potter et al. | Jan 2011 | B1 |
7906862 | Donnelly et al. | Mar 2011 | B2 |
7921944 | Russell et al. | Apr 2011 | B2 |
7926274 | Farkaly | Apr 2011 | B2 |
7944081 | Donnelly et al. | May 2011 | B2 |
7957846 | Hakim et al. | Jun 2011 | B2 |
7966868 | Sonnichsen et al. | Jun 2011 | B1 |
7977845 | Heitmann | Jul 2011 | B1 |
8008808 | Seeker et al. | Aug 2011 | B2 |
8015812 | Kesseli et al. | Sep 2011 | B1 |
8046990 | Bollinger et al. | Nov 2011 | B2 |
8055526 | Blagg et al. | Nov 2011 | B2 |
8188693 | Wei et al. | May 2012 | B2 |
8215378 | Nash et al. | Jul 2012 | B2 |
8244419 | Wegner-Donnelly et al. | Aug 2012 | B2 |
8371365 | Kesseli et al. | Feb 2013 | B2 |
8499874 | Dewis et al. | Aug 2013 | B2 |
8757964 | Yamashita | Jun 2014 | B2 |
20010030425 | Gilbreth et al. | Oct 2001 | A1 |
20010052704 | Bosley et al. | Dec 2001 | A1 |
20020054718 | Weissert | May 2002 | A1 |
20020063479 | Mitchell et al. | May 2002 | A1 |
20020067872 | Weissert | Jun 2002 | A1 |
20020073688 | Bosley et al. | Jun 2002 | A1 |
20020073713 | Mackay | Jun 2002 | A1 |
20020079760 | Vessa | Jun 2002 | A1 |
20020083714 | Bakholdin | Jul 2002 | A1 |
20020096393 | Rouse | Jul 2002 | A1 |
20020096959 | Qin et al. | Jul 2002 | A1 |
20020097928 | Swinton et al. | Jul 2002 | A1 |
20020099476 | Hamrin et al. | Jul 2002 | A1 |
20020103745 | Lof et al. | Aug 2002 | A1 |
20020104316 | Dickey et al. | Aug 2002 | A1 |
20020110450 | Swinton | Aug 2002 | A1 |
20020119040 | Bosley | Aug 2002 | A1 |
20020120368 | Edelman et al. | Aug 2002 | A1 |
20020124569 | Treece et al. | Sep 2002 | A1 |
20020128076 | Lubell | Sep 2002 | A1 |
20020148229 | Pont et al. | Oct 2002 | A1 |
20020149205 | Gilbreth et al. | Oct 2002 | A1 |
20020149206 | Gilbreth et al. | Oct 2002 | A1 |
20020157881 | Bakholdin et al. | Oct 2002 | A1 |
20020158517 | Rouse et al. | Oct 2002 | A1 |
20020166324 | Willis et al. | Nov 2002 | A1 |
20030110773 | Rouse et al. | Jun 2003 | A1 |
20040008010 | Ebrahim et al. | Jan 2004 | A1 |
20040011038 | Stinger et al. | Jan 2004 | A1 |
20040035656 | Anwar et al. | Feb 2004 | A1 |
20040065293 | Goto | Apr 2004 | A1 |
20040080165 | Geis et al. | Apr 2004 | A1 |
20040090204 | McGinley | May 2004 | A1 |
20040103669 | Willis et al. | Jun 2004 | A1 |
20040106486 | Jonsson | Jun 2004 | A1 |
20040119291 | Hamrin et al. | Jun 2004 | A1 |
20040134194 | Roby et al. | Jul 2004 | A1 |
20040148942 | Pont et al. | Aug 2004 | A1 |
20040160061 | Rouse et al. | Aug 2004 | A1 |
20050000224 | Jonsson | Jan 2005 | A1 |
20050066921 | Daigo et al. | Mar 2005 | A1 |
20050103931 | Morris et al. | May 2005 | A1 |
20050206331 | Donnelly | Sep 2005 | A1 |
20050228553 | Tryon | Oct 2005 | A1 |
20050229586 | Whurr | Oct 2005 | A1 |
20060021354 | Mowill | Feb 2006 | A1 |
20060076171 | Donnelly et al. | Apr 2006 | A1 |
20060090109 | Bonnet | Apr 2006 | A1 |
20060185367 | Hino et al. | Aug 2006 | A1 |
20060248899 | Borchert | Nov 2006 | A1 |
20070012129 | Maty et al. | Jan 2007 | A1 |
20070068712 | Carnahan | Mar 2007 | A1 |
20070178340 | Eickhoff | Aug 2007 | A1 |
20070181294 | Soldner et al. | Aug 2007 | A1 |
20070239325 | Regunath | Oct 2007 | A1 |
20070261681 | Schoell | Nov 2007 | A1 |
20070290039 | Pfleging et al. | Dec 2007 | A1 |
20080034759 | Bulman et al. | Feb 2008 | A1 |
20080080682 | Ogunwale et al. | Apr 2008 | A1 |
20080148708 | Chou et al. | Jun 2008 | A1 |
20080190117 | Lee et al. | Aug 2008 | A1 |
20080197705 | Dewis et al. | Aug 2008 | A1 |
20080208393 | Schricker | Aug 2008 | A1 |
20080243352 | Healy | Oct 2008 | A1 |
20080271703 | Armstrong et al. | Nov 2008 | A1 |
20080278000 | Capp et al. | Nov 2008 | A1 |
20090045292 | Maddali et al. | Feb 2009 | A1 |
20090060725 | Baron et al. | Mar 2009 | A1 |
20090071478 | Kalfon | Mar 2009 | A1 |
20090090109 | Mills et al. | Apr 2009 | A1 |
20090106978 | Wollenweber | Apr 2009 | A1 |
20090109022 | Gangopadhyay et al. | Apr 2009 | A1 |
20090124451 | Rask et al. | May 2009 | A1 |
20090133400 | Callas | May 2009 | A1 |
20090158739 | Messmer | Jun 2009 | A1 |
20090193809 | Schroder et al. | Aug 2009 | A1 |
20090204316 | Klampfl et al. | Aug 2009 | A1 |
20090211260 | Kesseli et al. | Aug 2009 | A1 |
20090249786 | Garrett et al. | Oct 2009 | A1 |
20090271086 | Morris et al. | Oct 2009 | A1 |
20090292436 | D'Amato et al. | Nov 2009 | A1 |
20090313990 | Mustafa | Dec 2009 | A1 |
20090326753 | Chen et al. | Dec 2009 | A1 |
20100021284 | Watson et al. | Jan 2010 | A1 |
20100052425 | Moore et al. | Mar 2010 | A1 |
20100127570 | Hadar et al. | May 2010 | A1 |
20100154380 | Tangirala et al. | Jun 2010 | A1 |
20100218750 | Negre et al. | Sep 2010 | A1 |
20100229525 | Mackay et al. | Sep 2010 | A1 |
20100293946 | Vick | Nov 2010 | A1 |
20100301062 | Litwin et al. | Dec 2010 | A1 |
20100319355 | Prabhu | Dec 2010 | A1 |
20110020108 | Axelsson et al. | Jan 2011 | A1 |
20110023491 | Rendo et al. | Feb 2011 | A1 |
20110100777 | Wilton et al. | May 2011 | A1 |
20110215640 | Donnelly | Sep 2011 | A1 |
20110288738 | Donnelly et al. | Nov 2011 | A1 |
20110295453 | Betz et al. | Dec 2011 | A1 |
20120000204 | Kesseli et al. | Jan 2012 | A1 |
20120017598 | Kesseli et al. | Jan 2012 | A1 |
20120042656 | Donnelly et al. | Feb 2012 | A1 |
20120096869 | Kesseli et al. | Apr 2012 | A1 |
20120102911 | Dewis et al. | May 2012 | A1 |
20120175886 | Donnelly et al. | Jul 2012 | A1 |
20120201657 | Donnelly et al. | Aug 2012 | A1 |
20120260662 | Nash et al. | Oct 2012 | A1 |
20120324903 | Dewis et al. | Dec 2012 | A1 |
20130111923 | Donnelly et al. | May 2013 | A1 |
20130133480 | Donnelly | May 2013 | A1 |
20130139519 | Kesseli et al. | Jun 2013 | A1 |
20130294892 | Dewis et al. | Nov 2013 | A1 |
20130305730 | Donnelly et al. | Nov 2013 | A1 |
20140000275 | Kesseli et al. | Jan 2014 | A1 |
20140026585 | Baldwin | Jan 2014 | A1 |
20140174083 | Gerstler et al. | Jun 2014 | A1 |
20140196457 | Kesseli et al. | Jul 2014 | A1 |
20140306460 | Donnelly | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
311027 | Dec 2005 | AT |
582981 | Apr 1989 | AU |
587266 | Aug 1989 | AU |
8517301 | Mar 2002 | AU |
2025002 | May 2002 | AU |
2589802 | May 2002 | AU |
2004203836 | Mar 2005 | AU |
2004208656 | Feb 2009 | AU |
2004318142 | Jun 2009 | AU |
1050637 | Mar 1979 | CA |
1068492 | Dec 1979 | CA |
1098997 | Apr 1981 | CA |
1099373 | Apr 1981 | CA |
1133263 | Oct 1982 | CA |
1171671 | Jul 1984 | CA |
1190050 | Jul 1985 | CA |
1202099 | Mar 1986 | CA |
1244661 | Nov 1988 | CA |
1275719 | Oct 1990 | CA |
2066258 | Mar 1991 | CA |
1286882 | Jul 1991 | CA |
2220172 | May 1998 | CA |
2234318 | Oct 1998 | CA |
2238356 | Mar 1999 | CA |
2242947 | Mar 1999 | CA |
2246769 | Mar 1999 | CA |
2279320 | Apr 2000 | CA |
2677758 | Apr 2000 | CA |
2317855 | May 2001 | CA |
2254034 | Jun 2007 | CA |
2638648 | Feb 2009 | CA |
2689188 | Jul 2010 | CA |
595552 | Feb 1978 | CH |
679235 | Jan 1992 | CH |
1052170 | Jun 1991 | CN |
1060270 | Apr 1992 | CN |
1306603 | Aug 2001 | CN |
1317634 | Oct 2001 | CN |
1902389 | Jan 2007 | CN |
101098079 | Jan 2008 | CN |
100564811 | Dec 2009 | CN |
101635449 | Jan 2010 | CN |
101672252 | Mar 2010 | CN |
9101996 | Jan 1992 | CS |
20014556 | Apr 2003 | CZ |
1272306 | Jul 1968 | DE |
2753673 | Jun 1978 | DE |
2853919 | Jun 1979 | DE |
3140694 | Jul 1982 | DE |
3736984 | May 1988 | DE |
69519684 | Aug 2001 | DE |
10305352 | Sep 2004 | DE |
69828916 | Mar 2006 | DE |
60125441 | Feb 2007 | DE |
60125583 | Feb 2007 | DE |
331889 | Jul 1989 | DK |
0092551 | Nov 1983 | EP |
0093118 | Nov 1983 | EP |
0104921 | Apr 1984 | EP |
0157794 | Oct 1985 | EP |
0377292 | Jul 1990 | EP |
0319246 | Oct 1990 | EP |
0432753 | Jun 1991 | EP |
0455640 | Nov 1991 | EP |
0472294 | Feb 1992 | EP |
0478713 | Apr 1992 | EP |
0493481 | Jul 1992 | EP |
0522832 | Jan 1993 | EP |
0620906 | Oct 1994 | EP |
0691511 | Jan 1996 | EP |
0754142 | Jan 1997 | EP |
0784156 | Dec 1997 | EP |
0837224 | Apr 1998 | EP |
0837231 | Apr 1998 | EP |
0901218 | Mar 1999 | EP |
0698178 | Jun 1999 | EP |
0963035 | Dec 1999 | EP |
1055809 | Nov 2000 | EP |
1075724 | Feb 2001 | EP |
1046786 | Jan 2002 | EP |
1071185 | Jan 2002 | EP |
1215393 | Jun 2002 | EP |
0739087 | Aug 2002 | EP |
1240713 | Sep 2002 | EP |
1277267 | Jan 2003 | EP |
1283166 | Feb 2003 | EP |
1305210 | May 2003 | EP |
1340301 | Sep 2003 | EP |
1340304 | Sep 2003 | EP |
1341990 | Sep 2003 | EP |
1342044 | Sep 2003 | EP |
1346139 | Sep 2003 | EP |
1436504 | Jul 2004 | EP |
1203866 | Aug 2004 | EP |
0800616 | Dec 2004 | EP |
1519011 | Mar 2005 | EP |
1132614 | Jan 2007 | EP |
1790568 | May 2007 | EP |
1813807 | Aug 2007 | EP |
1825115 | Aug 2007 | EP |
1860750 | Nov 2007 | EP |
1939396 | Jul 2008 | EP |
2028104 | Feb 2009 | EP |
1638184 | Mar 2009 | EP |
1648096 | Jul 2009 | EP |
2108828 | Oct 2009 | EP |
1728990 | Nov 2009 | EP |
2161444 | Mar 2010 | EP |
2169800 | Mar 2010 | EP |
1713141 | May 2010 | EP |
1728304 | Jun 2010 | EP |
1468180 | Jul 2010 | EP |
2467286 | Nov 1985 | FR |
2637942 | Apr 1990 | FR |
2645908 | Oct 1990 | FR |
2755319 | Apr 1998 | FR |
2848647 | Jun 2004 | FR |
612817 | Nov 1948 | GB |
671379 | May 1952 | GB |
673961 | Jun 1952 | GB |
706743 | Apr 1954 | GB |
731735 | Jun 1955 | GB |
761955 | Nov 1956 | GB |
768047 | Feb 1957 | GB |
784119 | Oct 1957 | GB |
786001 | Nov 1957 | GB |
789589 | Jan 1958 | GB |
807267 | Jan 1959 | GB |
817507 | Jul 1959 | GB |
834550 | May 1960 | GB |
864712 | Apr 1961 | GB |
874251 | Aug 1961 | GB |
877838 | Sep 1961 | GB |
878552 | Oct 1961 | GB |
885184 | Dec 1961 | GB |
917392 | Feb 1963 | GB |
919540 | Feb 1963 | GB |
920408 | Mar 1963 | GB |
924078 | Apr 1963 | GB |
931926 | Jul 1963 | GB |
937278 | Sep 1963 | GB |
937681 | Sep 1963 | GB |
950015 | Feb 1964 | GB |
950506 | Feb 1964 | GB |
977402 | Dec 1964 | GB |
993039 | May 1965 | GB |
1004953 | Sep 1965 | GB |
1008310 | Oct 1965 | GB |
1009115 | Nov 1965 | GB |
1012909 | Dec 1965 | GB |
1043271 | Sep 1966 | GB |
1083943 | Sep 1967 | GB |
1097623 | Jan 1968 | GB |
1103032 | Feb 1968 | GB |
1127856 | Sep 1968 | GB |
1137691 | Dec 1968 | GB |
1138807 | Jan 1969 | GB |
1141019 | Jan 1969 | GB |
1148179 | Apr 1969 | GB |
1158271 | Jul 1969 | GB |
1172126 | Nov 1969 | GB |
1174207 | Dec 1969 | GB |
1211607 | Nov 1970 | GB |
1270011 | Apr 1972 | GB |
1275753 | May 1972 | GB |
1275754 | May 1972 | GB |
1275755 | May 1972 | GB |
1301104 | Dec 1972 | GB |
1348797 | Mar 1974 | GB |
1392271 | Apr 1975 | GB |
1454766 | Nov 1976 | GB |
1460590 | Jan 1977 | GB |
1516664 | Jul 1978 | GB |
2019494 | Oct 1979 | GB |
2074254 | Oct 1981 | GB |
2089433 | Jun 1982 | GB |
2123154 | Jan 1984 | GB |
2174824 | Nov 1986 | GB |
2184609 | Jun 1987 | GB |
2199083 | Jun 1988 | GB |
2211285 | Jun 1989 | GB |
2218255 | Nov 1989 | GB |
2232207 | Dec 1990 | GB |
2341897 | Mar 2000 | GB |
2355286 | Apr 2001 | GB |
2420615 | May 2006 | GB |
2426043 | Nov 2006 | GB |
2435529 | Aug 2007 | GB |
2436708 | Oct 2007 | GB |
2441924 | Mar 2008 | GB |
2442585 | Apr 2008 | GB |
2456336 | Jul 2009 | GB |
2456672 | Jul 2009 | GB |
2447514 | Dec 2009 | GB |
4946DELNP2006 | Aug 2007 | IN |
4341DELNP2005 | Oct 2007 | IN |
5879DELNP2008 | Sep 2008 | IN |
2502DEL2005 | Oct 2009 | IN |
1913DEL2009 | Jun 2010 | IN |
55DEL2010 | Jul 2010 | IN |
2013DEL2009 | Jul 2010 | IN |
1173399 | Jun 1987 | IT |
1194590 | Sep 1988 | IT |
MI911564 | Jan 1992 | IT |
51-065252 | Jun 1976 | JP |
56-088920 | Jul 1981 | JP |
56-148624 | Nov 1981 | JP |
56-148625 | Nov 1981 | JP |
S59-010709 | Jan 1984 | JP |
60-184973 | Sep 1985 | JP |
S60-184906 | Sep 1985 | JP |
61-182489 | Aug 1986 | JP |
3182638 | Aug 1991 | JP |
6201891 | Jul 1994 | JP |
2519620 | Jul 1996 | JP |
10-054561 | Feb 1998 | JP |
10-061660 | Mar 1998 | JP |
10-115229 | May 1998 | JP |
10-122180 | May 1998 | JP |
11-324727 | Nov 1999 | JP |
2000-054855 | Feb 2000 | JP |
2000-130319 | May 2000 | JP |
2000-329096 | Nov 2000 | JP |
2002-030942 | Jan 2002 | JP |
2002-115565 | Apr 2002 | JP |
2003-009593 | Jan 2003 | JP |
2003-013744 | Jan 2003 | JP |
2003-041906 | Feb 2003 | JP |
2004-163087 | Jun 2004 | JP |
2005-345095 | Dec 2005 | JP |
2006-022811 | Jan 2006 | JP |
2006-170208 | Jun 2006 | JP |
2006-174694 | Jun 2006 | JP |
2006-200438 | Aug 2006 | JP |
2007-231949 | Sep 2007 | JP |
2008-111438 | May 2008 | JP |
2008-132973 | Jun 2008 | JP |
2009-108756 | May 2009 | JP |
2009-108860 | May 2009 | JP |
2009-209931 | Sep 2009 | JP |
2009-216085 | Sep 2009 | JP |
2009-250040 | Oct 2009 | JP |
2010-014114 | Jan 2010 | JP |
2010-106835 | May 2010 | JP |
19840002483 | Dec 1984 | KR |
880002362 | Oct 1988 | KR |
890001170 | Apr 1989 | KR |
1020010007189 | Jan 2001 | KR |
1020020024545 | Mar 2002 | KR |
1020030032864 | Apr 2003 | KR |
1020060096320 | Sep 2006 | KR |
1020070078978 | Aug 2007 | KR |
1020070113990 | Nov 2007 | KR |
1020080033866 | Apr 2008 | KR |
1020090121248 | Nov 2009 | KR |
7903120 | Oct 1979 | NL |
437543 | Mar 1985 | SE |
9901718 | May 1999 | SE |
0103180 | Mar 2003 | SE |
WO 8501326 | Mar 1985 | WO |
WO 9207221 | Apr 1992 | WO |
WO 9524072 | Sep 1995 | WO |
WO 9722176 | Jun 1997 | WO |
WO 9722789 | Jun 1997 | WO |
WO 9726491 | Jul 1997 | WO |
WO 9825014 | Jun 1998 | WO |
WO 9854448 | Dec 1998 | WO |
WO 9919161 | Apr 1999 | WO |
WO 0140644 | Jun 2001 | WO |
WO 0182448 | Nov 2001 | WO |
WO 0202920 | Jan 2002 | WO |
WO 0240844 | May 2002 | WO |
WO 0242611 | May 2002 | WO |
WO 0244574 | Jun 2002 | WO |
WO 0250618 | Jun 2002 | WO |
WO 0237638 | Sep 2002 | WO |
WO 0229225 | Feb 2003 | WO |
WO 0239045 | Feb 2003 | WO |
WO 03093652 | Jun 2004 | WO |
WO 2004077637 | Sep 2004 | WO |
WO 2005045345 | May 2005 | WO |
WO 2005099063 | Oct 2005 | WO |
WO 2008044972 | Apr 2008 | WO |
WO 2008044973 | Apr 2008 | WO |
WO 2008082334 | Jul 2008 | WO |
WO 2008082335 | Jul 2008 | WO |
WO 2008082336 | Jul 2008 | WO |
WO 2009067048 | May 2009 | WO |
WO 2010050856 | May 2010 | WO |
WO 2010082893 | Jul 2010 | WO |
8608745 | Jul 1987 | ZA |
Entry |
---|
“A High-Efficiency ICR Microturbine for Commercial Vehicle Propulsion,” PACCAR, date unknown, 11 pages. |
“Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks,” Stodolsky, F., L. Gaines, and A. Vyas, Argonne National Laboratory, ANL/ESD-43, Jun. 2000, 40 pages. |
“Benefits of the Microturbine to Power the Next Generation of Trucks.” Kenworth Truck Company, date unknown, 9 pages. |
“Why Gas Turbines have a Future in Heavy Duty Trucks.” Capstone Turbine Corporation, Brayton Energy, LLC, Kenworth Truck Company, a PACCAR Company, Peterbilt Truck Company, a PACCAR Company, Apr. 2009, 10 pages. |
Balogh et al. “DC Link Floating for Grid Connected PV Converters,” World Academy of Science, Engineering and Technology Apr. 2008, Iss. 40, pp. 115-120. |
Mackay et al. “High Efficiency Vehicular Gas Turbines,” SAE International, 2005, 10 pages. |
Nemeth et al. “Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads,” NASA, last updated Jul. 21, 2005, found at http://www.grc.nasa.gov/WWW/RT/2004/RS/RS06L-nemeth.html, 5 pages. |
Wolf et al. “Preliminary Design and Projected Performance for Intercooled-Recuperated Microturbine,” Proceedings of the ASME TurboExpo 2008 Microturbine and Small Turbomachinery Systems, Jun. 9-13, 2008, Berlin, Germany, 10 pages. |
“Remy HVH250-090-SOM Electric Motor,” Remy International, Inc., 2011, 2 pages. |
Gieras et al., “Performance Calculation for a High-Speed Solid-Rotor Induction Motor,” IEEE Transactions on Industrial Electronics, 2012, vol. 59, No. 6, pp. 2689-2700. |
Number | Date | Country | |
---|---|---|---|
20140026585 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61675247 | Jul 2012 | US |