1. Field of Invention
The present invention generally relates to cerebrospinal fluid shunts and, more particularly, to a method and device for testing for the presence, absence and/or rate of flow in the shunt tubing implanted under the skin.
2. Description of Related Art
A cerebrospinal fluid (CSF) shunt includes a system of tubing that allows CSF to flow from a patient's brain to another part of the body (e.g., abdomen to relieve pressure in the brain). As a result, it is desirable to know, periodically, that the pathway of the CSF shunt remains unobstructed to permit CSF flow and what the flow rate is. It is also desirable to make these determinations non-invasively when quantifying the CSF flow.
The sensor 14 could be conventional temperature sensitive device wherein the internal resistance of the sensor 14 varies, either directly or inversely, according to the temperature of the sensor 14. Thus, changes in the temperature of the sensor 14 were detected by merely making a determination of its resistance or, equivalently, a measurement of the changes in the amount of current through the sensor 18.
In operation, a user of the shunt evaluation system 10 could place an ice cube on the scalp of the patient over the shunt tubing 18 for about one minute using, for example, forceps. While the safety of using ice makes it preferred for cooling the CSF, a Peltier stack maintained at zero or one degree centigrade can be used. The ice cube cooled the CSF in the shunt tubing 18 as it flowed from the scalp region toward the downstream sensor 14. The downstream sensor 14 was adapted to detect relatively small changes in skin temperature in regions over the shunt tubing 18 as the cooled CSF flowed from the head to the abdomen of the patient.
Referring now to
The output of the sensors 24 in the shunt evaluation system 20 could be read and processed in any conventional manner. For example, if the internal diameter of the shunt tubing 18 was known, the rate of flow of the CSF could be calculated from the following equation:
where F is the flow of CFS through the shunt tubing 18, h is the distance between the two sensors 24, r is the internal radius of the shunt tubing 18 and t1-t2 is the time difference between the deflection responses of the two sensors 24.
The following describe different apparatus and methodologies that have been used to monitor, determine or treat body fluid flow, including CSF flow through a shunt.
“A Thermosensitive Device for the Evaluation of the Patency of Ventriculo-atrial Shunts in Hydrocephalus”, by Go et al. (Acta Neurochirurgica, Vol. 19, pages 209-216, Fasc. 4) discloses the detection of the existence of flow in a shunt by placement of a thermistor and detecting means proximate the location of the shunt and the placement of cooling means downstream of the thermistor. The downstream thermistor detects the cooled portion of the CSF fluid as it passes from the region of the cooling means to the vicinity of the thermistor, thereby verifying CSF flow. However, among other things, the apparatus and method disclosed therein fails to teach or suggest an apparatus/method for quantifying the flow of the fluid through the shunt.
In “A Noninvasive Approach to Quantitative Measurement of Flow through CSF Shunts” by Stein et al., Journal of Neurosurgery, 1981, April; 54(4):556-558, a method for quantifying the CSF flow rate is disclosed. In particular, a pair of series-arranged thermistors is positioned on the skin over the CSF shunt, whereby the thermistors independently detect the passage of a cooled portion of the CSF fluid. The time required for this cooled portion to travel between the thermistors is used, along with the shunt diameter, to calculate the CSF flow rate. See also “Noninvasive Test of Cerebrospinal Shunt Function,” by Stein et al., Surgical Forum 30:442-442, 1979; and “Testing Cerebropspinal Fluid Shunt Function: A Noninvasive Technique,” by S. Stein, Neurosurgery, 1980 Jun. 6(6): 649-651. However, the apparatus/method disclosed therein suffers from, among other things, variations in thermistor signal due to environmental changes.
U.S. Pat. No. 4,548,516 (Helenowski) discloses an apparatus for indicating fluid flow through implanted shunts by means of temperature sensing. In particular, the apparatus taught by Helenowski comprises a plurality of thermistors mounted on a flexible substrate coupled to a rigid base. The assembly is placed on the skin over the implanted shunt and a portion of the fluid in the shunt is cooled upstream of the assembly. The thermistors detect the cooled portion of the fluid as it passes the thermistor assembly and the output of the thermistor is applied to an analog-to-digital converter for processing by a computer to determine the flow rate of the shunt fluid.
U.S. Pat. No. 6,413,233 (Sites et al.) discloses several embodiments that utilize a plurality of temperature sensors on a patient wherein a body fluid (blood, saline, etc.) flow is removed from the patient and treated, e.g., heated or cooled, and then returned to the patient. See also U.S. Pat. No. 5,494,822 (Sadri). U.S. Pat. No. 6,527,798 (Ginsburg et al.) discloses an apparatus/method for controlling body fluid temperature and utilizing temperature sensors located inside the patient's body.
U.S. Pat. No. 5,692,514 (Bowman) discloses a method and apparatus for measuring continuous blood flow by inserting a catheter into the heart carrying a pair of temperature sensors and a thermal energy source. See also U.S. Pat. No. 4,576,182 (Normann).
U.S. Pat. No. 4,684,367 (Schaffer et al.) discloses an ambulatory intravenous delivery system that includes a control portion of an intravenous fluid that detects a heat pulse using a thermistor to determine flow rate.
U.S. Pat. No. 4,255,968 (Harpster) discloses a fluid flow indicator which includes a plurality of sensors placed directly upon a thermally-conductive tube through which the flow passes. In Harpster a heater is located adjacent to a first temperature sensor so that the sensor is directly within the sphere of thermal influence of the heater.
U.S. Pat. No. 3,933,045 (Fox et al.) discloses an apparatus for detecting body core temperature utilizing a pair of temperature sensors, one located at the skin surface and another located above the first sensor wherein the output of the two temperature sensors are applied to a differential amplifier heater control circuit. The control circuit activates a heat source in order to drive the temperature gradient between these two sensors to zero and thereby detect the body core temperature.
U.S. Pat. No. 3,623,473 (Andersen) discloses a method for determining the adequacy of blood circulation by measuring the difference in temperature between at least two distinct points and comparing the sum of the detected temperatures to a reference value.
U.S. Pat. No. 3,762,221 (Coulthard) discloses an apparatus and method for measuring the flow rate of a fluid utilizing ultrasonic transmitters and receivers.
U.S. Pat. No. 4,354,504 (Bro) discloses a blood-flow probe that utilizes a pair of thermocouples that respectively detect the temperature of a hot plate and a cold plate (whose temperatures are controlled by a heat pump. The temperature readings are applied to a differential amplifier. Energization of the heat pump is controlled by a comparator that compares a reference signal to the differential amplifier output that ensures that the hot plate does not exceed a safety level during use.
U.S. Patent Publication No. 2005/0171452 (Neff), which is owned by the same assignee as the present application, namely, Neuro Diagnostic Devices, Inc., and which is incorporated by reference herein, discloses a cerebral spinal fluid (CSF) shunt evaluation system that utilizes pairs of temperature sensors, each pair having an upstream and a downstream temperature sensor and whose outputs are analyzed for providing CSF flow rates when an upstream temperature source is applied to the patient.
U.S. Patent Publication No. 2005/0204811 (Neff), which is owned by the same assignee as the present application, namely, Neuro Diagnostic Devices, Inc., discloses a CSF shunt flow measuring system contains upstream and downstream temperature sensors embedded within the wall of a shunt with a temperature source located between the sensors and whose outputs are analyzed for providing CSF flow.
However, there remains a need to quickly and non-invasively, as well as more accurately, determine the flow status or flow rate of a fluid in a subcutaneous tube.
All references cited herein are incorporated herein by reference in their entireties.
An apparatus for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt applied to the body of a patient for transmitting the CSF between first and second locations of the body. The apparatus comprises: a pad that is placed against the skin of a patient over the location of the CSF shunt, wherein the pad comprises a pair of temperature sensors that are aligned in a first direction to form an upstream temperature sensor (e.g., a fast response thermistor) and a downstream temperature sensor e.g., a fast response thermistor) with respect to the shunt. The pad further comprises a third temperature sensor e.g., a fast response thermistor) that is not aligned in the first direction and each of the temperature sensors generates respective temperature data. The apparatus further comprises a sensor processing device (e.g., a CSF analyzer) that is electrically coupled to the pad for receiving temperature data from each of the temperature sensors, and wherein the sensor processing device uses the temperature data to determine a flow rate or flow status of the CSF through said shunt when a temperature source (e.g., an ice pack or cube) is applied to the pad.
An apparatus for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt applied to the body of a patient for transmitting the CSF between first and second locations of the body. The apparatus comprises: a pad that is placed against the skin of a patient over the location of the CSF shunt, wherein the pad comprises a pair of temperature sensors (e.g., fast response thermistors) that are aligned in a first direction, one of the temperature sensors being positioned over the CSF shunt while the other temperature sensor is not positioned over the CSF shunt, and wherein each of the temperature sensors generates respective temperature data; and a sensor processing device that is electrically coupled to the pad for receiving temperature data from each of the temperature sensors, and wherein the sensor processing device uses the temperature data to determine a flow rate or flow status of the CSF through the shunt when a temperature source (e.g., an ice pack or cube) is applied to the pad.
A method for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt. The method comprises: applying a pair of temperature sensors (e.g., fast response thermistors) against the skin aligned with the CSF shunt to form an upstream temperature sensor and a downstream temperature sensor while simultaneously applying a third temperature sensor (e.g., a fast response thermistor) against the skin in the vicinity of the CSF shunt but not over the shunt; applying a temperature source (e.g., an ice pack or cube) over the CSF shunt and upstream of the pair of temperature sensors for a predetermined period; collecting temperature data after the predetermined period of time (e.g., 60 seconds) has elapsed; subtracting temperature data of the third temperature sensor from each of the temperature data from the pair of temperature sensors to form first and second temperature differences respectively; and determining a flow rate or flow status of the CSF through the shunt from the first and second temperature differences.
A method for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt. The method comprises: applying first and second temperature sensors (e.g., fast response thermistors) against the skin wherein the first temperature sensor is positioned over the CSF shunt and the second temperature sensor is applied against the skin in the vicinity of the CSF shunt but not over the shunt; applying a temperature source over the CSF shunt and upstream of the first temperature sensor for a predetermined period (e.g., 60 seconds); collecting temperature data after the predetermined period of time has elapsed; subtracting temperature data of the second temperature sensor from the temperature data of the first temperature sensor to form a temperature difference; and determining a flow rate or flow status of the CSF through the shunt from the temperature difference.
A method for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt applied to the body of a patient for transmitting the CSF between first and second locations of the body, comprising: applying a first temperature sensor (e.g., a fast response thermistor) at a first location external to the body in a vicinity of the CSF shunt and applying a second temperature sensor (e.g., a fast response thermistor) at a second location external to the body and under which the CSF shunt is located, the first location being upstream of the second location; applying a control temperature sensor (e.g., a fast response thermistor) at a third location under which the CSF shunt is not located but which is aligned with the second temperature sensor, wherein the control temperature sensor provides temperature correction signals representative of a temperature of the exterior of the body; applying a temperature source directly to the first temperature sensor; determining a flow rate or flow status of the CSF through the shunt to provide a determined CSF flow rate or flow status; and adjusting the determined CSF flow rate in accordance with the temperature correction signals to provide a CSF flow rate corrected in accordance with the background temperature.
An apparatus for evaluating cerebrospinal fluid (CSF) flow rate or flow status in a CSF shunt applied to the body of a patient for transmitting the CSF between first and second locations of the body, the apparatus comprising: a first temperature sensor, (e.g., a fast response thermistor) positioned at a first location external to the body and in the vicinity of the CSF shunt and providing first temperature outputs; a second temperature sensor (e.g., a fast response thermistor), positioned at a second location external to the body and under which the CSF shunt is located and providing second temperature outputs, wherein the second location is downstream of the first location; a control temperature sensor, positioned at a third location external to the body and aligned with the second temperature sensor for providing temperature correction signals representative of a temperature of the exterior of the body and forming third temperature outputs; a sensor processing unit (e.g., a CSF analyzer), in communication with the first and second temperature sensors and with the control temperature sensor, the sensor processing unit using said first through said third temperature outputs for determining a flow rate or flow status of said CSF through said shunt when a temperature source is applied directly to the first temperature sensor.
A device for detecting or quantifying fluid flow in a subcutaneous tube of a subject, wherein the device comprises: a temperature sensitive material having properties that change with temperature (e.g., the Mylar® liquid crystal sheets sold by Anchor Optics (AX61161, AX72375, etc.), or by Educational Innovations (LC-3035A, LC-5A, etc.) or by LCR Hallcrest, etc.), and wherein the temperature sensitive material is applied to the skin of the subject over the subcutaneous tube; and wherein a temperature change, applied to the skin at an upstream location of the subcutaneous tube, alters a property of the temperature sensitive material when it (the temperature change) arrives at the material, and wherein the temperature sensitive material provides a correlation between the property change and flow status or flow rate.
A method for detecting or quantifying fluid flow in a subcutaneous tube of a subject, wherein the method comprises: applying a temperature sensitive material having properties that change with temperature (e.g., the Mylar® liquid crystal sheets sold by Anchor Optics (AX61161, AX72375, etc.), or by Educational Innovations (LC-3035A, LC-5A, etc.) or by LCR Hallcrest, etc.), to the skin of the subject over the subcutaneous tube; applying a temperature source to the skin of the subject at an upstream location with respect to the temperature sensitive material; and correlating changes in properties of the temperature sensitive material with different flow rates for indicating flow status or flow rate.
The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:
The invention of the present application involve improvements over an invention of an earlier application, namely, application Ser. No. 10/770,754 (U.S. Patent Publication No. 2005/0204811 (Neff)), and as such the present application is a continuation-in-part of application Ser. No. 10/770,754. Therefore, before discussing the invention of the present application (
Referring now to
In the method of the invention a sensor 34 is placed over the shunt tubing 18 in the vicinity of an ear of the patient for providing an electrical output signal representative ofthe temperature of the CSF near the vicinity of the cooling of the CSF of the patient. A sensor 36 is placed over the shunt tubing 18 in the vicinity of the clavicle of the patient for providing an electrical output signal representative of temperature of the CSF therebelow.
Preferably the sensors 34, 36 can be disposed as close as possible to each other, as long as they are placed in an area where the shunt tubing 18 is substantially close to the surface of the body. The shunt tubing 18 is usually sufficiently close to the surface behind the pinna and on the neck. It is also close to the surface over the clavicle, which is often approximately fifteen centimeters from the pinna. Thus, in one preferred embodiment of the invention the spacing between the sensors 34, 36 can be approximately fifteen centimeters or less. Furthermore, in one preferred embodiment the sensors 34, 36 can be placed as close together as approximately three centimeters.
The sensors 38, 40 are placed on the opposite side of the body of the patient in locations substantially symmetrically with the sensors 34, 36. Thus, the sensor 38 is placed in the vicinity of the ear opposite the ear where the sensor 34 is disposed. The sensor 38 is placed in the vicinity of the clavicle opposite the clavicle where the sensor 36 is disposed. The sensors 38, 40 thus provide electrical output signals representative of background conditions such as the body temperature of the patient and the ambient temperature. The output signals from the sensors 38, 40 permit control readings to be performed by the CSF evaluation system 30 for error correction of the flow rate calculations that can be obtained using the sensors 34, 36.
Referring now to
The output signals of the sensors 34-40 applied to the body of the patient are received at the input lines 54-60 of the evaluation system circuitry 50. In one preferred embodiment of the invention, the signals received on the input lines 54-60 can be sequentially switched onto a common input line 62 of a general purpose precision timer 68. Additionally, in an alternate embodiment of the invention, the signals on the input lines 54-60 can be applied to an analog-to-digital converter (not shown) to provide digital signals representative of the output of the sensors 34-40 suitable for processing within the evaluation system circuitry 50.
The precision timer 68 of the evaluation system circuitry 50 that sequentially receives the signals from the sensors 34-40 is adapted to operate as a relaxation oscillator circuit 70 having a varying output frequency related to a varying RC time constant. The precision timer 68 within the relaxation oscillator circuit 70 can be the well known ICM7555 or any other equivalent device.
The precision timer 68 is coupled to a capacitor 72 and to the common input line 62 of the four input lines 54-60. Each of the sensors 34-40 coupled in sequence to the common input line 62 operates as a variable resistor whose resistance varies with a sensed temperature as previously described. The sequential coupling of the sensors 34-40 to the capacitor 72 permits RC time constant within the relaxation oscillator circuit 70 to vary when the sensors 34-40 sense different temperatures. Thus, the varying RC time constant results in varying frequencies of oscillation for the relaxation oscillator circuit 70 that correspond to the varying temperatures sensed by the sensors 34-40.
When the relaxation circuit 70 of the shunt evaluation system circuitry 50 oscillates, a battery 64 charges the capacitor 72 according to the resistance of the sensor 34-40 coupled to the capacitor 72. This causes the voltage across the capacitor 72 to rise. When the voltage across the capacitor 72 rises to a predetermined level, the precision timer 62 triggers. The triggering of the precision timer 68 causes the capacitor 72 to discharge through the precision timer 62 by way of the line 74, thereby completing one cycle of the relaxation oscillator 70. The time period it takes for the capacitor 72 to charge to the predetermined voltage level and trigger is determined by the amount of charging current, and thus the amount of resistance, of the sensor 34-40 coupled to the common input line 62. Thus, the oscillation frequency of the relaxation oscillator 70 is determined by the resistance, and thus the temperature, of the active sensor 34-40.
The use of the relaxation oscillator 70 for obtaining an electrical signal representative of the resistance of the sensors 34-40 suitable for algorithmic processing is believed to be easier and less expensive than the use of an analog-to-digital converter for this purpose. Additionally, use of the relaxation oscillator 70 is believed to be more noise resistant than an analog-to-digital converter. Furthermore, the relaxation oscillator 70 uses less power than an analog-to-digital converter uses.
The frequency signal output of the precision timer 68 is applied to an input pin of a microprocessor 80 of the shunt evaluation system circuitry 50. The microprocessor 80 can be an AT90S2313 8-bit microcomputer, or any other microprocessor known to those skilled in the art. In addition to controlling the sequential switching of the sensors 34-40 onto the common input line 62, the microprocessor 80 can operate as a frequency counter to determine a frequency value in accordance with the oscillation frequency of the relaxation oscillator 70. The frequency value determined by the microprocessor 80 is provided as an output of the shunt evaluation system circuitry 50 on an output bus 85. The output bus 85 can be coupled to a conventional RS-232 transceiver. In keeping with the system of the present invention, the output frequency value can also be provided on a parallel bus.
Referring now to
Referring now to
In the error correction protocol, the skin temperature at the location 38, which is the mirror-image of the location 34, is subtracted from the skin temperature at the location of sensor 34. Additionally, the skin temperature at the location of sensor 40 is subtracted from the skin temperature at the location of sensor 36. These subtractions correct for global skin temperature changes such as changes due to environment and physiology, for example excitement, attention and pain, and provide error correction for adjusting the flow rate to provide a corrected CSF flow rate.
Using the correct (subtracted) temperature curve makes it possible in a realistic clinical situation to accurately detect inflection points as the cooled CSF passes under the thermistors. When the time of the inflection pints 108, 110 and the time difference between the inflection points 108, 110 are determined the flow calculation can be performed in substantially the same manner as the flow calculations of the prior art.
For example, in one embodiment of the invention the software providing graphical representation 100 displays on the screen two temperature inflection curves 102, 104 one for the proximal (shunt temperature minus control temperature) pair of thermistors and one for the distal (shunt temperature minus control temperature) pair. The operator can use a mouse to move two vertical bars to the inflection points 108, 110.
The software can provide a window showing the times corresponding to the inflection points 108, 110 selected and prompting the operator for the diameter of the tubing. Since only two diameters are in common clinical use, the window can allow a choice between these two in the preferred embodiment. The software then calculates the flow rate from the time difference and the diameter.
In view of the foregoing, the embodiments of the present invention are now discussed.
Referring now to
It should be understood that the dimensions provided in
In one preferred embodiment (
As will be discussed in detail later, it has been found that the accurate and repeatable determination of flow/no flow and flow rate can be obtained without the need for the distal thermistor D, i.e., use ofthe proximal thermistor P and the control thermistor C are all that is actually needed.
The first and second pad portions 408 and 406 are preferably not contiguous and are preferably separated by a gap or by insulation 415, as shown in
As shown most clearly in
The measurement pad 402 can be insulated in the region around the top of the pad 402 and the window 408 so that the cooling means can slightly overlap the edge without shortening the effective ice-to-thermistor distance. Thus, if a cold pack or an ice pack or some other cooling means without a clean edge is used, the cooling means could be placed at the edge of the measurement pad, or slightly overlapping the edge. The window 408 serves the purpose of insulating the thermistors from the cooling means in addition to its role in insuring the optimal placement of the cooling means and preventing melting ice from dripping onto the patient. It is important to have proper thermal separation of the ice window 408 to prevent thermal conduction to the thermistors other than via the CSF flow. Furthermore, the window can prevent melting ice from dripping onto the patient. In particular, as shown in
In addition, the positioning between the proximal thermistor P and the distal thermistor D is also important and its optimal distance is approximately 15 mm.
Thermal grease can be used to enhance thermal conduction between the thermistors P, C and D and the patient's skin. The thermal grease can be applied during assembly of the measurement pad 402 or it can be applied at the time the measurement pad 402 is used, for example, with a pen-like device. This allows the user to simultaneously mark the shunt position on the skin and provide conductive grease along the shunt.
Software geared to head space distance and specialized adhesive can be provided for the measurement pad 402. A covering can be provided on the measurement pad 402 and, after the covering is removed, the pad can be placed in any position. After a period of time, the adhesive fails. Under these circumstances, the measurement pad 402 cannot be reused. It is preferable to make the measurement pad 402 a one-time use device and include an interlock that prevents the re-use of the measurement pad 402. As mentioned earlier (see
The measurement pad 402 can be provided with a feature that indicates the precise time the cooling means is positioned on the window 408 or the head. For example, a further thermistor or a switch can be provided in the vicinity of the cooling area.
In either measurement pad embodiment 402/402A (see
It has been found that upon initial application of a cooling means to the skin, the temperature in the vicinity may actually rise and then fall, possibly due to the sympathetic system reacting to the cooling means and attempting to maintain equilibrium (hereinafter known as the “flushing effect”). Such a phenomena is not taken into account by the prior CSF shunt mechanisms because the control sensor is located so far away from the cooling means application site. In contrast, in the present invention 400, with the control thermistor C located relatively close to the proximal thermistor P, the control thermistor C also experiences this phenomena of a temperature rise then fall and thereby provides an accurate read of the cooling means pulse.
It has also been found that it is ideal to have the patient placed in a supine position for a predetermined period of time (e.g., 5 minutes). This permits the ventricle to refill. Once the measurement pad 402 is warmed up and the testing is ready to begin, the patient is then permitted to come to a sitting position to permit gravity to accelerate the CSF flow. Attempting to conduct the test on patient who has been in a standing or seated (upright) position drains the cranium and results in a no flow condition, which is normal.
The following discussion is directed to the operation of the present invention 400 which uses all three thermistors, P, D and C. However, as mentioned previously, it should be understood that it is within the broadest scope of the present invention to eliminate the distal thermistor D.
As discussed previously, the present invention 400 is provided with the two thermistors P and D separated by a predetermined distance (e.g., 15 mm) for determining the existence of CSF flow through the shunt tubing 18, and determining the flow status (i.e., flow or no flow) and the flow rate of the CSF flow F through the shunt tubing 18. The upstream or proximal sensor P measures the temperature as the cooling pulse passes from the cooling means and into the CSF in the shunt tubing 18. The downstream or distal thermistor D measures the temperature over the shunt tubing 18 at the predetermined distance from the proximal sensor P. Also, the control thermistor C is used, along with the proximal and distal thermistors P and D, to permit the calculation of error signals due to background effects such as body temperature and ambient temperature. The error signals within CSF shunt evaluation system 400 can be used to provide a more accurate determination of the CSF flow status or rate through the shunt tubing 18. It is this conduction through the skin that is detected by the control thermistor C. The alignment assures that the proximal thermistor P detects the temperature delta via the shunt tubing 18 while the temperature delta propagated via the skin is detected by the control sensor C. The control thermistor C thus provides electrical output signals representative of the detected temperature delta transmitted through the skin. The output signals from the control thermistor C permits control readings to be performed by the CSF evaluation system 400 for error correction of the flow rate calculations that can be obtained using the thermistors P and D. All of the thermistors P, D and C must be equalized for static and dynamic responses.
In accordance with the temperature profiles shown in
Using a sampling rate of approximately 10 samples/sec (down to a minimum of 1 sample/sec), the three thermistors begin obtaining temperature data once the test begins (see
In order to provide accurate readings, it is necessary to verify certain criteria, for example:
Where P−C data≧0.2° C. indicates CSF flow and D−C ≧0.1° C. also indicates CSF flow for a given time frame.
As mentioned previously, it is within the broadest scope of the present invention to eliminate the presence of the distal thermistor D. Thus, in such an embodiment, the CSF analyzer 402 need only analyze the P−C data. In fact, it is desirable to have a plurality of proximal thermistors P1-Pn in the measurement pad 402A, as shown in
It should be further noted that a plurality of distal thermistors D1-Dn could also be used to also widen the distal test area, where distal thermistor data is desirable.
It should also be noted that it is within the broadest scope of the present invention to include a recharging stand for the CSF analyzer 402 (when it is a hand-held device) that can communicate with a personal computer.
Another embodiment of the measurement pad 402 may include a built-in Peltier device which would eliminate the need for an external cooling means. Alternatively, the cooling means could be separate from the sensor patch but shaped to integrate with the measurement pad 402 for the test. Thus, the Peltier device can be re-used while the measurement pad 402 remains a discardable device.
A further alternative embodiment 402B of the measurement pad is shown in
It should be understood that the dimensions provided in
It should also be understood that although the thermistors P, C and D are shown as being coupled to the evaluation unit 404 via wires, it is within the broadest scope of the present invention to include a wireless interface between all of the thermistors P, C, and D and the evaluation unit 404. Thus, the type of interface between each of the sensors P, C, D (or any of the other configurations using a plurality of proximal or distal thermistors, etc.) and the evaluation unit 404 is not limited to what is shown but includes any type of wireless interface (RF, infrared, ultrasound, etc.).
It should be further noted that where the analyzer 404 operates in accordance with the CSF flow rate calculation system 95/shunt evaluation system circuitry 50 (see
Referring now to
In particular, as shown in
In the method of the invention, the upstream sensor 502 is placed near the shunt tubing 18 (but not over it), for example, in the vicinity of an ear of the patient for providing an electrical output signal representative of the temperature of the CSF and upon which the temperature source 506 (e.g., ice pack) is positioned directly. The downstream sensor 504 is placed over the shunt tubing 18 in the vicinity of the clavicle of the patient for providing an electrical output signal representative of temperature of the CSF therebelow.
Preferably the sensors 502 and 504 can be disposed as close as possible to each other, as long as they are placed in an area where the shunt tubing 18 is substantially close to the surface of the body. The shunt tubing 18 is usually sufficiently close to the surface behind the pinna and on the neck. It is also close to the surface over the clavicle, which is often approximately fifteen centimeters from the pinna. Thus, in one preferred embodiment of the invention the spacing between the sensors 502/504 can be approximately fifteen centimeters or less. Furthermore, in one preferred embodiment the sensors 502/504 can be placed as close together as approximately three centimeters.
It should be understood that although the sensors 502/504 and control sensor 505 are shown as being coupled to the evaluation unit 404 via wires, it is within the broadest scope of the present invention to include a wireless interface between all of the sensors 502-505 and the evaluation unit 404. Thus, the type of interface between each of the sensors 502-505 and the evaluation unit 404 is not limited to what is shown but includes any type of wireless interface (RF, infrared, ultrasound, etc.).
Referring back to
The output signals of the sensors 502/504 and the control sensor 505 applied to the body of the patient are received at the input lines 54-58 of the evaluation system circuitry 50. In one preferred embodiment of the invention, the signals received on the input lines 54-58 can be sequentially switched onto a common input line 62 of a general purpose precision timer 68. Additionally, in an alternate embodiment of the invention, the signals on the input lines 54-58 can be applied to an analog-to-digital converter (not shown) to provide digital signals representative of the output of the sensors 502/504 and the control sensor 505 suitable for processing within the evaluation system circuitry 50.
The precision timer 68 of the evaluation system circuitry 50 that sequentially receives the signals from the sensors 502/504 and the control sensor 505 is adapted to operate as a relaxation oscillator circuit 70 having a varying output frequency related to a varying RC time constant. The precision timer 68 within the relaxation oscillator circuit 70 can be the well known ICM7555 or any other equivalent device.
The precision timer 68 is coupled to a capacitor 72 and to the common input line 62 of the three input lines 54-58. Each of the sensors 502/504 and the control sensor 505 coupled in sequence to the common input line 62 operates as a variable resistor whose resistance varies with a sensed temperature as previously described. The sequential coupling of the sensors 502/504 and the control sensor 505 to the capacitor 72 permits RC time constant within the relaxation oscillator circuit 70 to vary when the sensors 502/504 and the control sensor 505 sense different temperatures. Thus, the varying RC time constant results in varying frequencies of oscillation for the relaxation oscillator circuit 70 that correspond to the varying temperatures sensed by the sensors 502/504 and the control sensor 505.
When the relaxation circuit 70 of the shunt evaluation system circuitry 50 oscillates a battery 64 charges the capacitor 72 according to the resistance of the sensors 502/504 and the control sensor 505 coupled to the capacitor 72. This causes the voltage across the capacitor 72 to rise. When the voltage across the capacitor 72 rises to a predetermined level, the precision timer 62 triggers. The triggering of the precision timer 68 causes the capacitor 72 to discharge through the precision timer 62 by way of the line 74, thereby completing one cycle of the relaxation oscillator 70. The time period it takes for the capacitor 72 to charge to the predetermined voltage level and trigger is determined by the amount of charging current, and thus the amount of resistance, of the sensor 502/504 and the control sensor 505 coupled to the common input line 62. Thus, the oscillation frequency of the relaxation oscillator 70 is determined by the resistance, and thus the temperature, of the active sensors 502/504 and control sensor 505.
The use of the relaxation oscillator 70 for obtaining an electrical signal representative of the resistance of the sensors 502/504 and the control sensor 505 suitable for algorithmic processing is believed to be easier and less expensive than the use of an analog-to-digital converter for this purpose. Additionally, use of the relaxation oscillator 70 is believed to be more noise resistant than an analog-to-digital converter. Furthermore, the relaxation oscillator 70 uses less power than an analog-to-digital converter uses.
The frequency signal output of the precision timer 68 is applied to an input pin of a microprocessor 80 of the shunt evaluation system circuitry 50. The microprocessor 80 can be an AT90S2313 8-bit microcomputer, or any other microprocessor known to those skilled in the art. In addition to controlling the sequential switching of the sensors 502/504 and the control sensor 505 onto the common input line 62, the microprocessor 80 can operate as a frequency counter to determine a frequency value in accordance with the oscillation frequency of the relaxation oscillator 70. The frequency value determined by the microprocessor 80 is provided as an output of the shunt evaluation system circuitry 50 on an output bus 85. The output bus 85 can be coupled to a conventional RS-232 transceiver. In keeping with the system of the present invention, the output frequency value can also be provided on a parallel bus.
Referring back to
Referring back to
In the error correction protocol, the skin temperature of the control sensor 505 is subtracted from the skin temperature at the location of upstream sensor 502 and also subtracted from the skin temperature at the location of the downstream sensor 504. These subtractions correct for global skin temperature changes such as changes due to environment and physiology, for example excitement, attention and pain, and provide error correction for adjusting the flow rate to provide a corrected CSF flow rate or status.
Using the correct (subtracted) temperature curve makes it possible in a realistic clinical situation to accurately detect inflection points as the cooled CSF passes under the thermistors. When the time of the inflection points 108, 110 and the time difference between the inflection points 108, 110 are determined the flow calculation can be performed in substantially the same manner as the flow calculations of the prior art.
For example, in one embodiment of the invention the software providing graphical representation 100 displays on the screen two temperature inflection curves 102, 104 one for the upstream (shunt temperature minus control temperature) pair of thermistors and one for the downstream (shunt temperature minus control temperature) pair. The operator can use a mouse to move two vertical bars to the inflection points 108, 110.
The software can provide a window showing the times corresponding to the inflection points 108, 110 selected and prompting the operator for the diameter of the tubing. Since only two diameters are in common clinical use, the window can allow a choice between these two in the preferred embodiment. The software then calculated the flow rate from the time difference and the diameter.
Referring now to
One exemplary manner of applying the temperature sensitive material is via a flexible liquid crystal sheet such as the Mylar® liquid crystal sheets/films sold by Anchor Optics (AX61161, AX72375, etc.), or by Educational Innovations (LC-3035A, LC-5A, etc.) or by LCR Hallcrest, etc. When the thermo-sensitive sheet 602 is applied to a surface, e.g., the skin 10 of the subject, the sheet 602 changes color corresponding to a temperature change. Therefore, using the method of the present invention 602, the liquid crystal sheet 602 is applied on the skin 21 directly over the location of a shunt tube. Next, a temperature source 506 (e.g., an ice pack, a Peltier junction/device, a heat source using solid state or other heaters, or any type of cooling/warming agent) is applied to the skin at an upstream location with respect to the liquid crystal sheet 602. The cold/hot input from the source 506 is conveyed to the flow F in the shunt and which then moves through the shunt tube 18. When the cold/hot input from the source 506 arrives at the liquid crystal sheet 602, the sheet 602 experiences the temperature change and correspondingly changes color. By conducting tests with various flow rates and applying a liquid crystal sheet over a subcutaneous test shunt tube when a temperature source is applied over the subcutaneous tube upstream of the liquid crystal sheet 602, a correlation of flow rates and color changes can be obtained. An example of such a correlation can be seen in
To facilitate such readings, the liquid crystal sheet 602 is configured in the device using a reading unit 604 (e.g., devices having picture analysis software, including color analysis, e.g., specialized digital cameras, including colorimeters that analyze colors; by way of example only, the DR/890 Colorimeter marketed by the Hach Company of Loveland, Colo., can be modified for use as the reading unit 604). Thus the top surface 606 (
A further variation of the liquid crystal sheet 602 is that instead of its color or optical properties (e.g., polarization, attenuation, scattering, etc.) varying with temperature, it is possible that the electrical properties (e.g., resistivity, electrical permittivity, etc.) may vary with temperature. Moreover, the physical properties (elasticity, viscosity, etc.) of the liquid crystal sheet 602 may vary with temperature. It should be understood that where the electrical or physical properties vary according to temperature, the reading unit 604 may include means for interpreting such changes in the electrical/physical properties into flow status or flow rate, e.g., using a display with an alphanumeric readout.
It should be noted that an alternative to the liquid crystal sheet 602 is a temperature sensitive liquid that is sprayed-on the skin but which also changes color or other optical properties due to temperature changes. By way of example only, such a material is sold under the trademark Xposures® by The Alsa Corporation of Vernon, Calif. Alternatively, like the previously described variations of the liquid crystal sheet 602, the temperature sensitive liquid could also alter its electrical or physical properties in response to changes in temperature.
Another alternative is that the reading unit 604 is an active device, e.g., it is an optoelectronic or electronic means that analyze/interpret the color changes/patterns and provide a flow status (i.e., flow or no flow display) or a flow rate in alphanumeric form.
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
This application is a Continuation-in-Part application of, and claims the benefit under 35 U.S.C. §120 of, application Ser. No. 10/770,754 filed on Feb. 3, 2004 entitled CEREBRAL SPINAL FLUID SHUNT EVALUATION SYSTEM, and whose entire disclosure is incorporated by reference herein. Furthermore, this utility application also claims the benefit under 35 U.S.C. §119(e) of Provisional Application Ser. Nos. 60/911,687 filed on Apr. 13, 2007, entitled CEREBROVASCULAR FLUID EVALUATION SYSTEM HAVING THERMAL FLOW AND FLOW RATE MEASUREMENT PAD; 60/939,205 filed on May 21, 2007, entitled A METHOD AND DEVICE FOR MEASURING FLOW IN TUBES IMPLANTED SUBSCUTANEOUSLY; 60/941,827 filed on Jun. 4, 2007, entitled A METHOD AND DEVICE FOR DETECTING FLOW IN SUBCUTANEOUSLY-IMPLANTED SHUNTS/TUBING USING A TEMPERATURE SOURCE DIRECTLY OVER A TEMPERATURE SENSOR; and 60/989,284 filed on Nov. 20, 2007 entitled CSF EVALUATION SYSTEM USING FAST RESPONSE TEMPERATURE SENSORS AND MEASUREMENT PAD, and all of whose entire disclosures are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60989284 | Nov 2007 | US | |
60941827 | Jun 2007 | US | |
60939205 | May 2007 | US | |
60911687 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10770754 | Feb 2004 | US |
Child | 12055990 | US |