Ceramic-to-metal turbine volute attachment for a gas turbine engine

Information

  • Patent Grant
  • 10094288
  • Patent Number
    10,094,288
  • Date Filed
    Wednesday, July 24, 2013
    11 years ago
  • Date Issued
    Tuesday, October 9, 2018
    6 years ago
Abstract
A means of attachment applicable to mating parts which have substantially different coefficients of thermal expansion is disclosed. The means of attachment substantially reduces the friction between the mating surfaces while still keeping the mating parts centered with respect to one another. The approach is based on radial recessed faces wherein the radial faces slide relative to each other. There may be three or more recessed/raised faces on each mating component, which when mated, maintain the alignment between the mating parts while allowing differential growth of the mating parts. This approach also the provides a much larger bearing surface for the attachment than a radial pin/slot approach, for example, and substantially eliminates areas of high stress concentration. It is thus a more robust design for components that undergo many thousands of thermal cycles.
Description
FIELD

The present invention relates generally to a ceramic-to-metal turbine volute and shroud assembly attachment compatible with thermal cycling of a gas turbine engine.


BACKGROUND

The world requires ever-increasing amounts of fuel for vehicle propulsion. Means of utilizing fuels more efficiently and with substantially lower carbon dioxide emissions and air pollutants such as NOxs are essential. Vehicles powered by gas turbines can utilize multiple fuels since they are highly fuel flexible and fuel tolerant. In addition, gas turbine engines, because of their lower average operating temperatures compared to piston-based internal combustion engines, can reduce fuel consumption while also reducing carbon dioxide emissions and air pollutants such as NOxs.


The thermal efficiency of gas turbine engines has been steadily improving as the use of new materials and new design tools are being brought to bear on engine design. One of the important advances has been the use of ceramics in various gas turbine engine components which has allowed the use of higher temperature operation and reduced component weight. The efficiency of gas turbine engines can be improved and engine size can be further reduced by increasing the pressure and temperature developed in the combustor while still remaining well below the temperature threshold of significant NOx production. This can be done using a conventional metallic combustor or a thermal reactor to extract energy from the fuel. As combustor temperature and pressure are raised, new requirements are generated in other components, such as the recuperator and compressor-turbine spools.


The use of both metallic and ceramic components in an engine which may have wide variations in operating temperatures, means that special attention be given to the interfaces of the these different materials to preserve the intended component clearances. Control of clearances generally leads to fewer parasitic performance losses. Fewer parasitic performance losses incrementally improves engine efficiency. In addition, the differential expansion of metallic and ceramic components over many thermal cycles can lead to increased wear and degradation of component clearances which, in turn, can result in ceramic component failure either from increasing thermal stresses, crack growth or contact between moving parts.


There remains a need for innovative designs for gas turbine compressor/turbine spools fabricated from a combination of metallic and ceramic materials that maintain a desired control of clearances between various compressor and turbine components. These new designs will allow increased combustor temperatures which, in turn, can improve overall engine efficiency and reduce engine size while maintaining very low levels of NOx production.


SUMMARY

These and other needs are addressed by the various embodiments and configurations of the present disclosure which are directed generally to a gas turbine spool design combining metallic and ceramic components in a way that controls clearances and maintains concentricity in the presence of relative motion between critical components over a range of operating temperatures and pressures.


In a high efficiency gas turbine engine, the turbine adjacent to the combustor may have a ceramic rotor and metallic volute and rotor shroud, a ceramic rotor and volute and metallic rotor shroud, a ceramic rotor and rotor shroud and metallic volute, or it may be an all-ceramic turbine (volute, rotor, rotor shroud). Examples of such turbine designs are disclosed in U.S. patent application Ser. No. 13/180,275 entitled “Metallic Ceramic Spool for a Gas Turbine Engine” filed Jul. 11, 2011 which is incorporated herein by reference.


In either of the above designs, the ceramic rotor is attached to a shaft which, in turn, is attached to a compressor which is comprised of a metallic rotor because the compressor blades see considerably lower temperatures than the turbine blades. An improvement to the attachment of the ceramic rotor to a metallic shaft was disclosed in U.S. patent application Ser. No. 13/476,754 entitled “Ceramic-to-Metal Turbine Shaft Attachment” filed May 21, 2012 which is incorporated herein by reference. The ceramic-to-metal attachment joint, if not designed correctly, can limit the allowable operating temperature of the turbine rotor especially in small turbo-compressor spools such as used in turbo-chargers and microturbines. Most prior art joints are limited to operating temperatures below 800° K. An approach to achieving increased engine efficiency is pushing the rotor temperatures to levels approaching 1,400° K and higher.


In the case of an integral volute/shroud assembly made of a ceramic material, the means by which the ceramic volute/shroud assembly is attached to the metallic base plate can be important since there is considerable differential thermal expansion as the engine is operated from a cold start to maximum operating temperature (typically from ambient temperature to temperatures in the range of about 1,200° K to about 1,500° K). The base plate is typically fabricated from a high temperature steel alloy and provides the means of attachment of the turbine assembly to the outer steel case which houses the turbine assembly as illustrated in FIG. 2 of the present disclosure.


Current practice is to attach the ceramic volute/shroud assembly to the base plate by pins that can move within radial slots as illustrated in FIG. 5 of the present disclosure. The pins may be formed as part of the ceramic component and the slots may be machined into the steel baseplate. As can be appreciated, the pins may be part of the steel baseplate and the slots may be formed as part of the ceramic component. As the metallic ceramic parts heat up, the metallic baseplate will grow faster by thermal expansion than the ceramic volute/shroud assembly. The radial pin/slot attachment allows this differential growth to take place without mechanical interference of the pin in the slot. The relatively small diameters for the pin and slot form points of stress concentration, such stress concentrations being approximately proportional to the size of feature. Also, since the face of the ceramic volute/shroud assembly attachment is pressed against the matching face of the steel baseplate, the motion occurring during differential thermal growth or shrinkage causes significant friction between the mating surfaces and can lead to long term wear, distortion and damage.


In the present disclosure, a new means of attachment is disclosed which can substantially reduce the friction between the mating surfaces while still keeping the mating parts centered with respect to one another. The new approach is based on radial recessed faces wherein the radial faces slide relative to each other. There may be 3 or more recessed/raised segments which can maintain the alignment between the ceramic volute/shroud assembly and the steel baseplate while allowing differential growth of the parts. This approach can also provide a much larger bearing surface for the attachment than the radial pin/slot approach and substantially eliminates areas of stress concentration. It is thus a more robust design for components that undergo many thousands of thermal cycles.


In one embodiment, a gas turbine engine is disclosed, comprising a) at least one turbo-compressor spool assembly, wherein the at least one turbo-compressor spool assembly comprises a compressor in mechanical communication with a turbine, a ceramic volute directing an inlet gas towards an inlet of a ceramic rotor of the turbine and a ceramic shroud adjacent to the rotor of the turbine, the ceramic shroud directing an outlet gas towards an outlet of the at least one turbo-compressor spool assembly and b) a metallic housing comprising a metallic base plate having a metallic surface to engage a ceramic surface of at least one of the ceramic shroud and volute; wherein each of the engaged metallic and ceramic surfaces comprises at least one raised face and at least one recessed face, wherein, when the ceramic and metallic faces are engaged, the at least one raised face of the metallic surface opposes the at least one recessed face of the ceramic surface and the at least one recessed face of the metallic surface opposes the at least one raised face of the ceramic surface. In operation in a cool temperature state, a radial gap exists between an inner edge of the ceramic surface and an inner edge of the metallic base plate while in an intermediate temperature state, the radial gap is smaller than the radial gap in the cool temperature state and while in a high temperature state, the radial gap is smaller than the radial gap in the cool and intermediate temperature states.


In a second embodiment, a method is disclosed, comprising a) providing an engine comprising at least one turbo-compressor spool assembly, wherein the at least one turbo-compressor spool assembly comprises a compressor in mechanical communication with a turbine, a ceramic volute directing an inlet gas towards an inlet of a ceramic rotor of the turbine and a ceramic shroud adjacent to the rotor of the turbine, the ceramic shroud directing an outlet gas towards an outlet of the at least one turbo-compressor spool assembly and a metallic housing comprising a metallic base plate having a metallic surface to engage a ceramic surface of at least one of the ceramic shroud and volute, wherein each of the engaged metallic and ceramic surfaces comprises at least one raised face and at least one recessed face and b) maintaining, during engine operation, the at least one raised face of the metallic surface engaged with the at least one recessed face of the ceramic surface and the at least one recessed face of the metallic surface engaged with the at least one raised face of the ceramic surface to inhibit gas leakage at the engaged metallic and ceramic surfaces due to different coefficients of thermal expansion and contraction between the metallic and ceramic materials in the metallic housing and at least one of the ceramic shroud and volute, respectively. To better enable this method, the ceramic materials in the rotor and shroud preferably can have substantially similar thermal expansion characteristics and the ceramic materials in the shroud and volute preferably should each comprise a substantially identical ceramic composition.


The above-described embodiments and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below. These and other advantages will be apparent from the disclosure of the disclosure(s) contained herein.


The phrases at least one, one or more, and and/or are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


The following definitions are used herein:


A bellows is a flexible or deformable, expandable and/or contractible, container or enclosure. A bellows is typically a container which is deformable in such a way as to alter its volume. A bellows can refer to a device for delivering pressurized air in a controlled quantity to a controlled location.


A ceramic is an inorganic, nonmetallic solid prepared by the action of heating and cooling. Ceramic materials may have a crystalline or partly crystalline structure, or may be amorphous (e.g., a glass). Examples are alumina, silicon carbide and silicon nitride.


An engine refers to any device that uses energy to develop mechanical power, such as motion in some other machine. Examples are diesel engines, gas turbine engines, microturbines, Stirling engines and spark ignition engines


A prime power source refers to any device that uses energy to develop mechanical or electrical power, such as motion in some other machine. Examples are diesel engines, gas turbine engines, microturbines, Stirling engines, spark ignition engines and fuel cells.


The term means shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.


A metallic material is a material containing a metal or a metallic compound. A metal refers commonly to alkali metals, alkaline-earth metals, radioactive and nonradioactive rare earth metals, transition metals, and other metals. Examples are aluminum, steel and titanium.


The no failure regime of a ceramic material, as used herein, refers to the region of a flexural strength versus temperature graph for ceramic materials wherein both the flexural stress and temperature are low enough that the ceramic material has a very low probability of failure and has a lifetime of a very large number of flexural and/or thermal cycles. Operation of the ceramic material in the no failure regime means that the combination of maximum flexural stress and maximum temperature do not approach a failure limit such as the Weibull strength variability regime, the fast fracture regime, the slow crack growth regime or the creep fracture regime as illustrated in FIG. 3. When the ceramic material approaches or enters any of these failure regimes, then the probability of failure is increased precipitously and the lifetime to failure of the component is reduced precipitously. This applies to ceramic components that are manufactured within their design specifications from ceramic materials that are also within their design specifications. Typically, the no-failure regime of the ceramics used herein exists at operating temperatures of no more than about 1,550° K, more typically of no more than about 1,500° K, and even more typically of no more than about 1,400° K. Common maximum flexural strengths for the no-failure regime of the ceramics used herein are about 250 MPa and more commonly about 175 MPa.


Power density as used herein is power per unit volume (watts per cubic meter).


A recuperator is a heat exchanger dedicated to returning exhaust heat energy from a process back into the process to increase process efficiency. In a gas turbine thermodynamic cycle, heat energy is transferred from the turbine discharge to the combustor inlet gas stream, thereby reducing heating required by fuel to achieve a requisite firing temperature.


A regenerator is a type of heat exchanger where the flow through the heat exchanger is cyclical and periodically changes direction. It is similar to a countercurrent heat exchanger. However, a regenerator mixes a portion of the two fluid flows while a countercurrent exchanger maintains them separated. The exhaust gas trapped in the regenerator is mixed with the trapped air later. It is the trapped gases that get mixed, not the flowing gases, unless there are leaks past the valves.


Specific power as used herein is power per unit mass (watts per kilogram).


A thermal oxidizer is a type of combustor comprised of a matrix material which is typically a ceramic and a large number of channels which are typically circular in cross section. When a fuel-air mixture is passed through the thermal oxidizer, it begins to react as it flows along the channels until it is fully reacted when it exits the thermal oxidizer. A thermal oxidizer is characterized by a smooth combustion process as the flow down the channels is effectively one-dimensional fully developed flow with a marked absence of hot spots.


A thermal reactor, as used herein, is another name for a thermal oxidizer.


A turbine is a rotary machine in which mechanical work is continuously extracted from a moving fluid by expanding the fluid from a higher pressure to a lower pressure. The simplest turbines have one moving part, a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades, or the blades react to the flow, so that they move and impart rotational energy to the rotor.


Turbine Inlet Temperature (TIT) as used herein refers to the gas temperature at the outlet of the combustor which is closely connected to the inlet of the high pressure turbine and these are generally taken to be the same temperature.


A turbo-compressor spool assembly as used herein refers to an assembly typically comprised of an outer case, a centrifugal compressor, a radial turbine wherein the centrifugal compressor and radial turbine are attached to a common shaft. The assembly also includes inlet ducting for the compressor, a compressor rotor, a diffuser for the compressor outlet, a volute for incoming flow to the turbine, a turbine rotor and an outlet diffuser for the turbine. The shaft connecting the compressor and turbine includes a bearing system.


A volute is a scroll transition duct which looks like a tuba or a snail shell. Volutes may be used to channel flow gases from one component of a gas turbine to the next. Gases flow through the helical body of the scroll and are redirected into the next component. A key advantage of the scroll is that the device inherently provides a constant flow angle at the inlet and outlet. To date, this type of transition duct has only been successfully used on very small engines or turbochargers where the geometrical fabrication issues are less involved.


The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and/or configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and/or configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the disclosure. In the drawings, like reference numerals refer to like or analogous components throughout the several views.



FIG. 1 is schematic of the component architecture of a multi-spool gas turbine engine.



FIG. 2 is a schematic of a gas turbine compressor/turbine spool assembly comprising a ceramic rotor, volute and shroud.



FIGS. 3a-b are a schematic of an integral ceramic volute and shroud.



FIG. 4 is a schematic of a turbo-compressor spool showing a metallic compressor rotor and a ceramic turbine rotor.



FIG. 5 is a prior method of attaching an integral ceramic volute and shroud to a metallic base plate.



FIG. 6 is a new method of attaching an integral ceramic volute and shroud to a metallic base plate.



FIG. 7 is an illustration of a ceramic shroud segment relative to a metallic base plate in a cool temperature state.



FIG. 8 is an illustration of a ceramic shroud segment relative to a metallic base plate in an intermediate temperature state.



FIG. 9 is an illustration of a ceramic shroud segment relative to a metallic base plate in a high temperature state.



FIGS. 10a-b are a schematic of a four segment ceramic shroud relative to a metallic base plate.



FIGS. 11a-b are a schematic of a six segment ceramic shroud relative to a metallic base plate.





It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the disclosure or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the disclosure is not necessarily limited to the particular embodiments illustrated herein.


DETAILED DESCRIPTION

Exemplary Gas Turbine Engine


An exemplary engine is a high efficiency gas turbine engine. It typically has lower NOx emissions, is more fuel flexible and has lower maintenance costs than comparable reciprocating engines. For example, an intercooled recuperated gas turbine engine in the range of about 10 kW to about 750 kW is available with thermal efficiencies above 40%. A schematic of an intercooled, recuperated gas turbine engine is shown in FIG. 1.



FIG. 1 is prior art schematic of the component architecture of a multi-spool gas turbine engine. Gas is ingested into a low pressure compressor 1. The outlet of the low pressure compressor 1 passes through an intercooler 2 which removes a portion of heat from the gas stream at approximately constant pressure. The gas then enters a high pressure compressor 3. The outlet of high pressure compressor 3 passes through a recuperator 4 where some heat from the exhaust gas is transferred, at approximately constant pressure, to the gas flow from the high pressure compressor 3. The further heated gas from recuperator 4 is then directed to a combustor 5 where a fuel is burned, adding heat energy to the gas flow at approximately constant pressure. The gas emerging from the combustor 5 then enters a high pressure turbine 6 where work is done by the turbine to operate the high pressure compressor 3. The gas exiting from the high pressure turbine 6 then enters a low pressure turbine 7 where work is done by the turbine to operate the low pressure compressor 1. The gas exiting from the low pressure turbine 7 then enters a free power turbine 8. The shaft of the free power turbine, in turn, drives a transmission 11 which may be an electrical, mechanical or hybrid transmission for a vehicle. Alternately, the shaft of the free power turbine can drive an electrical generator or alternator. This engine design is described, for example, in U.S. patent application Ser. No. 12/115,134 entitled “Multi-Spool Intercooled Recuperated Gas Turbine” filed May 5, 2008 which is incorporated herein by reference.


As can be appreciated, the engine illustrated in FIG. 1 can have additional components (such as for example a re-heater between the high pressure and low pressure turbines) or can have fewer components (such as for example a single compressor-turbine spool, or no free power turbine but shaft power coming off the low pressure turbine spool). A more advanced engine design which comprises 3 or 4 spools, 2 two stages of intercooling and two stages of reheaters is disclosed in U.S. patent application Ser. No. 13/534,909 entitled “High Efficiency Compact Gas Turbine Engine” filed Jun. 27, 2012 which is incorporated herein by reference.


A gas turbine engine is an enabling engine for efficient multi-fuel use and, in particular, this engine can be configured to switch between fuels while the engine is running and the vehicle is in motion (on the fly). In addition, a gas turbine engine can be configured to switch on the fly between liquid and gaseous fuels or operate on combinations of these fuels. This is possible because combustion in a gas turbine engine is continuous (as opposed to episodic such as in a reciprocating piston engine) and the important fuel parameter is the specific energy content of the fuel (that is, energy per unit mass) not its cetane number or octane rating. The cetane number (typically for diesel fuels and compression ignition) or octane rating (typically for gasoline fuels and spark ignition) are important parameters in piston engines for specifying fuel ignition properties.


The gas turbine engine such as shown schematically in FIG. 1 enables a multi-fuel strategy. This engine is prior art although even more efficient multi-fuel configurations will require innovative modifications to components and sub-components. This is an example of a 375 kW engine that uses intercooling and recuperation to achieve high operating efficiencies (40% or more) over a substantial range of vehicle operating speeds. This compact engine is suitable for light to heavy trucks. Variations of this engine design are suitable for smaller vehicles as well as applications such as, for example, marine, rail, agricultural and power-generation. One of the principal features of this engine is its fuel flexibility and fuel tolerance. This engine can operate on any number of liquid fuels (gasoline, diesel, ethanol, methanol, butanol, alcohol, bio diesel and the like) and on any number of gaseous fuels (compressed or liquid natural gas, propane, hydrogen and the like). This engine may also be operated on a combination of fuels such as mixtures of gasoline and diesel or mixtures of diesel and natural gas. Switching between these fuels is generally a matter of switching fuel injection systems and/or fuel mixtures.


This engine operates on the Brayton cycle and, because combustion is continuous, the peak operating temperatures are substantially lower than comparably sized piston engines operating on either an Otto cycle or Diesel cycle. This lower peak operating temperature results in substantially less NOx emissions. This engine has a relatively flat efficiency curve over wide operating range (from about 20% of full power to about 85% of full power. It also has a multi-fuel capability with the ability to change fuels on the fly as described in U.S. patent application Ser. No. 13/090,104 entitled “Multi-Fuel Vehicle Strategy” filed Apr. 19, 2011 which is incorporated herein by reference.


Previously Disclosed Metallic and Ceramic Gas Turbine Components



FIG. 2 is schematic of a gas turbine compressor/turbine spool assembly with ceramic and metallic components. The assembly shown comprises a centrifugal compressor and a radial turbine. A ceramic turbine rotor 203 is shown separated by a small clearance gap from a ceramic shroud 202 which is integral with a ceramic volute 201. The volute, shroud and rotor are housed inside a metal case 204. The volute, shroud and rotor assembly are attached to metallic base plate 207 which secures the turbine assembly within housing 205. The ceramic shroud 202 is also attached to a compliant metallic bellows 206 which is attached to an outer metal case 205. For example the ceramic rotor 203 can be fabricated from silicon nitride (thermal conductivity about 27 W/m/° K and coefficient thermal expansion of about 3.14 μm/m/K) and is capable of operating safely at turbine inlet temperatures in the approximate range commonly of from about 850° K to about 1,800° K, more commonly of from about 250° K to about 1,650° K and even more commonly of about 1,400° K. Ceramic shroud 202 and volute 201 can be fabricated from silicon carbide (thermal conductivity about 41 W/m/° K and coefficient thermal expansion of about 5.12 μm/m/K), for example, which has a coefficient of thermal conductivity and thermal expansion similar to that of silicon nitride used for rotor 203.


In this embodiment, when the assembly is heated during engine operation, the ceramic rotor 203 and ceramic shroud 202 have approximately the same coefficient of thermal expansion and so they expand radially approximately by the same amount thus retaining the approximate initial radial clearance between rotor 203 and shroud 202. The right side of ceramic volute 201 expands at approximately the same rate as ceramic shroud 202 and tends to push shroud 202 to the right but only by a small amount. As the assembly is heated, case 205 and bellows 206 have coefficients of thermal expansion typical of metals. Case 205 and compliant metallic bellows 206 also expand away from metallic base plate 207 but the compliance of the bellows does not allow the case 205 to pull shroud 202 away from metallic base plate 207. The expansion of the ceramic volute 201 is relatively small and does not cause the axial clearance gap between rotor and shroud to increase beyond that which is desired.


The use of a rotor and volute/shroud fabricated from the same or similar ceramics adequately thus controls radial and axial shroud clearances between the rotor 203 and shroud 202 and maintains high rotor efficiency by controlling the clearance and minimizing parasitic flow leakages between the rotor blade tips and the shroud.


The advantages of this design approach can include:

    • similar coefficient of thermal expansion of ceramic volute/shroud and rotor gives excellent shroud clearance control
    • maintains good form stability—will keep its shape at high temperatures
    • has good thermal shock properties
    • allows complicated shapes can be easily cast
    • is cost effective compared to high temperature turbine metals


The temperature of the flow exiting the combustor into the volute that directs the flow to the high pressure turbine may be substantially in the same range as the turbine inlet temperature. The temperature of the flow exiting the high pressure turbine into the shroud that directs the flow towards the low pressure turbine may be in the range of from about 1,000° K to about 1,400° K, more commonly from about 1,000° K to about 1,300° K, and even more commonly of approximately 1,200° K. Stated differently, the inlet temperature of the high pressure turbine is commonly higher than, more commonly about 5% higher than, more commonly about 10% higher than, more commonly about 15% higher than, and even more commonly about 20% higher than the high pressure turbine gas outlet temperature. A one-piece volute and shroud may be exposed to a temperature differential in the range of about 100° K to about 300° K and more commonly about 160° K to about 200° K.


This configuration is capable of operating safely at turbine inlet temperatures in the approximate range from about 850° K to about 1,400° K. The ceramic rotor may be fabricated from rotor fabricated from silicon nitride. The ceramic shroud and volute can be fabricated from silicon carbide. The use of a rotor and volute/shroud fabricated from the same or similar ceramics adequately thus controls radial and axial shroud clearances between the rotor 203 and shroud 202 and maintains high rotor efficiency by controlling the clearance and minimizing parasitic flow leakages between the rotor blade tips and the shroud. This design of a single piece ceramic volute and shroud for use with a ceramic turbine rotor is preferred if the ceramic material used can be operated well within the no-failure region of the ceramic. A flexure stress-temperature map illustrating failure regimes for typical ceramic materials is discussed in previously referenced U.S. patent application Ser. No. 13/180,275 and U.S. patent application Ser. No. 13/476,754. A flexure stress-temperature map shows that when flexure stress and temperature experienced by a ceramic component are high, the component operates in the fast-fracture regime and the ceramic component lifetime would be expected to be unpredictable and typically short. This graphic also shows that when flexure stress and temperature experienced by a ceramic component are low, then the component operates in the no-failure regime and the ceramic component lifetime would be expected to be predictable and typically long. When the flexure stress is high but the temperature is low, then the component operates in a regime characterized by Weibull strength variability and the ceramic component lifetime would be expected to be somewhat unpredictable and variable. When the flexure stress is low but the temperature is high, then the component operates in a regime characterized by slow crack growth or creep and the ceramic component lifetime would be expected to be somewhat unpredictable and variable.


The disadvantages of the design approach illustrated in FIG. 2 can include:

    • the amount of stress that can be sustained at high temperature in the volute is unpredictable especially if the materials operate in the slow crack growth or fast fracture regions of the flexure stress-temperature map
    • the potential for catastrophic failure of the volute is significant since ceramics generally don't yield, they behave elastically until they fracture and break abruptly


This design of a single piece or two piece ceramic volute and shroud for use with a ceramic turbine rotor is preferred if the ceramic material used can be operated well within the no-failure region discussed above.



FIG. 3 is a schematic of an integral ceramic volute and shroud such as also shown in FIG. 2. FIG. 3a is an isometric view showing the volute 301 and the shroud 302. The volute/shroud can be made in one piece or multiple pieces. A typical material for such a volute/shroud is silicon carbide. FIG. 3b shows a side cutaway view again illustrating the volute 303 and the shroud 304. Arrows indicate flow direction.



FIG. 4 is a schematic of a prior art turbo-compressor spool showing a metallic compressor rotor and a ceramic turbine rotor. This figure illustrates a compressor/turbine spool typical of use in a high-efficiency gas turbine operating in the output power range as high as about 300 to about 750 kW. A metallic compressor rotor 402 and a ceramic turbine rotor 403 are shown attached to the opposite ends of a metal shaft 401. The ceramic rotor shown here is a 95-mm diameter rotor fabricated from silicon nitride and was originally designed for use in turbocharger applications. As can be seen, the joint 404 between the ceramic rotor and metallic shaft is close to the ceramic rotor and is therefore exposed to high temperatures of the combustion products passing through the turbine. As can be seen, the joint 404 between the ceramic rotor and metallic shaft is close to the ceramic rotor and would typically be between the leftmost oil bearing and the ceramic rotor. The joint 404 is formed by inserting the ceramic shaft stub into a counterbore in the metallic shaft. The joint 404 is about 20 to about 25 mm from the ceramic rotor and is therefore exposed to high temperatures of the gas products passing through the turbine. Typical turbine inlet temperatures for this design are in the range of about 1,250° K to about 1,400° K.


The ceramic-to-metal attachment joint, limits the allowable operating temperature of the turbine rotor. Most joints of this type are limited to operating temperatures below 800° K. The drive for increased efficiency is pushing the rotor temperatures to levels approaching 1,400° K and higher. In the prior art, this ceramic-to-metal attachment is typically located close to the turbine rotor as shown in FIG. 4 for example. In this design, aggressive cooling is required to maintain the allowable temperature. The steep thermal gradient creates an area of elevated thermal stress. As disclosed in the previously referenced U.S. patent application Ser. No. 13/476,754, moving the temperature-limited joint closer to the center of the shaft between the bearings, lowers its temperature and reduces the sharp gradient (and associated thermal stress) which naturally occurs between the turbine rotor and the cooler joint. A large outside diameter bearing is required on the turbine side so that it can be assembled. It is also anticipated that the ceramic turbine stub shaft needs to be relatively large in diameter relative to the metallic portion of the shaft to have the proper stiffness.


Thermal Expansion of Metallic and Ceramic Materials


The coefficient of linear thermal expansion in μm/m/K for some typical metallic and ceramic materials used in turbine components and assemblies such as shown in FIG. 2 are:

    • Metallic—Hastelloy X and Inconel Alloy 718 have a linear thermal expansion coefficient of about 13 to 16 μm/m/K over the temperature range of about 300K to about 1,350 K;
    • Ceramic—Silicon carbide has a linear thermal expansion coefficient of about 5 μm/m/K over the temperature range of about 300K to about 1,350 K; and
    • Ceramic—silicon nitride has a linear thermal expansion coefficient of about 3 μm/m/K over the temperature range of about 300K to about 1,350 K.


For all materials, the coefficient of area thermal expansion is approximately the square of the coefficient of linear thermal expansion and the coefficient of volume thermal expansion is approximately the cube of the coefficient of linear thermal expansion.


Prior Method of Attachment



FIG. 5 is a prior method of attaching an integral ceramic volute and shroud to a metallic base plate. The slotted ring 501 can be part of the ceramic volute/shroud assembly and the pins 503 can be part of the metallic base plate. In this case, the slotted ring 501 grows more slowly when heated than the metallic base and the metallic pins 503 move radially outward relative to the slots 502. Alternately, the slots 502 can be machined into the metallic base plate and the pins formed as part of the ceramic volute/shroud. In this case the slotted ring 501 grows more rapidly when heated than the ceramic volute/shroud and the ceramic pins 503 move radially inward relative to the slots 502. These relative motions are reversed during cooling. If the parts are heated uniformly, the pins may move freely within the slots along a radial line. If the parts are not heated uniformly, the pins may bind on the sides of the slots, stressing the pins where they are attached.


Since the ceramic volute/shroud assembly is pressed against the metallic base plate by a compliant bellows (see item 206 in FIG. 2), there is substantial friction between the mating surfaces of the ceramic volute/shroud assembly and metallic base plate. This can lead to wear between the mating surfaces and to uneven motion which can further stress the pins.


Present Disclosure



FIG. 6 is a new method of attaching an integral ceramic volute and shroud to a metallic base plate. In this example, the mating surface of the ceramic volute/shroud 602 is comprised of four surfaces where two of the opposite facing surfaces are recessed relative to the other two surfaces. The mating face of the metallic base plate 601 is also comprised of four surfaces (or faces) where two of the opposite facing surfaces (or faces) on each of the metallic base plate and mating surface of the ceramic volute/shroud 602 are recessed relative to the other two surfaces (or faces), so that when the parts are mated, the recessed surfaces (or faces) of the ceramic volute/shroud fit between the raised surfaces (or faces) of the metallic base plate as indicated by items 603a and 603b and the raised surfaces (or faces) of the mating surface of the ceramic volute/shroud fit between the recessed surfaces (or faces) of the metallic base plate. Stated differently, each of the raised surfaces (or faces) of the mating surface of the ceramic volute/shroud engages a corresponding recessed surface (or face) of the metallic base plate, and each of the recessed surfaces (or faces) of the mating surface of the ceramic volute/shroud engages a corresponding raised surface (or face) of the metallic based plate. The edges of all the surfaces are along radial lines of the two circular parts so that when differential thermal growth or shrinkage occurs, the mating sides of each surface will move parallel to each other.


This design creates a much more robust centering alignment between the two parts than the pin and slot design of FIG. 5. Turbines generally only see radial gradients which are accommodated by the design of the present disclosure. The radial faces work less well with asymmetric or circumferential gradients. If the parts are heated uniformly, the raised surfaces may move freely within opposing recessed surfaces along radial lines. If the parts are not heated uniformly, then the raised surfaces may bind on the opposite recessed surfaces but the forces are spread over a much larger surface area than in the pin and slot design of FIG. 5.


Since the ceramic volute/shroud assembly is pressed against the metallic base plate by a compliant bellows (see item 206 in FIG. 2), there is substantial friction between the mating surfaces of the ceramic volute/shroud assembly and metallic base plate. This can lead to wear between the mating surfaces and to uneven motion which will cause binding between the surfaces but the forces are spread over a much larger surface area than in the pin and slot design of FIG. 5 and therefore should result in longer part lifetimes.



FIG. 7 is a schematic example of a ceramic shroud segment relative to a metallic base plate in a cool temperature state. In a cool state (such as for example ambient conditions), the surfaces 702 of the ceramic volute/shroud are spaced radially out from the center hub of the metallic base plate 701 as indicated by gap 703.



FIG. 8 is a schematic example of a ceramic shroud segment relative to a metallic base plate in an intermediate temperature state. In an intermediate temperature state (such as for example when both parts are heated to 700° K), the surfaces 802 of the ceramic volute/shroud are spaced radially out from the center hub of the metallic base plate 801 as indicated by gap 803 which is about half the width of gap 703 in FIG. 7.



FIG. 9 is a schematic example of a ceramic shroud segment relative to a metallic base plate in a high temperature state. In a maximum allowable temperature state (such as for example when both parts are heated to 1,400° K), the surfaces 902 of the ceramic volute/shroud are essentially shown in contact or almost in contact with the center hub of the metallic base plate 1601 as indicated by the lack of a clearance gap 903 or gap 903 which can be a selected minimum allowable clearance gap.



FIG. 10 is a schematic of a four surface (each part has 2 recessed and 2 raised surfaces) ceramic shroud relative to a metallic base plate. In FIG. 10a, the ceramic volute/shroud surface 1002 is spaced radially out from the center hub of the metallic base plate 1001 parts by a gap 1003 when the parts are in a cool temperature state. In FIG. 10b, the metallic base plate 1011 has grown by thermal expansion by about 20% while the ceramic surface 1012 has grown by thermal expansion by about 10%, thus closing gap 1013 between the ceramic volute/shroud surface 1012 and the center hub of the metallic base plate 1011.



FIG. 11 is a schematic of a six surface (each part has 3 recessed and 3 raised surfaces) ceramic shroud relative to a metallic base plate. As can be appreciated, the number of mating surfaces (or faces) on each of the mating surface of the volute/shroud and metallic base plate are the same. Typically, the number of mating faces on each of the volute/shroud and metallic base plate is one of three, four, five, six, eight or ten. The principles of relative thermal motion remain the same for any number of surfaces. In FIG. 11a, the ceramic volute/shroud surface 1102 is spaced radially out from the center hub of the metallic base plate 1101 parts by a gap 1103 when the parts are in a cool temperature state. In FIG. 11b, the metallic base plate 1111 has grown by thermal expansion by about 20% while the ceramic surface 1112 has grown by thermal expansion by about 10%, thus closing gap 1113 between the ceramic volute/shroud surface 1112 and the center hub of the metallic base plate 1111. This illustrates that a six surface design functions the same as a four surface design.


The disclosures presented herein may be used on gas turbine engines used in vehicles or in gas turbine engines used in stationary applications such as, for example, power generation and gas compression.


The exemplary systems and methods of this disclosure have been described in relation to preferred aspects, embodiments, and configurations. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. To avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scopes of the claims. Specific details are set forth to provide an understanding of the present disclosure. It should however be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.


The disclosure has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.


A number of variations and modifications of the disclosures can be used. As will be appreciated, it would be possible to provide for some features of the disclosures without providing others. For example, the means of attachment which is based on radial recessed faces wherein the radial faces slide relative to each other and which substantially reduces the friction between the mating surfaces while still keeping the mating parts centered with respect to one another can be applied to any mating parts which have substantially different coefficients of thermal expansion. While this means of attachment is illustrated for a ceramic component mated to a metallic component, this approach could also be used for metallic components such as for example, titanium and steel as well as other combinations of materials such as carbon fiber components mating with metallic components; carbon fiber components mating with ceramic components, and the like.


The present disclosure, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure. The present disclosure, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, for example for improving performance, achieving ease and\or reducing cost of implementation.


The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.


Moreover though the description of the disclosure has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims
  • 1. A method, comprising: providing an engine comprising at least one turbo-compressor spool assembly, wherein the at least one turbo-compressor spool assembly comprises a compressor in mechanical communication with a turbine, a ceramic volute directing an inlet gas towards an inlet of a ceramic rotor of the turbine and a ceramic shroud adjacent to the rotor of the turbine, the ceramic shroud directing an outlet gas towards an outlet of the at least one turbo-compressor spool assembly and a metallic housing comprising a metallic base plate having a metallic mating surface to engage a ceramic mating surface of at least one of the ceramic shroud and volute, wherein the metallic and ceramic mating surfaces are perpendicular to an axis of rotation of the rotor, wherein the metallic mating surface has a first coefficient of linear thermal expansion and contraction, wherein the ceramic mating surface has a second coefficient of linear thermal expansion and contraction, wherein the first and second coefficients of thermal expansion and contraction are different by at least a factor of two, wherein the metallic mating surface comprises at least one raised face raised parallel to the axis of rotation of the rotor and at least one recessed face recessed parallel to the axis of rotation of the rotor, and wherein the ceramic mating surface comprises at least one raised face raised parallel to the axis of rotation of the rotor and at least one recessed face recessed parallel to the axis of rotation of the rotor; andmaintaining, during engine operation, the at least one raised face of the metallic mating surface engaged with the at least one recessed face of the ceramic mating surface and the at least one recessed face of the metallic mating surface engaged with the at least one raised face of the ceramic mating surface to inhibit at least one of binding and wear at the engaged metallic and ceramic mating surfaces due to the difference between the first and second coefficients of thermal expansion and contraction between the metallic and ceramic materials in the metallic housing and at least one of the ceramic shroud and volute, respectively.
  • 2. The method of claim 1, wherein the ceramic volute interfaces with the ceramic shroud and wherein an inlet gas to the turbine is heated by a fuel combustor, wherein the inlet gas has a temperature of from about 850° K to about 1,800° K, and the outlet gas has a temperature less than the inlet gas, the outlet gas temperature ranging from about 1,000° K to about 1,400° K, whereby the shroud is subjected to a temperature differential ranging from about 150° K to about 400° K.
  • 3. The method of claim 2, wherein the ceramic materials in the rotor and shroud have substantially similar thermal expansion characteristics.
  • 4. The method of claim 3, wherein the ceramic materials in the shroud and volute each comprise a substantially identical ceramic composition.
  • 5. The method of claim 1, wherein: in a cool temperature state, a radial gap exists between an inner edge of the ceramic mating surface and an inner edge of the metallic base plate;in an intermediate temperature state, the radial gap is smaller than the radial gap in the cool temperature state; andin a high temperature state, the radial gap is smaller than the radial gap in the cool and intermediate temperature states.
  • 6. The method of claim 1, wherein the at least one raised face of the metallic mating surface comprises first and second raised faces and the at least one recessed face of the metallic mating surface comprises first and second recessed faces, wherein each of the first and second raised faces is positioned between the first and second recessed faces, and wherein the first and second raised faces are opposite facing and the first and second recessed faces are opposite facing.
  • 7. The method of claim 6, wherein the at least one raised face of the ceramic surface comprises third and fourth raised faces and the at least one recessed face of the ceramic surface comprises third and fourth recessed faces, wherein each of the third and fourth raised faces is positioned between the third and fourth recessed faces, and wherein the third and fourth raised faces are opposite facing and the third and fourth recessed faces are opposite facing.
  • 8. The method of claim 7, wherein the first raised face engages the third recessed face, wherein the second raised face engages the fourth recessed face, wherein the first recessed face engages the third raised face, and wherein the second recessed face engages the fourth raised face.
  • 9. The method of claim 1, wherein the at least one turbo-compressor spool assembly comprises a plurality of turbo-compressor spool assemblies, each turbo-compressor spool assembly comprising a compressor and a turbine attached by a common shaft and a first of the turbo-compressor spool assemblies is in fluid communication with a second of the turbo-compressor spool assemblies, at least one of the common shafts of a selected turbo-compressor spool assembly comprising a metallic compressor rotor and a ceramic turbine rotor connected by a metallic-to-ceramic attachment joint and a first bearing being positioned adjacent to the metallic compressor rotor and a second bearing adjacent to the ceramic turbine rotor and the engine further comprising; a free power turbine driven by a gas flow output by at least one of the turbo-compressor assemblies; anda combustor operable to combust a fuel and a gas output by one of the plurality of turbo-compressor spool assemblies.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefits, under 35 U.S.C. § 119(e), of U.S. Provisional Application Ser. No. 61/675,247 entitled “Ceramic-to-Metal Turbine Volute Attachment for a Gas Turbine Engine” filed Jul. 24, 2012 which is incorporated herein by reference.

US Referenced Citations (488)
Number Name Date Kind
2463964 Graf Mar 1949 A
2543677 Traupel Feb 1951 A
2613500 Lysholm Oct 1952 A
2696711 Marchant et al. Dec 1954 A
2711071 Frankel Jun 1955 A
3032987 Taylor May 1962 A
3091933 Wagner et al. Jun 1963 A
3166902 Maljanian et al. Jan 1965 A
3204406 Howes et al. Sep 1965 A
3209536 Howes et al. Oct 1965 A
3237404 Flanigan et al. Mar 1966 A
3283497 Kaplan Nov 1966 A
3319931 Bell, III May 1967 A
3518472 O'Callaghan Jun 1970 A
3623318 Shank Nov 1971 A
3639076 Rowen Feb 1972 A
3646753 Stearns et al. Mar 1972 A
3660977 Reynolds May 1972 A
3706203 Goldberg et al. Dec 1972 A
3729928 Rowen May 1973 A
3742704 Adelizzi Jul 1973 A
3748491 Barrigher et al. Jul 1973 A
3764226 Matto Oct 1973 A
3764814 Griffith Oct 1973 A
3765170 Nakamura Oct 1973 A
3766732 Woodcock Oct 1973 A
3817343 Albrecht Jun 1974 A
3824030 DeFeo Jul 1974 A
3831374 Nicita Aug 1974 A
3848636 McCombs Nov 1974 A
3866108 Yannone et al. Feb 1975 A
3888337 Worthen et al. Jun 1975 A
3893293 Moore Jul 1975 A
3937588 Kisslan Feb 1976 A
3939653 Schirmer Feb 1976 A
3945199 Bradley et al. Mar 1976 A
3953967 Smith May 1976 A
3964253 Paduch et al. Jun 1976 A
3977183 Stearns Aug 1976 A
3986364 Cronin et al. Oct 1976 A
3986575 Eggmann Oct 1976 A
3999373 Bell et al. Dec 1976 A
3999375 Smith et al. Dec 1976 A
4002058 Wolfinger Jan 1977 A
4005946 Brown et al. Feb 1977 A
4027472 Stearns Jun 1977 A
4027473 Baker Jun 1977 A
4056019 Ahlen Nov 1977 A
4059770 Mackay Nov 1977 A
4067189 Earnest Jan 1978 A
4082115 Gibb et al. Apr 1978 A
4122668 Chou et al. Oct 1978 A
4183420 Kinoshita Jan 1980 A
4242042 Schwarz Dec 1980 A
4242871 Breton Jan 1981 A
4248040 Kast Feb 1981 A
4253031 Frister Apr 1981 A
4270357 Rossi et al. Jun 1981 A
4276744 Pisano Jul 1981 A
4277938 Belke et al. Jul 1981 A
4280327 Mackay Jul 1981 A
4282948 Jerome Aug 1981 A
4312191 Biagini Jan 1982 A
4336856 Gamell Jun 1982 A
4399651 Geary et al. Aug 1983 A
4411595 Pisano Oct 1983 A
4449359 Cole et al. May 1984 A
4467607 Rydquist et al. Aug 1984 A
4470261 Kronogard et al. Sep 1984 A
4474007 Kronogard et al. Oct 1984 A
4492874 Near Jan 1985 A
4494372 Cronin Jan 1985 A
4499756 Medeiros et al. Feb 1985 A
4509333 Nussdorfer et al. Apr 1985 A
4529887 Johnson Jul 1985 A
4552386 Burchette Nov 1985 A
4586337 Fox May 1986 A
4754607 Mackay Jul 1988 A
4783957 Harris Nov 1988 A
4815278 White Mar 1989 A
4819436 Ahner et al. Apr 1989 A
4858428 Paul Aug 1989 A
4864811 Pfefferle Sep 1989 A
5010729 Adamson et al. Apr 1991 A
5036267 Markunas et al. Jul 1991 A
5069032 White Dec 1991 A
5081832 Mowill Jan 1992 A
5083039 Richardson et al. Jan 1992 A
5090193 Schwarz et al. Feb 1992 A
5097658 Klaass et al. Mar 1992 A
5113669 Coffinberry May 1992 A
5129222 Lampe et al. Jul 1992 A
5144299 Smith Sep 1992 A
5181827 Pellow et al. Jan 1993 A
5214910 Adair Jun 1993 A
5231822 Shekleton Aug 1993 A
5253470 Newton Oct 1993 A
5276353 Kobayashi et al. Jan 1994 A
5301500 Hines Apr 1994 A
5329757 Faulkner et al. Jul 1994 A
5333989 Missana et al. Aug 1994 A
5343692 Thomson et al. Sep 1994 A
5349814 Ciokajlo et al. Sep 1994 A
5386688 Nakhamkin Feb 1995 A
5427455 Bosley Jun 1995 A
5448889 Bronicki Sep 1995 A
5450724 Kesseli et al. Sep 1995 A
5488823 Faulkner et al. Feb 1996 A
5497615 Noe et al. Mar 1996 A
5529398 Bosley Jun 1996 A
5549174 Reis Aug 1996 A
5555719 Rowen et al. Sep 1996 A
5564270 Kesseli et al. Oct 1996 A
5586428 Asai et al. Dec 1996 A
5586429 Kesseli et al. Dec 1996 A
5609655 Kesseli et al. Mar 1997 A
5610962 Solorzano et al. Mar 1997 A
5625243 Lindgren et al. Apr 1997 A
5667358 Gaul Sep 1997 A
5685156 Willis et al. Nov 1997 A
5697848 Bosley Dec 1997 A
5722259 Sorensen et al. Mar 1998 A
5742515 Runkle et al. Apr 1998 A
5752380 Bosley et al. May 1998 A
5784268 Steffek et al. Jul 1998 A
5791868 Bosley et al. Aug 1998 A
5819524 Bosley et al. Oct 1998 A
5820074 Trommer et al. Oct 1998 A
5827040 Bosley et al. Oct 1998 A
5850732 Willis et al. Dec 1998 A
5850733 Bosley et al. Dec 1998 A
5855112 Bannai et al. Jan 1999 A
5873235 Bosley et al. Feb 1999 A
5894720 Willis et al. Apr 1999 A
5899673 Bosley et al. May 1999 A
5903116 Geis et al. May 1999 A
5915841 Weissert Jun 1999 A
5918985 Bosley Jul 1999 A
5928301 Soga et al. Jul 1999 A
5929538 O'Sullivan et al. Jul 1999 A
5954174 Costin Sep 1999 A
5964663 Stewart et al. Oct 1999 A
5966926 Shekleton et al. Oct 1999 A
5983986 Macintyre et al. Nov 1999 A
5983992 Child et al. Nov 1999 A
5992139 Kesseli Nov 1999 A
6002603 Carver Dec 1999 A
6011377 Heglund et al. Jan 2000 A
6016658 Willis et al. Jan 2000 A
6020713 Geis et al. Feb 2000 A
6023135 Gilbreth et al. Feb 2000 A
6031294 Geis et al. Feb 2000 A
6037687 Stewart et al. Mar 2000 A
6049195 Geis et al. Apr 2000 A
6062016 Edelman May 2000 A
6065281 Shekleton et al. May 2000 A
6070404 Bosley et al. Jun 2000 A
6082112 Shekleton Jul 2000 A
6085524 Persson Jul 2000 A
6093975 Peticolas Jul 2000 A
6094799 Stewart et al. Aug 2000 A
6098397 Glezer et al. Aug 2000 A
6107693 Mongia et al. Aug 2000 A
6138781 Hakala Oct 2000 A
D433997 Laituri et al. Nov 2000 S
6141953 Mongia et al. Nov 2000 A
6155076 Cullen et al. Dec 2000 A
6155780 Rouse Dec 2000 A
6158892 Stewart et al. Dec 2000 A
6169334 Edelman Jan 2001 B1
6170251 Skowronski et al. Jan 2001 B1
6178751 Shekleton et al. Jan 2001 B1
6190048 Weissert Feb 2001 B1
6192668 Mackay Feb 2001 B1
6194794 Lampe et al. Feb 2001 B1
6205765 Iasillo et al. Mar 2001 B1
6205768 Dibble et al. Mar 2001 B1
6213234 Rosen et al. Apr 2001 B1
6239520 Stahl et al. May 2001 B1
6265786 Bosley et al. Jul 2001 B1
6274945 Gilbreth et al. Aug 2001 B1
6281596 Gilbreth et al. Aug 2001 B1
6281601 Edelman et al. Aug 2001 B1
6305079 Child et al. Oct 2001 B1
6314717 Teets et al. Nov 2001 B1
6316841 Weber Nov 2001 B1
6324828 Willis et al. Dec 2001 B1
6324846 Clarke Dec 2001 B1
6325142 Bosley et al. Dec 2001 B1
6349787 Dakhil Feb 2002 B1
6355987 Bixel Mar 2002 B1
6361271 Bosley Mar 2002 B1
6381944 Mackay May 2002 B2
6405522 Pont et al. Jun 2002 B1
6410992 Wall et al. Jun 2002 B1
6425732 Rouse et al. Jul 2002 B1
6437468 Stahl et al. Aug 2002 B2
6438936 Ryan Aug 2002 B1
6438937 Pont et al. Aug 2002 B1
6453658 Willis et al. Sep 2002 B1
6468051 Lampe et al. Oct 2002 B2
6487096 Gilbreth et al. Nov 2002 B1
6489692 Gilbreth et al. Dec 2002 B1
6495929 Bosley et al. Dec 2002 B2
6499949 Schafrik et al. Dec 2002 B2
6522030 Wall et al. Feb 2003 B1
6526757 Mackay Mar 2003 B2
6539720 Rouse et al. Apr 2003 B2
6542791 Perez Apr 2003 B1
6543232 Anderson et al. Apr 2003 B1
6552440 Gilbreth et al. Apr 2003 B2
6574950 Nash Jun 2003 B2
6598400 Nash et al. Jul 2003 B2
6601392 Child Aug 2003 B2
6605928 Gupta et al. Aug 2003 B2
6606864 Mackay Aug 2003 B2
6612112 Gilbreth et al. Sep 2003 B2
6629064 Wall Sep 2003 B1
6634176 Rouse et al. Oct 2003 B2
6638007 Bartholomä et al. Oct 2003 B2
6639328 Wacknov Oct 2003 B2
6644916 Beacom Nov 2003 B1
RE38373 Bosley Dec 2003 E
6657332 Balas Dec 2003 B2
6657348 Qin et al. Dec 2003 B2
6663044 Munoz et al. Dec 2003 B1
6664653 Edelman Dec 2003 B1
6664654 Wall et al. Dec 2003 B2
6670721 Lof et al. Dec 2003 B2
6675583 Willis et al. Jan 2004 B2
6683389 Geis Jan 2004 B2
6684642 Willis et al. Feb 2004 B2
6698208 Teets Mar 2004 B2
6698554 Desta et al. Mar 2004 B2
6702463 Brockett et al. Mar 2004 B1
6709243 Tan et al. Mar 2004 B1
6713892 Gilbreth et al. Mar 2004 B2
6720685 Balas Apr 2004 B2
6729141 Ingram May 2004 B2
6732531 Dickey May 2004 B2
6735951 Thompson May 2004 B2
6745574 Dettmer Jun 2004 B1
6747372 Gilbreth et al. Jun 2004 B2
6748742 Rouse et al. Jun 2004 B2
6751941 Edelman et al. Jun 2004 B2
6766647 Hartzheim Jul 2004 B2
6784565 Wall et al. Aug 2004 B2
6787933 Claude et al. Sep 2004 B2
6794766 Wickert et al. Sep 2004 B2
6796527 Munoz et al. Sep 2004 B1
6804946 Willis et al. Oct 2004 B2
6810677 Dewis Nov 2004 B2
6812586 Wacknov et al. Nov 2004 B2
6812587 Gilbreth et al. Nov 2004 B2
6815932 Wall Nov 2004 B2
6817575 Munoz et al. Nov 2004 B1
6819999 Hartzheim Nov 2004 B2
6823675 Brunell et al. Nov 2004 B2
6829899 Benham, Jr. et al. Dec 2004 B2
6832470 Dewis Dec 2004 B2
6834226 Hartzheim Dec 2004 B2
6836720 Hartzheim Dec 2004 B2
6837419 Ryan Jan 2005 B2
6845558 Beacom Jan 2005 B2
6845621 Teets Jan 2005 B2
6847129 McKelvey et al. Jan 2005 B2
6847194 Sarlioglu et al. Jan 2005 B2
6848249 Coleman et al. Feb 2005 B2
6863509 Dewis Mar 2005 B2
6864595 Wall Mar 2005 B2
6870279 Gilbreth et al. Mar 2005 B2
6877323 Dewis Apr 2005 B2
6883331 Jonsson et al. Apr 2005 B2
6888263 Satoh et al. May 2005 B2
6891282 Gupta et al. May 2005 B2
6895741 Rago et al. May 2005 B2
6895760 Kesseli May 2005 B2
6897578 Olsen et al. May 2005 B1
6909199 Gupta et al. Jun 2005 B2
6911742 Gupta et al. Jun 2005 B2
6931856 Belokon et al. Aug 2005 B2
6951110 Kang Oct 2005 B2
6956301 Gupta et al. Oct 2005 B2
6958550 Gilbreth et al. Oct 2005 B2
6960840 Willis et al. Nov 2005 B2
6964168 Pierson et al. Nov 2005 B1
6966173 Dewis Nov 2005 B2
6968702 Child et al. Nov 2005 B2
6973880 Kumar Dec 2005 B2
6977446 Mackay Dec 2005 B2
6979914 McKelvey et al. Dec 2005 B2
6983787 Schoenenborn Jan 2006 B2
6989610 Gupta et al. Jan 2006 B2
6998728 Gupta et al. Feb 2006 B2
7008182 Kopp Mar 2006 B2
7019626 Funk Mar 2006 B1
7053590 Wang May 2006 B2
7059385 Moilala Jun 2006 B2
7065873 Kang et al. Jun 2006 B2
RE39190 Weissert Jul 2006 E
7092262 Ryan et al. Aug 2006 B2
7093443 McKelvey et al. Aug 2006 B2
7093448 Nguyen et al. Aug 2006 B2
7112036 Lubell et al. Sep 2006 B2
7117683 Thompson Oct 2006 B2
7147050 Kang et al. Dec 2006 B2
7166928 Larsen Jan 2007 B2
7181337 Kosaka Feb 2007 B2
7185496 Herlihy Mar 2007 B2
7186200 Hauser Mar 2007 B1
7211906 Teets et al. May 2007 B2
7224081 Larsen May 2007 B2
7244524 McCluskey et al. Jul 2007 B2
7266429 Travaly et al. Sep 2007 B2
7285871 Derouineau Oct 2007 B2
7299638 Mackay Nov 2007 B2
7304445 Donnelly Dec 2007 B2
7309929 Donnelly et al. Dec 2007 B2
7318154 Tehee Jan 2008 B2
7325401 Kesseli et al. Feb 2008 B1
7343744 Abelson et al. Mar 2008 B2
7393179 Kesseli et al. Jul 2008 B1
7398642 McQuiggan Jul 2008 B2
7404294 Sundin Jul 2008 B2
7415764 Kang et al. Aug 2008 B2
7423412 Weng et al. Sep 2008 B2
7464533 Wollenweber Dec 2008 B2
7513120 Kupratis Apr 2009 B2
7514807 Donnelly et al. Apr 2009 B2
7518254 Donnelly et al. Apr 2009 B2
RE40713 Geis et al. May 2009 E
7554278 Wegner-Donnelly et al. Jun 2009 B2
7565867 Donnelly et al. Jul 2009 B2
7572531 Forte Aug 2009 B2
7574853 Teets et al. Aug 2009 B2
7574867 Teets et al. Aug 2009 B2
7595124 Varatharajan et al. Sep 2009 B2
7605487 Barton et al. Oct 2009 B2
7605498 Ledenev et al. Oct 2009 B2
7607318 Lui et al. Oct 2009 B2
7608937 Altenschulte Oct 2009 B1
7614792 Wade et al. Nov 2009 B2
7615881 Halsey et al. Nov 2009 B2
7617687 West et al. Nov 2009 B2
7656135 Schram et al. Feb 2010 B2
7667347 Donnelly et al. Feb 2010 B2
7671481 Miller et al. Mar 2010 B2
7766790 Stevenson et al. Aug 2010 B2
7770376 Brostmeyer Aug 2010 B1
7777358 Halsey et al. Aug 2010 B2
7804184 Yuan et al. Sep 2010 B2
7841185 Richards et al. Nov 2010 B2
7861696 Lund Jan 2011 B2
7866532 Potter et al. Jan 2011 B1
7906862 Donnelly et al. Mar 2011 B2
7921944 Russell et al. Apr 2011 B2
7926274 Farkaly Apr 2011 B2
7944081 Donnelly et al. May 2011 B2
7957846 Hakim et al. Jun 2011 B2
7966868 Sonnichsen et al. Jun 2011 B1
7977845 Heitmann Jul 2011 B1
8008808 Seeker et al. Aug 2011 B2
8015812 Kesseli et al. Sep 2011 B1
8046990 Bollinger et al. Nov 2011 B2
8055526 Blagg et al. Nov 2011 B2
8188693 Wei et al. May 2012 B2
8215378 Nash et al. Jul 2012 B2
8244419 Wegner-Donnelly et al. Aug 2012 B2
8371365 Kesseli et al. Feb 2013 B2
8499874 Dewis et al. Aug 2013 B2
8757964 Yamashita Jun 2014 B2
20010030425 Gilbreth et al. Oct 2001 A1
20010052704 Bosley et al. Dec 2001 A1
20020054718 Weissert May 2002 A1
20020063479 Mitchell et al. May 2002 A1
20020067872 Weissert Jun 2002 A1
20020073688 Bosley et al. Jun 2002 A1
20020073713 Mackay Jun 2002 A1
20020079760 Vessa Jun 2002 A1
20020083714 Bakholdin Jul 2002 A1
20020096393 Rouse Jul 2002 A1
20020096959 Qin et al. Jul 2002 A1
20020097928 Swinton et al. Jul 2002 A1
20020099476 Hamrin et al. Jul 2002 A1
20020103745 Lof et al. Aug 2002 A1
20020104316 Dickey et al. Aug 2002 A1
20020110450 Swinton Aug 2002 A1
20020119040 Bosley Aug 2002 A1
20020120368 Edelman et al. Aug 2002 A1
20020124569 Treece et al. Sep 2002 A1
20020128076 Lubell Sep 2002 A1
20020148229 Pont et al. Oct 2002 A1
20020149205 Gilbreth et al. Oct 2002 A1
20020149206 Gilbreth et al. Oct 2002 A1
20020157881 Bakholdin et al. Oct 2002 A1
20020158517 Rouse et al. Oct 2002 A1
20020166324 Willis et al. Nov 2002 A1
20030110773 Rouse et al. Jun 2003 A1
20040008010 Ebrahim et al. Jan 2004 A1
20040011038 Stinger et al. Jan 2004 A1
20040035656 Anwar et al. Feb 2004 A1
20040065293 Goto Apr 2004 A1
20040080165 Geis et al. Apr 2004 A1
20040090204 McGinley May 2004 A1
20040103669 Willis et al. Jun 2004 A1
20040106486 Jonsson Jun 2004 A1
20040119291 Hamrin et al. Jun 2004 A1
20040134194 Roby et al. Jul 2004 A1
20040148942 Pont et al. Aug 2004 A1
20040160061 Rouse et al. Aug 2004 A1
20050000224 Jonsson Jan 2005 A1
20050066921 Daigo et al. Mar 2005 A1
20050103931 Morris et al. May 2005 A1
20050206331 Donnelly Sep 2005 A1
20050228553 Tryon Oct 2005 A1
20050229586 Whurr Oct 2005 A1
20060021354 Mowill Feb 2006 A1
20060076171 Donnelly et al. Apr 2006 A1
20060090109 Bonnet Apr 2006 A1
20060185367 Hino et al. Aug 2006 A1
20060248899 Borchert Nov 2006 A1
20070012129 Maty et al. Jan 2007 A1
20070068712 Carnahan Mar 2007 A1
20070178340 Eickhoff Aug 2007 A1
20070181294 Soldner et al. Aug 2007 A1
20070239325 Regunath Oct 2007 A1
20070261681 Schoell Nov 2007 A1
20070290039 Pfleging et al. Dec 2007 A1
20080034759 Bulman et al. Feb 2008 A1
20080080682 Ogunwale et al. Apr 2008 A1
20080148708 Chou et al. Jun 2008 A1
20080190117 Lee et al. Aug 2008 A1
20080197705 Dewis et al. Aug 2008 A1
20080208393 Schricker Aug 2008 A1
20080243352 Healy Oct 2008 A1
20080271703 Armstrong et al. Nov 2008 A1
20080278000 Capp et al. Nov 2008 A1
20090045292 Maddali et al. Feb 2009 A1
20090060725 Baron et al. Mar 2009 A1
20090071478 Kalfon Mar 2009 A1
20090090109 Mills et al. Apr 2009 A1
20090106978 Wollenweber Apr 2009 A1
20090109022 Gangopadhyay et al. Apr 2009 A1
20090124451 Rask et al. May 2009 A1
20090133400 Callas May 2009 A1
20090158739 Messmer Jun 2009 A1
20090193809 Schroder et al. Aug 2009 A1
20090204316 Klampfl et al. Aug 2009 A1
20090211260 Kesseli et al. Aug 2009 A1
20090249786 Garrett et al. Oct 2009 A1
20090271086 Morris et al. Oct 2009 A1
20090292436 D'Amato et al. Nov 2009 A1
20090313990 Mustafa Dec 2009 A1
20090326753 Chen et al. Dec 2009 A1
20100021284 Watson et al. Jan 2010 A1
20100052425 Moore et al. Mar 2010 A1
20100127570 Hadar et al. May 2010 A1
20100154380 Tangirala et al. Jun 2010 A1
20100218750 Negre et al. Sep 2010 A1
20100229525 Mackay et al. Sep 2010 A1
20100293946 Vick Nov 2010 A1
20100301062 Litwin et al. Dec 2010 A1
20100319355 Prabhu Dec 2010 A1
20110020108 Axelsson et al. Jan 2011 A1
20110023491 Rendo et al. Feb 2011 A1
20110100777 Wilton et al. May 2011 A1
20110215640 Donnelly Sep 2011 A1
20110288738 Donnelly et al. Nov 2011 A1
20110295453 Betz et al. Dec 2011 A1
20120000204 Kesseli et al. Jan 2012 A1
20120017598 Kesseli et al. Jan 2012 A1
20120042656 Donnelly et al. Feb 2012 A1
20120096869 Kesseli et al. Apr 2012 A1
20120102911 Dewis et al. May 2012 A1
20120175886 Donnelly et al. Jul 2012 A1
20120201657 Donnelly et al. Aug 2012 A1
20120260662 Nash et al. Oct 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130111923 Donnelly et al. May 2013 A1
20130133480 Donnelly May 2013 A1
20130139519 Kesseli et al. Jun 2013 A1
20130294892 Dewis et al. Nov 2013 A1
20130305730 Donnelly et al. Nov 2013 A1
20140000275 Kesseli et al. Jan 2014 A1
20140026585 Baldwin Jan 2014 A1
20140174083 Gerstler et al. Jun 2014 A1
20140196457 Kesseli et al. Jul 2014 A1
20140306460 Donnelly Oct 2014 A1
Foreign Referenced Citations (291)
Number Date Country
311027 Dec 2005 AT
582981 Apr 1989 AU
587266 Aug 1989 AU
8517301 Mar 2002 AU
2025002 May 2002 AU
2589802 May 2002 AU
2004203836 Mar 2005 AU
2004208656 Feb 2009 AU
2004318142 Jun 2009 AU
1050637 Mar 1979 CA
1068492 Dec 1979 CA
1098997 Apr 1981 CA
1099373 Apr 1981 CA
1133263 Oct 1982 CA
1171671 Jul 1984 CA
1190050 Jul 1985 CA
1202099 Mar 1986 CA
1244661 Nov 1988 CA
1275719 Oct 1990 CA
2066258 Mar 1991 CA
1286882 Jul 1991 CA
2220172 May 1998 CA
2234318 Oct 1998 CA
2238356 Mar 1999 CA
2242947 Mar 1999 CA
2246769 Mar 1999 CA
2279320 Apr 2000 CA
2677758 Apr 2000 CA
2317855 May 2001 CA
2254034 Jun 2007 CA
2638648 Feb 2009 CA
2689188 Jul 2010 CA
595552 Feb 1978 CH
679235 Jan 1992 CH
1052170 Jun 1991 CN
1060270 Apr 1992 CN
1306603 Aug 2001 CN
1317634 Oct 2001 CN
1902389 Jan 2007 CN
101098079 Jan 2008 CN
100564811 Dec 2009 CN
101635449 Jan 2010 CN
101672252 Mar 2010 CN
9101996 Jan 1992 CS
20014556 Apr 2003 CZ
1272306 Jul 1968 DE
2753673 Jun 1978 DE
2853919 Jun 1979 DE
3140694 Jul 1982 DE
3736984 May 1988 DE
69519684 Aug 2001 DE
10305352 Sep 2004 DE
69828916 Mar 2006 DE
60125441 Feb 2007 DE
60125583 Feb 2007 DE
331889 Jul 1989 DK
0092551 Nov 1983 EP
0093118 Nov 1983 EP
0104921 Apr 1984 EP
0157794 Oct 1985 EP
0377292 Jul 1990 EP
0319246 Oct 1990 EP
0432753 Jun 1991 EP
0455640 Nov 1991 EP
0472294 Feb 1992 EP
0478713 Apr 1992 EP
0493481 Jul 1992 EP
0522832 Jan 1993 EP
0620906 Oct 1994 EP
0691511 Jan 1996 EP
0754142 Jan 1997 EP
0784156 Dec 1997 EP
0837224 Apr 1998 EP
0837231 Apr 1998 EP
0901218 Mar 1999 EP
0698178 Jun 1999 EP
0963035 Dec 1999 EP
1055809 Nov 2000 EP
1075724 Feb 2001 EP
1046786 Jan 2002 EP
1071185 Jan 2002 EP
1215393 Jun 2002 EP
0739087 Aug 2002 EP
1240713 Sep 2002 EP
1277267 Jan 2003 EP
1283166 Feb 2003 EP
1305210 May 2003 EP
1340301 Sep 2003 EP
1340304 Sep 2003 EP
1341990 Sep 2003 EP
1342044 Sep 2003 EP
1346139 Sep 2003 EP
1436504 Jul 2004 EP
1203866 Aug 2004 EP
0800616 Dec 2004 EP
1519011 Mar 2005 EP
1132614 Jan 2007 EP
1790568 May 2007 EP
1813807 Aug 2007 EP
1825115 Aug 2007 EP
1860750 Nov 2007 EP
1939396 Jul 2008 EP
2028104 Feb 2009 EP
1638184 Mar 2009 EP
1648096 Jul 2009 EP
2108828 Oct 2009 EP
1728990 Nov 2009 EP
2161444 Mar 2010 EP
2169800 Mar 2010 EP
1713141 May 2010 EP
1728304 Jun 2010 EP
1468180 Jul 2010 EP
2467286 Nov 1985 FR
2637942 Apr 1990 FR
2645908 Oct 1990 FR
2755319 Apr 1998 FR
2848647 Jun 2004 FR
612817 Nov 1948 GB
671379 May 1952 GB
673961 Jun 1952 GB
706743 Apr 1954 GB
731735 Jun 1955 GB
761955 Nov 1956 GB
768047 Feb 1957 GB
784119 Oct 1957 GB
786001 Nov 1957 GB
789589 Jan 1958 GB
807267 Jan 1959 GB
817507 Jul 1959 GB
834550 May 1960 GB
864712 Apr 1961 GB
874251 Aug 1961 GB
877838 Sep 1961 GB
878552 Oct 1961 GB
885184 Dec 1961 GB
917392 Feb 1963 GB
919540 Feb 1963 GB
920408 Mar 1963 GB
924078 Apr 1963 GB
931926 Jul 1963 GB
937278 Sep 1963 GB
937681 Sep 1963 GB
950015 Feb 1964 GB
950506 Feb 1964 GB
977402 Dec 1964 GB
993039 May 1965 GB
1004953 Sep 1965 GB
1008310 Oct 1965 GB
1009115 Nov 1965 GB
1012909 Dec 1965 GB
1043271 Sep 1966 GB
1083943 Sep 1967 GB
1097623 Jan 1968 GB
1103032 Feb 1968 GB
1127856 Sep 1968 GB
1137691 Dec 1968 GB
1138807 Jan 1969 GB
1141019 Jan 1969 GB
1148179 Apr 1969 GB
1158271 Jul 1969 GB
1172126 Nov 1969 GB
1174207 Dec 1969 GB
1211607 Nov 1970 GB
1270011 Apr 1972 GB
1275753 May 1972 GB
1275754 May 1972 GB
1275755 May 1972 GB
1301104 Dec 1972 GB
1348797 Mar 1974 GB
1392271 Apr 1975 GB
1454766 Nov 1976 GB
1460590 Jan 1977 GB
1516664 Jul 1978 GB
2019494 Oct 1979 GB
2074254 Oct 1981 GB
2089433 Jun 1982 GB
2123154 Jan 1984 GB
2174824 Nov 1986 GB
2184609 Jun 1987 GB
2199083 Jun 1988 GB
2211285 Jun 1989 GB
2218255 Nov 1989 GB
2232207 Dec 1990 GB
2341897 Mar 2000 GB
2355286 Apr 2001 GB
2420615 May 2006 GB
2426043 Nov 2006 GB
2435529 Aug 2007 GB
2436708 Oct 2007 GB
2441924 Mar 2008 GB
2442585 Apr 2008 GB
2456336 Jul 2009 GB
2456672 Jul 2009 GB
2447514 Dec 2009 GB
4946DELNP2006 Aug 2007 IN
4341DELNP2005 Oct 2007 IN
5879DELNP2008 Sep 2008 IN
2502DEL2005 Oct 2009 IN
1913DEL2009 Jun 2010 IN
55DEL2010 Jul 2010 IN
2013DEL2009 Jul 2010 IN
1173399 Jun 1987 IT
1194590 Sep 1988 IT
MI911564 Jan 1992 IT
51-065252 Jun 1976 JP
56-088920 Jul 1981 JP
56-148624 Nov 1981 JP
56-148625 Nov 1981 JP
S59-010709 Jan 1984 JP
60-184973 Sep 1985 JP
S60-184906 Sep 1985 JP
61-182489 Aug 1986 JP
3182638 Aug 1991 JP
6201891 Jul 1994 JP
2519620 Jul 1996 JP
10-054561 Feb 1998 JP
10-061660 Mar 1998 JP
10-115229 May 1998 JP
10-122180 May 1998 JP
11-324727 Nov 1999 JP
2000-054855 Feb 2000 JP
2000-130319 May 2000 JP
2000-329096 Nov 2000 JP
2002-030942 Jan 2002 JP
2002-115565 Apr 2002 JP
2003-009593 Jan 2003 JP
2003-013744 Jan 2003 JP
2003-041906 Feb 2003 JP
2004-163087 Jun 2004 JP
2005-345095 Dec 2005 JP
2006-022811 Jan 2006 JP
2006-170208 Jun 2006 JP
2006-174694 Jun 2006 JP
2006-200438 Aug 2006 JP
2007-231949 Sep 2007 JP
2008-111438 May 2008 JP
2008-132973 Jun 2008 JP
2009-108756 May 2009 JP
2009-108860 May 2009 JP
2009-209931 Sep 2009 JP
2009-216085 Sep 2009 JP
2009-250040 Oct 2009 JP
2010-014114 Jan 2010 JP
2010-106835 May 2010 JP
19840002483 Dec 1984 KR
880002362 Oct 1988 KR
890001170 Apr 1989 KR
1020010007189 Jan 2001 KR
1020020024545 Mar 2002 KR
1020030032864 Apr 2003 KR
1020060096320 Sep 2006 KR
1020070078978 Aug 2007 KR
1020070113990 Nov 2007 KR
1020080033866 Apr 2008 KR
1020090121248 Nov 2009 KR
7903120 Oct 1979 NL
437543 Mar 1985 SE
9901718 May 1999 SE
0103180 Mar 2003 SE
WO 8501326 Mar 1985 WO
WO 9207221 Apr 1992 WO
WO 9524072 Sep 1995 WO
WO 9722176 Jun 1997 WO
WO 9722789 Jun 1997 WO
WO 9726491 Jul 1997 WO
WO 9825014 Jun 1998 WO
WO 9854448 Dec 1998 WO
WO 9919161 Apr 1999 WO
WO 0140644 Jun 2001 WO
WO 0182448 Nov 2001 WO
WO 0202920 Jan 2002 WO
WO 0240844 May 2002 WO
WO 0242611 May 2002 WO
WO 0244574 Jun 2002 WO
WO 0250618 Jun 2002 WO
WO 0237638 Sep 2002 WO
WO 0229225 Feb 2003 WO
WO 0239045 Feb 2003 WO
WO 03093652 Jun 2004 WO
WO 2004077637 Sep 2004 WO
WO 2005045345 May 2005 WO
WO 2005099063 Oct 2005 WO
WO 2008044972 Apr 2008 WO
WO 2008044973 Apr 2008 WO
WO 2008082334 Jul 2008 WO
WO 2008082335 Jul 2008 WO
WO 2008082336 Jul 2008 WO
WO 2009067048 May 2009 WO
WO 2010050856 May 2010 WO
WO 2010082893 Jul 2010 WO
8608745 Jul 1987 ZA
Non-Patent Literature Citations (10)
Entry
“A High-Efficiency ICR Microturbine for Commercial Vehicle Propulsion,” PACCAR, date unknown, 11 pages.
“Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks,” Stodolsky, F., L. Gaines, and A. Vyas, Argonne National Laboratory, ANL/ESD-43, Jun. 2000, 40 pages.
“Benefits of the Microturbine to Power the Next Generation of Trucks.” Kenworth Truck Company, date unknown, 9 pages.
“Why Gas Turbines have a Future in Heavy Duty Trucks.” Capstone Turbine Corporation, Brayton Energy, LLC, Kenworth Truck Company, a PACCAR Company, Peterbilt Truck Company, a PACCAR Company, Apr. 2009, 10 pages.
Balogh et al. “DC Link Floating for Grid Connected PV Converters,” World Academy of Science, Engineering and Technology Apr. 2008, Iss. 40, pp. 115-120.
Mackay et al. “High Efficiency Vehicular Gas Turbines,” SAE International, 2005, 10 pages.
Nemeth et al. “Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads,” NASA, last updated Jul. 21, 2005, found at http://www.grc.nasa.gov/WWW/RT/2004/RS/RS06L-nemeth.html, 5 pages.
Wolf et al. “Preliminary Design and Projected Performance for Intercooled-Recuperated Microturbine,” Proceedings of the ASME TurboExpo 2008 Microturbine and Small Turbomachinery Systems, Jun. 9-13, 2008, Berlin, Germany, 10 pages.
“Remy HVH250-090-SOM Electric Motor,” Remy International, Inc., 2011, 2 pages.
Gieras et al., “Performance Calculation for a High-Speed Solid-Rotor Induction Motor,” IEEE Transactions on Industrial Electronics, 2012, vol. 59, No. 6, pp. 2689-2700.
Related Publications (1)
Number Date Country
20140026585 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61675247 Jul 2012 US