Provided are certain chemical entities, pharmaceutical compositions and methods of treatment of a member of the flaviviradae family of viruses such as hepacivirus (Hepatitis C or HCV).
The Flaviviridae family of viruses is composed of three genera: pestivirus, flavivirus and hepacivirus (hepatitis C virus). Of these genera, flaviviruses and hepaciviruses represent important pathogens of man and are prevalent throughout the world. There are 38 flaviviruses associated with human disease, including the dengue fever viruses, yellow fever virus, and Japanese encephalitis virus. Flaviviruses cause a range of acute febrile illnesses and encephalitic and hemorrhagic diseases. Hepaciviruses currently infect approximately 2 to 3% of the world population and cause persistent infections leading to chronic liver disease, cirrhosis, hepatocellular carcinoma and liver failure. Human pestiviruses have not been as extensively characterized as the animal pestiviruses. However, serological surveys indicate considerable pestivirus exposure in humans. Pestivirus infections in man have been implicated in several diseases including, but not limited to, congenital brain injury, infantile gastroenteritis and chronic diarrhea in human immunodeficiency virus (HIV).
HCV is a major causative agent for post-transfusion and for sporadic hepatitis. Infection by HCV is insidious in a high proportion of chronically infected (and infectious) carriers who may not experience clinical symptoms for many years.
At present, the only acceptable treatment for chronic HCV is interferon (IFN-alpha) and/or ribavirin and this requires at least six (6) months of treatment, which can reduce the viral load and also improve liver function in some people.
IFN-alpha belongs to a family of naturally occurring small proteins with characteristic biological effects such as antiviral, immunoregulatory and anti-tumoral activities. IFN-alpha is an important regulator of immunological control. Treatment of HCV with interferon, however, has limited long term efficacy with a response rate about 25%. In addition, treatment of HCV with interferon has frequently been associated with adverse side effects such as fatigue, fever, chills, headache, myalgias, arthralgias, mild alopecia, psychiatric effects and associated disorders, autoimmune phenomena and associated disorders and thyroid dysfunction.
Ribavirin (1-P-D-ribofuranosyl-1H-1,2,-4-triazole-3-carboxamide), an inhibitor of inosine 5′-monophosphate dehydrogenase (IMPDH), enhances the efficacy of IFN-alpha in the treatment of HCV. Despite the introduction of Ribavirin, up to 50% of the patients do not eliminate the virus with the current standard therapy of interferon-alpha (IFN) and Ribavirin. Ribavirin causes significant hemolysis in 10-20% of patients treated at currently recommended doses, and the drug is both teratogenic and embryotoxic. By now, standard therapy of chronic hepatitis C has been changed to the combination of PEG-IFN (pegylated interferon) plus ribavirin which leads only to small improvement.
Other approaches are being taken to combat the virus. They include, for example, application of antisense oligonucleotides or ribozymes for inhibiting HCV replication. Furthermore, low-molecular weight compounds that directly inhibit HCV proteins and interfere with viral replication are considered as attractive strategies to control HCV infection. Among non-structral viral proteins, NS3/4a serine protease, NS5b RNA dependent RNA polymerase are considered as prime targets for new drugs.
There is a need for the development of new compounds that combat hepacivirus. There remains a need for agents with stronger response rates and fewer side effects in terms of relief of symptoms, safety, and patient mortality, both short-term and long-term and an improved therapeutic index.
Provided is at least one chemical entity selected from compounds of Formula 1:
and pharmaceutically acceptable salts thereof, wherein
W1 is selected from CR1 and NR1;
W3 is selected from CR3 and NR3;
W4 is selected from CR4 and N;
W6 is selected from CR6 and N;
W8 is selected from C and N;
W9 is selected from C and N;
R1 is absent or is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14, —NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R2 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R3 is absent or is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R4 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R5 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R6, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R6 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R6, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR3, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR3, —CN, —NO2, and —C(O)R12;
R7 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R10 and R11 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted amino, optionally substituted alkoxy, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, or R10 and R11, taken together with any intervening atoms, form a ring system selected from optionally substituted heterocycloalkyl, and optionally substituted heteroaryl;
R12 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R13 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R14 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R15 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R16 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
provided that
and further provided that the compound of Formula 1 is not
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity described herein.
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity chosen from compounds of Formula 1a
and pharmaceutically acceptable salts thereof, wherein
W3 is selected from CR3 and NR3;
R2 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R3 is absent or is selected from halogen, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR5, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R5 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14, —NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R6 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R7 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R10 and R11 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted amino, optionally substituted alkoxy, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, or R10 and R11, taken together with any intervening atoms, form a ring system selected from optionally substituted heterocycloalkyl, and optionally substituted heteroaryl;
R12 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R13 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R14 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R15 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R16 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl.
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity chosen from
Also provided are methods for treating a viral infection mediated at least in part by a virus in the flaviviridae family of viruses, such as HCV, in mammals which methods comprise administering to a mammal, that has been diagnosed with said viral infection or is at risk of developing said viral infection, a pharmaceutical composition described herein.
Other aspects and embodiments will be apparent to those skilled in the art from the following detailed description.
As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
The following abbreviations and terms have the indicated meanings throughout:
HCV: hepacivirus
HIV: human immunodeficiency virus
IFN: interferon
IMPDH: inosine 5′-monophosphate dehydrogenase
mg: milligram
kg: kilogram
MDI: metered dose inhaler
DPI: dry powder inhaler
nM: nano-Molar
wt %: weight percent
M: micro-Molar
EC50: effective concentration of compound at 50% inhibition is observed
TC50: toxic concentration of compound at which 50% inhibition is observed
b: Hill's coefficient
g: gram
mL: milli-Liter
1N: 1 Normal concentration
AIDS: Acquired Immunodeficiency syndrome
It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present specification. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:
“Alkyl” refers to monovalent saturated aliphatic hydrocarbyl groups having from 1 to carbon atoms and, in some embodiments, from 1 to 6 carbon atoms. “Cx-yalkyl” refers to alkyl groups having from x to y carbon atoms. This term includes, by way of example, linear and branched hydrocarbyl groups such as methyl (CH3—), ethyl (CH3CH2—), n-propyl (CH3CH2CH2—), isopropyl ((CH3)2CH—), n-butyl (CH3CH2CH2CH2—), isobutyl ((CH3)2CHCH2—), sec-butyl ((CH3)(CH3CH2)CH—), t-butyl ((CH3)3C—), n-pentyl (CH3CH2CH2CH2CH2—), and neopentyl ((CH3)3CCH2—).
“Substituted alkyl” refers to an alkyl group having from 1 to 5 and, in some embodiments, 1 to 3 or 1 or 2 substituents selected from alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, azido, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, hydroxyamino, alkoxyamino, hydrazino, substituted hydrazino, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, spirocycloalkyl, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiocyanate, thiol, alkylthio, and substituted alkylthio, wherein said substituents are as defined herein.
“Alkylidene” or “alkylene” refers to divalent saturated aliphatic hydrocarbyl groups having from 1 to 10 carbon atoms and, in some embodiments, from 1 to 6 carbon atoms. “(Cu-v)alkylene” refers to alkylene groups having from u to v carbon atoms. The alkylidene and alkylene groups include branched and straight chain hydrocarbyl groups. For example “(C1-6)alkylene” is meant to include methylene, ethylene, propylene, 2-methypropylene, pentylene, and the like.
“Substituted alkylidene” or “substituted alkylene” refers to an alkylidene group having from 1 to 5 and, in some embodiments, 1 to 3 or 1 or 2 substituents selected from alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, azido, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, hydroxyamino, alkoxyamino, hydrazino, substituted hydrazino, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, oxo, thione, spirocycloalkyl, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiocyanate, thiol, alkylthio, and substituted alkylthio, wherein said substituents are as defined herein.
“Alkenyl” refers to a linear or branched hydrocarbyl group having from 2 to 10 carbon atoms and in some embodiments from 2 to 6 carbon atoms or 2 to 4 carbon atoms and having at least 1 site of vinyl unsaturation (>C═C<). For example, (Cx-Cy)alkenyl refers to alkenyl groups having from x to y carbon atoms and is meant to include for example, ethenyl, propenyl, 1,3-butadienyl, and the like.
“Substituted alkenyl” refers to alkenyl groups having from 1 to 3 substituents and, in some embodiments, 1 or 2 substituents selected from alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, alkyl, substituted alkyl, alkynyl, substituted alkynyl, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein and with the proviso that any hydroxy or thiol substitution is not attached to a vinyl (unsaturated) carbon atom.
“Alkynyl” refers to a linear monovalent hydrocarbon radical or a branched monovalent hydrocarbon radical containing at least one triple bond. The term “alkynyl” is also meant to include those hydrocarbyl groups having one triple bond and one double bond. For example, (C2-C6)alkynyl is meant to include ethynyl, propynyl, and the like.
“Substituted alkynyl” refers to alkynyl groups having from 1 to 3 substituents and, in some embodiments, from 1 or 2 substituents selected from alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, alkyl, substituted alkyl, alkenyl, substituted alkenyl, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are as defined herein and with the proviso that any hydroxy or thiol substitution is not attached to an acetylenic carbon atom.
“Alkoxy” refers to the group —O-alkyl wherein alkyl is defined herein. Alkoxy includes, by way of example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy, sec-butoxy, and n-pentoxy.
“Substituted alkoxy” refers to the group —O-(substituted alkyl) wherein substituted alkyl is as defined herein.
“Acyl” refers to the groups H—C(O)—, alkyl-C(O)—, substituted alkyl-C(O)—, alkenyl-C(O)—, substituted alkenyl-C(O)—, alkynyl-C(O)—, substituted alkynyl-C(O)—, cycloalkyl-C(O)—, substituted cycloalkyl-C(O)—, aryl-C(O)—, substituted aryl-C(O)—, substituted hydrazino-C(O)—, heteroaryl-C(O)—, substituted heteroaryl-C(O)—, heterocyclic-C(O)—, and substituted heterocyclic-C(O)—, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, substituted hydrazino, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. Acyl includes the “acetyl” group CH3C(O)—.
“Acylamino” refers to the groups —NR20C(O)alkyl, —NR20C(O)substituted alkyl, —NR20C(O)cycloalkyl, —NR20C(O)substituted cycloalkyl, —NR20C(O)alkenyl, —NR20C(O)substituted alkenyl, —NR20C(O)alkynyl, —NR20C(O)substituted alkynyl, —NR20C(O)aryl, —NR20C(O)substituted aryl, —NR20C(O)heteroaryl, —NR20C(O)substituted heteroaryl, —NR20C(O)heterocyclic, and —NR20C(O)substituted heterocyclic wherein R20 is hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Acyloxy” refers to the groups alkyl-C(O)O—, substituted alkyl-C(O)O—, alkenyl-C(O)O—, substituted alkenyl-C(O)O—, alkynyl-C(O)O—, substituted alkynyl-C(O)O—, aryl-C(O)O—, substituted aryl-C(O)O—, cycloalkyl-C(O)O—, substituted cycloalkyl-C(O)O—, heteroaryl-C(O)O—, substituted heteroaryl-C(O)O—, heterocyclic-C(O)O—, and substituted heterocyclic-C(O)O— wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Amino” refers to the group —NH2.
“Substituted amino” refers to the group —NR21R22 where R21 and R22 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, —SO2-alkyl, —SO2-substituted alkyl, —SO2-alkenyl, —SO2-substituted alkenyl, —SO2-cycloalkyl, —SO2-substituted cylcoalkyl, —SO2-aryl, —SO2-substituted aryl, —SO2-heteroaryl, —SO2-substituted heteroaryl, —SO2-heterocyclic, and —SO2-substituted heterocyclic and wherein R21 and R22 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that R21 and R22 are both not hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. When R21 is hydrogen and R22 is alkyl, the substituted amino group is sometimes referred to herein as alkylamino. When R21 and R22 are alkyl, the substituted amino group is sometimes referred to herein as dialkylamino. When referring to a monosubstituted amino, it is meant that either R21 or R22 is hydrogen but not both. When referring to a disubstituted amino, it is meant that neither R21 nor R22 are hydrogen.
“Hydroxyamino” refers to the group —NHOH.
“Alkoxyamino” refers to the group —NHO-alkyl wherein alkyl is defined herein.
“Aminocarbonyl” refers to the group —C(O)NR23R24 where R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, hydroxy, alkoxy, substituted alkoxy, amino, substituted amino, and acylamino, and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminothiocarbonyl” refers to the group —C(S)NR23R24 where R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminocarbonylamino” refers to the group —NR20C(O)NR23R24 where R20 is hydrogen or alkyl and R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminothiocarbonylamino” refers to the group —NR20C(S)NR23R24 where R20 is hydrogen or alkyl and R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminocarbonyloxy” refers to the group —O—C(O)NR23R24 where R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminosulfonyl” refers to the group —SO2NR23R24 where R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminosulfonyloxy” refers to the group —O—SO2NR23R24 where R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aminosulfonylamino” refers to the group —NR20—SO2NR23R24 where R20 is hydrogen or alkyl and R23 and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Amidino” refers to the group —C(═NR25)NR23R24 where R25, R23, and R24 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R23 and R24 are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Aryl” or “Ar” refers to an aromatic group of from 6 to 14 carbon atoms and no ring heteroatoms and having a single ring (e.g., phenyl) or multiple condensed (fused) rings (e.g., naphthyl or anthryl). For multiple ring systems, including fused, bridged, and spiro ring systems having aromatic and non-aromatic rings that have no ring heteroatoms, the term “Aryl” or “Ar” applies when the point of attachment is at an aromatic carbon atom (e.g., 5,6,7,8 tetrahydronaphthalene-2-Y1 is an aryl group as its point of attachment is at the 2-position of the aromatic phenyl ring).
“Substituted aryl” refers to aryl groups which are substituted with 1 to 8 and, in some embodiments, 1 to 5, 1 to 3, or 1 or 2 substituents selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, azido, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, hydroxyamino, alkoxyamino, hydrazino, substituted hydrazino, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiocyanate, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.
“Aryloxy” refers to the group —O-aryl, where aryl is as defined herein, that includes, by way of example, phenoxy and naphthyloxy.
“Substituted aryloxy” refers to the group —O-(substituted aryl) where substituted aryl is as defined herein.
“Arylthio” refers to the group —S-aryl, where aryl is as defined herein.
“Substituted arylthio” refers to the group —S-(substituted aryl), where substituted aryl is as defined herein.
“Azido” refers to the group —N3.
“Hydrazino” refers to the group —NHNH2.
“Substituted hydrazino” refers to the group —NR26NR27R28 where R26, R27, and R28 are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, carboxyl ester, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, —SO2-alkyl, —SO2-substituted alkyl, —SO2-alkenyl, —SO2-substituted alkenyl, —SO2-cycloalkyl, —SO2-substituted cylcoalkyl, —SO2-aryl, —SO2-substituted aryl, —SO2-heteroaryl, —SO2-substituted heteroaryl, —SO2-heterocyclic, and —SO2-substituted heterocyclic and wherein R27 and R28 are optionally joined, together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that R27 and R28 are both not hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Cyano” or “carbonitrile” refers to the group —CN.
“Carbonyl” refers to the divalent group —C(O)— which is equivalent to —C(═O)—.
“Carboxyl” or “carboxy” refers to —COOH or salts thereof.
“Carboxyl ester” or “carboxy ester” refers to the groups —C(O)O-alkyl, —C(O)O-substituted alkyl, —C(O)O-alkenyl, —C(O)O-substituted alkenyl, —C(O)O-alkynyl, —C(O)O-substituted alkynyl, —C(O)O-aryl, —C(O)O-substituted aryl, —C(O)O-cycloalkyl, —C(O)O-substituted cycloalkyl, —C(O)O-heteroaryl, —C(O)O-substituted heteroaryl, —C(O)O-heterocyclic, and —C(O)O-substituted heterocyclic wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“(Carboxyl ester)amino” refers to the group —NR20—C(O)O-alkyl, —NR20—C(O)O-substituted alkyl, —NR20—C(O)O-alkenyl, —NR20—C(O)O-substituted alkenyl, —NR20—C(O)O-alkynyl, —NR20—C(O)O-substituted alkynyl, —NR20—C(O)O-aryl, —NR20—C(O)O-substituted aryl, —NR20—C(O)O-cycloalkyl, —NR20—C(O)O-substituted cycloalkyl, —NR20—C(O)O-heteroaryl, —NR20—C(O)O-substituted heteroaryl, —NR20—C(O)O-heterocyclic, and —NR20—C(O)O-substituted heterocyclic wherein R20 is alkyl or hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“(Carboxyl ester)oxy” refers to the group —O—C(O)O-alkyl, —O—C(O)O-substituted alkyl, —O—C(O)O-alkenyl, —O—C(O)O-substituted alkenyl, —O—C(O)O-alkynyl, —O—C(O)O-substituted alkynyl, —O—C(O)O-aryl, —O—C(O)O-substituted aryl, —O—C(O)O-cycloalkyl, —O—C(O)O-substituted cycloalkyl, —O—C(O)O-heteroaryl, —O—C(O)O-substituted heteroaryl, —O—C(O)O-heterocyclic, and —O—C(O)O-substituted heterocyclic wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.
“Cycloalkyl” refers to a saturated or partially saturated cyclic group of from 3 to 14 carbon atoms and no ring heteroatoms and having a single ring or multiple rings including fused, bridged, and spiro ring systems. For multiple ring systems having aromatic and non-aromatic rings that have no ring heteroatoms, the term “cycloalkyl” applies when the point of attachment is at a non-aromatic carbon atom (e.g. 5,6,7,8,-tetrahydronaphthalene-5-yl). The term “Cycloalkyl” includes cycloalkenyl groups. Examples of cycloalkyl groups include, for instance, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and cyclohexenyl. “Cu-vcycloalkyl” refers to cycloalkyl groups having u to v carbon atoms.
“Cycloalkenyl” refers to a partially saturated cycloalkyl ring having at least one site of >C═C< ring unsaturation.
“Cycloalkylene” refer to divalent cycloalkyl groups as defined herein. Examples of cycloalkyl groups include those having three to six carbon ring atoms such as cyclopropylene, cyclobutylene, cyclopentylene, and cyclohexylene.
“Substituted cycloalkyl” refers to a cycloalkyl group, as defined herein, having from 1 to 8, or 1 to 5, or in some embodiments 1 to 3 substituents selected from oxo, thione, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, azido, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, hydroxyamino, alkoxyamino, hydrazino, substituted hydrazino, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO3H, substituted sulfonyl, sulfonyloxy, thioacyl, thiocyanate, thiol, alkylthio, and substituted alkylthio, wherein said substituents are as defined herein. The term “substituted cycloalkyl” includes substituted cycloalkenyl groups.
“Cycloalkyloxy” refers to —O-cycloalkyl wherein cycloalkyl is as defined herein.
“Substituted cycloalkyloxy refers to —O-(substituted cycloalkyl) wherein substituted cycloalkyl is as defined herein.
“Cycloalkylthio” refers to —S-cycloalkyl wherein cycloalkyl is as defined herein.
“Substituted cycloalkylthio” refers to —S-(substituted cycloalkyl).
“Guanidino” refers to the group —NHC(═NH)NH2.
“Substituted guanidino” refers to —NR29C(═NR29)N(R29)2 where each R29 is independently selected from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclyl, and substituted heterocyclyl and two R29 groups attached to a common guanidino nitrogen atom are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that at least one R29 is not hydrogen, and wherein said substituents are as defined herein.
“Halo” or “halogen” refers to fluoro, chloro, bromo, and iodo.
“Haloalkyl” refers to substitution of alkyl groups with 1 to 5 or in some embodiments 1 to 3 halo groups.
“Haloalkoxy” refers to substitution of alkoxy groups with 1 to 5 or in some embodiments 1 to 3 halo groups.
“Hydroxy” or “hydroxyl” refers to the group —OH.
“Heteroaryl” refers to an aromatic group of from 1 to 14 carbon atoms and 1 to 6 heteroatoms selected from oxygen, nitrogen, and sulfur and includes single ring (e.g. imidazolyl) and multiple ring systems (e.g. benzimidazol-2-yl and benzimidazol-6-yl). For multiple ring systems, including fused, bridged, and spiro ring systems having aromatic and non-aromatic rings, the term “heteroaryl” applies if there is at least one ring heteroatom and the point of attachment is at an atom of an aromatic ring (e.g. 1,2,3,4-tetrahydroquinolin-6-yl and 5,6,7,8-tetrahydroquinolin-3-yl). In one embodiment, the carbon, nitrogen and/or the sulfur ring atom(s) of the heteroaryl group are optionally oxidized to provide for the C═O, N-oxide (N—O), sulfinyl, or sulfonyl moieties. More specifically the term heteroaryl includes, but is not limited to, pyridyl, furanyl, thienyl, thiazolyl, isothiazolyl, triazolyl, imidazolyl, isoxazolyl, pyrrolyl, pyrazolyl, pyridazinyl, pyrimidinyl, benzofuranyl, tetrahydrobenzofuranyl, isobenzofuranyl, benzothiazolyl, benzoisothiazolyl, benzotriazolyl, indolyl, isoindolyl, benzoxazolyl, quinolyl, tetrahydroquinolinyl, isoquinolyl, quinazolinonyl, benzimidazolyl, benzisoxazolyl, or benzothienyl.
“Substituted heteroaryl” refers to heteroaryl groups that are substituted with from 1 to 8 or in some embodiments 1 to 5, or 1 to 3, or 1 or 2 substituents selected from the substituents defined for substituted aryl.
“Heteroaryloxy” refers to —O-heteroaryl wherein heteroaryl is as defined herein.
“Substituted heteroaryloxy refers to the group —O-(substituted heteroaryl) wherein substituted heteroaryl is as defined herein.
“Heteroarylthio” refers to the group —S-heteroaryl wherein heteroaryl is as defined herein.
“Substituted heteroarylthio” refers to the group —S-(substituted heteroaryl) wherein substituted heteroaryl is as defined herein.
“Aromatic” indicates that each of ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and in which (4n+2)π electrons, when n is 0 or a positive integer, are associated with the ring to comply with Huckel's rule. Aromatic ring systems may be depicted as a circle, which represents the (4n+2)π electrons, enclosed by an outer cyclic structure, such as, a hexagon or pentagon. For example, each of the rings in the compound of Formula 1 is aromatic.
“Heterocyclic” or “heterocycle” or “heterocycloalkyl” or “heterocyclyl” refers to a saturated or partially saturated cyclic group having from 1 to 14 carbon atoms and from 1 to 6 heteroatoms selected from nitrogen, sulfur, phosphorus or oxygen and includes single ring and multiple ring systems including fused, bridged, and spiro ring systems. For multiple ring systems having aromatic and/or non-aromatic rings, the terms “heterocyclic”, “heterocycle”, “heterocycloalkyl”, or “heterocyclyl” apply when there is at least one ring heteroatom and the point of attachment is at an atom of a non-aromatic ring (e.g. 1,2,3,4-tetrahydroquinoline-3-yl, 5,6,7,8-tetrahydroquinoline-6-yl, and decahydroquinolin-6-yl). In one embodiment, the nitrogen, phosphorus and/or sulfur atom(s) of the heterocyclic group are optionally oxidized to provide for the N-oxide, phosphinane oxide, sulfinyl, sulfonyl moieties. More specifically the heterocyclyl includes, but is not limited to, tetrahydropyranyl, piperidinyl, N-methylpiperidin-3-yl, piperazinyl, N-methylpyrrolidin-3-yl, 3-pyrrolidinyl, 2-pyrrolidon-1-yl, morpholinyl, and pyrrolidinyl. A prefix indicating the number of carbon atoms (e.g., C3-C10) refers to the total number of carbon atoms in the portion of the heterocyclyl group exclusive of the number of heteroatoms.
“Substituted heterocyclic” or “Substituted heterocycle” or “substituted heterocycloalkyl” or “substituted heterocyclyl” refers to heterocyclic groups, as defined herein, that are substituted with from 1 to 5 or in some embodiments 1 to 3 of the substituents as defined for substituted cycloalkyl.
“Heterocyclyloxy” refers to the group —O-heterocycyl wherein heterocyclyl is as defined herein.
“Substituted heterocyclyloxy” refers to the group —O-(substituted heterocycyl) wherein substituted heterocyclyl is as defined herein.
“Heterocyclylthio” refers to the group —S-heterocycyl wherein heterocyclyl is as defined herein.
“Substituted heterocyclylthio” refers to the group —S-(substituted heterocycyl) wherein substituted heterocyclyl is as defined herein.
Examples of heterocycle and heteroaryl groups include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, pyridone, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7-tetrahydrobenzo[b]thiophene, thiazole, thiazolidine, thiophene, benzo[b]thiophene, morpholine, thiomorpholine (also referred to as thiamorpholine), 1,1-dioxothiomorpholine, piperidine, pyrrolidine, and tetrahydrofuran.
“Nitro” refers to the group —NO2.
“Oxo” refers to the atom (═O).
“Oxide” refers to products resulting from the oxidation of one or more heteroatoms. Examples include N-oxides, sulfoxides, and sulfones.
“Spirocycloalkyl” refers to a 3 to 10 member cyclic substituent formed by replacement of two hydrogen atoms at a common carbon atom with an alkylene group having 2 to 9 carbon atoms, as exemplified by the following structure wherein the methylene group shown here attached to bonds marked with wavy lines is substituted with a spirocycloalkyl group:
“Sulfonyl” refers to the divalent group —S(O)2—.
“Substituted sulfonyl” refers to the group —SO2-alkyl, —SO2-substituted alkyl, —SO2-alkenyl, —SO2-substituted alkenyl, —SO2-alkynyl, —SO2-substituted alkynyl, —SO2-cycloalkyl, —SO2-substituted cylcoalkyl, —SO2-aryl, —SO2-substituted aryl, —SO2-heteroaryl, —SO2-substituted heteroaryl, —SO2-heterocyclic, —SO2-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein. Substituted sulfonyl includes groups such as methyl-SO2—, phenyl-SO2—, and 4-methylphenyl-SO2—.
“Sulfonyloxy” refers to the group —OSO2-alkyl, —OSO2-substituted alkyl, —OSO2-alkenyl, —OSO2-substituted alkenyl, —OSO2-cycloalkyl, —OSO2-substituted cylcoalkyl, —OSO2-aryl, —OSO2-substituted aryl, —OSO2-heteroaryl, —OSO2-substituted heteroaryl, —OSO2-heterocyclic, —OSO2-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
“Thioacyl” refers to the groups H—C(S)—, alkyl-C(S)—, substituted alkyl-C(S)—, alkenyl-C(S)—, substituted alkenyl-C(S)—, alkynyl-C(S)—, substituted alkynyl-C(S)—, cycloalkyl-C(S)—, substituted cycloalkyl-C(S)—, aryl-C(S)—, substituted aryl-C(S)—, heteroaryl-C(S)—, substituted heteroaryl-C(S)—, heterocyclic-C(S)—, and substituted heterocyclic-C(S)—, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
“Thiol” refers to the group —SH.
“Alkylthio” refers to the group —S-alkyl wherein alkyl is as defined herein.
“Substituted alkylthio” refers to the group —S-(substituted alkyl) wherein substituted alkyl is as defined herein.
“Thiocarbonyl” refers to the divalent group —C(S)— which is equivalent to —C(═S)—.
“Thione” refers to the atom (═S).
“Thiocyanate” refers to the group —SCN.
“Compound” and “compounds” as used herein refers to a compound encompassed by the generic formulae disclosed herein, any subgenus of those generic formulae, and any forms of the compounds within the generic and subgeneric formulae, including the racemates, stereoisomers, and tautomers of the compound or compounds.
“Racemates” refers to a mixture of enantiomers.
“Solvate” or “solvates” of a compound refer to those compounds, where compounds is as defined above, that are bound to a stoichiometric or non-stoichiometric amount of a solvent. Solvates of a compound includes solvates of all forms of the compound. In certain embodiments, solvents are volatile, non-toxic, and/or acceptable for administration to humans in trace amounts. Suitable solvates include water.
“Stereoisomer” or “stereoisomers” refer to compounds that differ in the chirality of one or more stereocenters. Stereoisomers include enantiomers and diastereomers.
“Tautomer” refer to alternate forms of a compound that differ in the position of a proton, such as enol-keto and imine-enamine tautomers, or the tautomeric forms of heteroaryl groups containing a ring atom attached to both a ring —NH— moiety and a ring ═N— moiety such as pyrazoles, imidazoles, benzimidazoles, triazoles, and tetrazoles.
“Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, and tetraalkylammonium, and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, and oxalate. Suitable salts include those described in P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts Properties, Selection, and Use; 2002.
“Patient” refers to mammals and includes humans and non-human mammals.
“Treating” or “treatment” of a disease in a patient refers to 1) preventing the disease from occurring in a patient that is predisposed or does not yet display symptoms of the disease; 2) inhibiting the disease or arresting its development; or 3) ameliorating or causing regression of the disease.
Unless indicated otherwise, the nomenclature of substituents that are not explicitly defined herein are arrived at by naming the terminal portion of the functionality followed by the adjacent functionality toward the point of attachment. For example, the substituent “arylalkyloxycabonyl” refers to the group (aryl)-(alkyl)-O—C(O)—.
It is understood that in all substituted groups defined above, polymers arrived at by defining substituents with further substituents to themselves (e.g., substituted aryl having a substituted aryl group as a substituent which is itself substituted with a substituted aryl group, which is further substituted by a substituted aryl group etc.) are not intended for inclusion herein. In such cases, the maximum number of such substitutions is three. For example, serial substitutions of substituted aryl groups with two other substituted aryl groups are limited to -substituted aryl-(substituted aryl)-substituted aryl.
Similarly, it is understood that the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluoro groups). Such impermissible substitution patterns are well known to the skilled artisan.
Provided is at least one chemical entity selected from compounds of Formula 1:
and pharmaceutically acceptable salts thereof, wherein
W1 is selected from CR1 and NR1;
W3 is selected from CR3 and NR3;
W4 is selected from CR4 and N;
W6 is selected from CR6 and N;
W8 is selected from C and N;
W9 is selected from C and N;
R1 is absent or is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R2 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR3, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R3 is absent or is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR11, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR3, —NR11C(O)R12 —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R4 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14, —NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R5 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR3, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R6 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR3, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R7 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NROR11, —NR C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R10 and R11 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted amino, optionally substituted alkoxy, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, or R10 and R11, taken together with any intervening atoms, form a ring system selected from optionally substituted heterocycloalkyl, and optionally substituted heteroaryl;
R12 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R13 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R14 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R15 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R16 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
provided that
In some embodiments, the compound of Formula 1 is selected from the following compounds:
In some embodiments, the compound of Formula 1 is selected from the following compounds:
In some embodiments, the compound of Formula 1 is selected from the following compounds:
In some embodiments, the compound of Formula 1 is selected from the following compounds:
In some embodiments, the compound of Formula 1 is selected from the following compounds:
In some embodiments, the compound of Formula 1 is
In some embodiments, R2 is selected from optionally substituted alkyl, —NR11S(O)2R14, —NR11C(O)NR10R11, —NR11C(O)OR3—C(O)NR10R11, and —C(O)OR13.
In some embodiments, R2 is lower alkyl substituted with —NR10R11, where R10 and R11 are as described herein. In some embodiments, R2 is —CH2—NR10R11, where R10 and R11 are as described herein.
In some embodiments, R2 is lower alkyl substituted with —NR10R11 and R10 and R11, together with any intervening atoms, form an optionally substituted heterocycloalkyl, as described herein. In some embodiments, R2 is —CH2—NR10R11 and R10 and R11, together with any intervening atoms, form an optionally substituted heterocycloalkyl, as described herein.
In some embodiments, R2 is lower alkyl substituted with —C(O)NR10R11, where R10 and R11 are as described herein. In some embodiments, R2 is —CH2—C(O)NR10R11, where R10 and R11 are as described herein.
In some embodiments, R2 is —C(O)NR10R11.
In some embodiments, R10 is selected from lower alkyl and hydrogen. In some embodiments, R10 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, and optionally substituted aryl. In some embodiments, R10 is —(CR17R18)nR19, wherein R17 and R18 are independently selected from hydrogen, carboxy, optionally substituted aminocarbonyl, lower carboxy ester, and lower alkyl; n is 0, 1 or 2; and R19 is chosen from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments, R10 is benzyl, thiophen-2-yl-ethyl, thiophen-3-yl-methyl, furan-2-yl-methyl, and furan-3-yl-methyl, each of which is optionally substituted. In some embodiments, R11 is selected from lower alkyl and hydrogen.
In some embodiments, R10 and R11, together with any intervening atoms, form an optionally substituted heterocycloalkyl. In some embodiments, R10 and R11, together with any intervening atoms, form a substituted 3- to 7-membered nitrogen containing heterocycloalkyl which optionally further includes one or two additional heteroatoms chosen from N, O, S, S(O), S(O)2, and P(O), wherein said 3- to 7-membered nitrogen containing heterocycloalkyl is substituted with a group —Y—R30 and optionally substituted with a second group R31, wherein
Y is a bond or is selected from —NR10—, —NR11SO2—, —O—, —S—, —C(O)NR10—, and —S(O)2R10—;
R30 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R31 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, —OH, —SH, —NO2, —NR10R11, —C(O)NR10R11, —C(O)OR13, —SO2NR10R11, —NR11C(S)NR10R11, —NR11C(O)NR10R11, —CN, —NR11SO2R14, and —NR11CO2R13.
In some embodiments, R10 and R11, together with any intervening atoms, form a substituted 3- to 7-membered nitrogen containing heterocycloalkyl which optionally further includes one or two additional heteroatoms chosen from N, O, S, S(O), S(O)2, and P(O), wherein said 3- to 7-membered nitrogen containing heterocycloalkyl is substituted with a group —Y—R30 and optionally substituted with a second group R31, wherein
Y is a bond or is selected from —O—, —S—, —C(O)NR10, and —S(O)2R10—;
R30 is selected from optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R31 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, —NO2, —NR10R11, —C(O)NR10R11, —C(O)OR13, —SO2NR10R11, —NR11C(S)NR10R11, —NR11C(O)NR10R11, —CN, —NR11SO2R14, and —NR11CO2R13.
In some embodiments, Y is a bond or is selected from —NR10— and —O—. In some embodiments, Y is a bond or is —O—. In some embodiments, Y is a bond.
In some embodiments, R30 is selected from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments, R30 is selected from phenyl, thiophen-2-yl, thiophen-3-yl, furan-2-yl, furan-3-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, pyrazol-4-yl, imidazol-4-yl, and imidazol-2-yl. In some embodiments, R30 is selected from phenyl, thiophen-2-yl, thiophen-3-yl, furan-2-yl, and furan-3-yl. In some embodiments, R30 is phenyl. In some embodiments, R30 is optionally substituted alkyl. In some embodiments, R30 is optionally substituted lower alkyl. In some embodiments, R30 is lower alkyl. In some embodiments, R30 is methyl.
In some embodiments, R2 is —C(O)NR10R11 and R10 and R11, together with any intervening atoms, form a pyrrolidinyl, piperidinyl, piperazinyl, 5,6-dihydropyridin-1(2H)-yl, 4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-1H-pyrrol-1-yl, or azetidinyl ring, wherein said ring is substituted with a group —Y—R30 and optionally substituted with a second group R31 as described above.
In some embodiments, R2 is lower alkyl substituted with —C(O)NR10R11 and R10 and R11, together with any intervening atoms, form a pyrrolidinyl, piperidinyl, piperazinyl, 5,6-dihydropyridin-1(2H)-yl, 4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-H-pyrrol-1-yl, or azetidinyl ring, wherein said ring is substituted with a group —Y—R30 and optionally substituted with a second group R31 as described above. In some embodiments, R2 is —CH2— substituted with —C(O)NR10R11 and R10 and R11, together with any intervening atoms, form a pyrrolidinyl, piperidinyl, piperazinyl, 5,6-dihydropyridin-1(2H)-yl, 4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-1H-pyrrol-1-yl, or azetidinyl ring, wherein said ring is substituted with a group —Y—R30 and optionally substituted with a second group R31 as described above.
In some embodiments, R2 is optionally substituted heteroaryl. In some embodiments, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted. In some embodiments, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from optionally substituted aryl and optionally substituted alkyl. In some embodiments, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from optionally substituted phenyl, optionally substituted benzyl, and optionally substituted phenoxymethyl. In some embodiments, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from phenyl, benzyl, and phenoxymethyl.
In some embodiments, R3 is selected from optionally substituted alkyl and halogen. In some embodiments, R3 is selected from lower alkyl and halogen. In some embodiments, R3 is halogen. In some embodiments, R3 is selected from chlorine and bromine. In some embodiments, R3 is chlorine. In some embodiments, R3 is hydrogen.
In some embodiments, R4 is selected from hydrogen, optionally substituted alkyl, —NR11SO2R14, —NR11C(O)NR10R11, —NR11CO2R13—S(O)NR10R11, —NR10C(O)NR10R11, —CN, —NO2, and —C(O)R12. In some embodiments, R11 is hydrogen. In some embodiments, R10 is selected from optionally substituted alkyl and optionally substituted cycloalkyl.
In some embodiments, R4 is selected from hydrogen and optionally substituted lower alkyl. In some embodiments, R4 is hydrogen.
In some embodiments, R4 is —CN.
In some embodiments, R5 is selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl. In some embodiments, R5 is selected from optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl. In some embodiments, R5 is selected from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments, R5 is selected from pyrid-3-yl, pyrazol-4-yl, phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted. In some embodiments, R5 is selected from phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted. In some embodiments, R5 is selected from phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted with one or two groups chosen from lower alkyl, halogen, morpholinyl, trifluoromethyl, and lower alkoxy. In some embodiments, R5 is selected from phenyl, 3-fluorophenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl.
In some embodiments, R6 is selected from hydrogen, halogen, optionally substituted alkyl, —OR15, —S(O)NR10R11, —C(O)R12, —NO2, —C(O)NR10R11, and —NR10R11. In some embodiments, R6 is selected from hydrogen, halogen, optionally substituted alkyl, —S(O)NR10R11, —C(O)R12, —NO2, —C(O)NR10R11, and —NR10R11. In some embodiments, R11 is hydrogen. In some embodiments, R10 is selected from optionally substituted alkyl and optionally substituted cycloalkyl. In some embodiments, R10 and R11, taken together with any intervening atoms, form an optionally substituted heterocycloalkyl ring.
In some embodiments, R6 is selected from hydrogen, halogen, and optionally substituted alkyl. In some embodiments, R6 is selected from hydrogen and halogen. In some embodiments, R6 is hydrogen.
In some embodiments, R7 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, heterocycloalkyl, optionally substituted aryl, —SO2NR10R11, and —NR10R11. In some embodiments, R7 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, heterocycloalkyl, optionally substituted aryl, and —NR10R11. In some embodiments, R7 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, and —NR10R11. In some embodiments, R7 is selected from optionally substituted alkyl, optionally substituted alkoxy, and —NR10R11. In some embodiments, R7 is selected from optionally substituted lower alkoxy and optionally substituted lower alkyl.
In some embodiments, R7 is polyhalogenated lower alkoxy. In some embodiments, R7 selected from trifluoromethoxy and difluorochloromethoxy.
In some embodiments, R7 is polyhalogenated lower alkyl. In some embodiments, R7 is polyhalogenated methyl. In some embodiments, R7 is selected from trifluoromethyl and difluorochloromethyl. In some embodiments, R7 is trifluoromethyl.
In some embodiments, R7 is —NR10R11. In some embodiments, R11 is hydrogen. In some embodiments, R10 is optionally substituted lower alkyl. In some embodiments, R10 is methyl. In some embodiments, R10 is 2-hydroxyethyl.
In some embodiments, the compound of Formula 1 is chosen from the compounds set forth in Table 1, Table 2, and Table 3.
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity described herein.
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity chosen from compounds of Formula 1a
and pharmaceutically acceptable salts thereof, wherein
W3 is selected from CR3 and NR3;
R2 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R6, —S(O)2R6, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R3 is absent or is selected from halogen, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11—NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R5 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR3, —CN, —NO2, and —C(O)R12;
R6 is selected from hydrogen, halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R7 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted amino, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, —OR15, —SR15, —S(O)R16, —S(O)2R16, —S(O)2NR10R11, —NR10R11, —NR11C(O)NR10R11, —NR11C(S)NR10R11, —NR11S(O)2R14—NR11C(O)OR13, —NR11C(O)R12, —C(NR11)NR10R11, —C(O)NR10R11, —C(O)OR13, —CN, —NO2, and —C(O)R12;
R10 and R11 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted amino, optionally substituted alkoxy, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, or R10 and R11, taken together with any intervening atoms, form a ring system selected from optionally substituted heterocycloalkyl, and optionally substituted heteroaryl;
R12 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R13 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R14 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;
R15 is selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R16 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl.
In some embodiments of compounds of Formula 1a, R2 is selected from optionally substituted alkyl, —NR11S(O)2R14, —NR11C(O)NR10R11, —NR11C(O)OR13—C(O)NR10R11, and —C(O)OR13.
In some embodiments of compounds of Formula 1a, R2 is —C(O)NR10R11. In some embodiments of compounds of Formula 1a, R10 is selected from lower alkyl and hydrogen. In some embodiments of compounds of Formula 1a, R10 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, and optionally substituted aryl.
In some embodiments of compounds of Formula 1a, R10 is —(CR17R18)nR19, wherein
R17 and R18 are independently selected from hydrogen, carboxy, optionally substituted aminocarbonyl, lower carboxy ester, and lower alkyl; n is 0, 1 or 2; and R19 is chosen from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments of compounds of Formula 1a, R10 is benzyl, thiophen-2-yl-ethyl, thiophen-3-yl-methyl, furan-2-yl-methyl, and furan-3-yl-methyl, each of which is optionally substituted.
In some embodiments of compounds of Formula 1a, R10 and R11, together with any intervening atoms, form an optionally substituted heterocycloalkyl. In some embodiments of compounds of Formula 1a, R10 and R11, together with any intervening atoms, form a substituted 3- to 7-membered nitrogen containing heterocycloalkyl which optionally further includes one or two additional heteroatoms chosen from N, O, S and P(O), wherein said 3- to 7-membered nitrogen containing heterocycloalkyl is substituted with a group —Y—R30 and optionally substituted with a second group R31, wherein
Y is a bond or is selected from —NR10—, —NR11SO2—, —O—, —S—, —C(O)NR10—, and —S(O)2R10—;
R30 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R31 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, —OH, —SH, —NO2, —NR10R11, —C(O)NR10R11, —C(O)OR3, —SO2NR10R11, —NR11C(S)NR10R11, —NR11C(O)NR10R11, —CN, —NR11SO2R14, and —NR11CO2R13.
In some embodiments of compounds of Formula 1a, R10 and R11, together with any intervening atoms, form an optionally substituted heterocycloalkyl. In some embodiments of compounds of Formula 1a, R10 and R11, together with any intervening atoms, form a substituted 3- to 7-membered nitrogen containing heterocycloalkyl which optionally further includes one or two additional heteroatoms chosen from N, O, S and P(O), wherein said 3- to 7-membered nitrogen containing heterocycloalkyl is substituted with a group —Y—R30 and optionally substituted with a second group R31, wherein
Y is a bond or is selected from —O—, —S—, —C(O)NR10—, and —S(O)2R10—;
R30 is selected from optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
R31 is selected from halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, —NO2, —NR10R11, —C(O)NR10R11, —C(O)OR13, —SO2NR10R11, —NR11C(S)NR10R11, —NR11C(O)NR10R11, —CN, —NR11SO2R14, and —NR11CO2R13.
In some embodiments of compounds of Formula 1a, Y is a bond or is chosen from —NR10— and —O—. In some embodiments of compounds of Formula 1a, Y is a bond or is —O—. In some embodiments of compounds of Formula 1a, Y is a bond.
In some embodiments of compounds of Formula 1a, R30 is selected from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments of compounds of Formula 1a, R30 is selected from phenyl, thiophen-2-yl, thiophen-3-yl, furan-2-yl, furan-3-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, pyrazol-4-yl, imidazol-4-yl, and imidazol-2-yl. In some embodiments of compounds of Formula 1a, R30 is selected from phenyl, thiophen-2-yl, thiophen-3-yl, furan-2-yl, and furan-3-yl of compounds of Formula 1a. In some embodiments, R30 is phenyl. In some embodiments of compounds of Formula 1a, R30 is optionally substituted alkyl. In some embodiments of compounds of Formula 1a, R30 is optionally substituted lower alkyl. In some embodiments of compounds of Formula 1a, R30 is lower alkyl. In some embodiments of compounds of Formula 1a, R30 is methyl.
In some embodiments of compounds of Formula 1a, R2 is optionally substituted heteroaryl. In some embodiments, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted. In some embodiments of compounds of Formula 1a, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from optionally substituted aryl and optionally substituted alkyl. In some embodiments of compounds of Formula 1a, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from optionally substituted phenyl, optionally substituted benzyl, and optionally substituted phenoxymethyl. In some embodiments of compounds of Formula 1a, R2 is isoxazol-5-yl or [1,2,4]oxadiazol-5-yl, each of which is optionally substituted with a group chosen from phenyl, benzyl, and phenoxymethyl.
In some embodiments of compounds of Formula 1a, R3 is halogen. In some embodiments of compounds of Formula 1a, R3 is selected from chlorine and bromine. In some embodiments of compounds of Formula 1a, R3 is chlorine.
In some embodiments of compounds of Formula 1a, R5 is selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl. In some embodiments of compounds of Formula 1a, R5 is selected from optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl. In some embodiments of compounds of Formula 1a, R5 is selected from optionally substituted aryl and optionally substituted heteroaryl. In some embodiments of compounds of Formula 1a, R5 is selected from pyrid-3-yl, pyrazol-4-yl, phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted. In some embodiments of compounds of Formula 1a, R5 is selected from phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted. In some embodiments of compounds of Formula 1a, R5 is selected from phenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl, each of which is optionally substituted with one or two groups chosen from lower alkyl, halogen, morpholinyl, trifluoromethyl, and lower alkoxy. In some embodiments of compounds of Formula 1a, R5 is selected from phenyl, 3-fluorophenyl, furan-2-yl, furan-3-yl, thiophen-2-yl, and thiophen-3-yl.
In some embodiments of compounds of Formula 1a, R6 is selected from hydrogen, halogen, optionally substituted alkyl, —OR15, —S(O)NR10R11, —C(O)R12, —NO2, —C(O)NR10R11, and —NR10R11. In some embodiments of compounds of Formula 1a, R6 is selected from hydrogen, halogen, optionally substituted alkyl, —S(O)NR10R11, —C(O)R12, —NO2, —C(O)NR10R11, and —NR10R11.
In some embodiments of compounds of Formula 1a, R11 is hydrogen. In some embodiments of compounds of Formula 1a, R10 is selected from optionally substituted alkyl and optionally substituted cycloalkyl.
In some embodiments of compounds of Formula 1a, R10 and R11, taken together with any intervening atoms, form an optionally substituted heterocycloalkyl ring.
In some embodiments of compounds of Formula 1a, R6 is selected from hydrogen, halogen, and optionally substituted alkyl. In some embodiments of compounds of Formula 1a, R6 is selected from hydrogen and halogen. In some embodiments of compounds of Formula 1a, R6 is hydrogen.
In some embodiments of compounds of Formula 1a, R7 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, heterocycloalkyl, optionally substituted aryl, —SO2NR10R11, and —NR10R11. In some embodiments of compounds of Formula 1a, R7 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, heterocycloalkyl, optionally substituted aryl, and —NR10R11. In some embodiments of compounds of Formula 1a, R7 is selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted alkoxy, and —NR10R11. In some embodiments of compounds of Formula 1a, R7 is selected from optionally substituted alkyl, optionally substituted alkoxy, and —NR10R11. In some embodiments of compounds of Formula 1a, R7 is selected from optionally substituted lower alkoxy and optionally substituted lower alkyl.
In some embodiments of compounds of Formula 1a, R7 is polyhalogenated lower alkoxy. In some embodiments of compounds of Formula 1a, R7 selected from trifluoromethoxy and difluorochloromethoxy.
In some embodiments of compounds of Formula 1a, R7 is polyhalogenated lower alkyl. In some embodiments of compounds of Formula 1a, R7 is polyhalogenated methyl. In some embodiments of compounds of Formula 1a, R7 is selected from trifluoromethyl and difluorochloromethyl. In some embodiments of compounds of Formula 1a, R7 is trifluoromethyl.
In some embodiments of compounds of Formula 1a, R7 is —NR10R11. In some embodiments of compounds of Formula 1a, R10 is hydrogen. In some embodiments of compounds of Formula 1a, R10 is optionally substituted lower alkyl. In some embodiments of compounds of Formula 1a, R10 is methyl. In some embodiments of compounds of Formula 1a, R10 is 2-hydroxyethyl.
Also provided is a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of at least one chemical entity chosen from
The methods of synthesis for the provided chemical entities employ readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
Additionally, the methods of this specification employ protecting groups which are necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Third Edition, Wiley, New York, 1999, and references cited therein.
Furthermore, the provided chemical entities may contain one or more chiral centers and such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this specification, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof. For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Ernka-Chemce or Sigma (St. Louis, Mo., USA). Others may be prepared by procedures, or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5 and Supplementals (Elsevier Science Publishers, 1989), Organic Reactions, Volumes 1-40 (John Wiley and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley and Sons, 4th Edition), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989). The synthesis of the compounds provided generally follows either a convergent or linear synthetic pathway as described below.
Unless specified to the contrary, the reactions described herein take place at atmospheric pressure, generally within a temperature range from −10° C. to 200° C. Further, except as employed in the Examples or as otherwise specified, reaction times and conditions are intended to be approximate, e.g., taking place at about atmospheric pressure within a temperature range of about −10° C. to about 110° C. over a period of about 1 to about 24 hours; reactions left to run overnight average a period of about 16 hours.
The terms “solvent,” “organic solvent,” and “inert solvent” each mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, N-methylpyrrolidone (“NMP”), pyridine and the like]. Unless specified to the contrary, the solvents used in the reactions described herein are inert organic solvents. Unless specified to the contrary, for each gram of the limiting reagent, one cc (or mL) of solvent constitutes a volume equivalent
Isolation and purification of the chemical entities and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, or a combination of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the examples herein below. However, other equivalent separation or isolation procedures can also be used.
When desired, the (R)- and (S)-isomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated, for example, by crystallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent. Alternatively, a specific enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.
Scheme 1 shows a method of assembling the imidazopyridine scaffold with various substituents. 2-Amino pyridine substituted with R7 is brominated by treatment with NBS in a solvent such as DMF. Substituted 2-aminopyridine 1.2 is cyclized to the imidazopyridine 1.3 by heating it with ethyl bromopyruvate in a solvent like DMF. Treatment of intermediate 1.3 with NCS in DMF affords the 3-chlorosubstituted imidazopyridine 1.4. Palladium mediated coupling reactions such as Suzuki couplings, Sonogashira couplings and Heck couplings can afford diversity at R5 in intermediates 1.5. Hydrolysis of the ester is effected by refluxing in 4N HCl and acetonitrile as co-solvent. The acid 1.6 is converted to amides 1.7 through standard amide coupling agents such as HBTU.
Scheme 2 shows a general scheme for the synthesis of purine analogs such as 2.5. An appropriately substituted amino dichloropyrimidine (2.1) can be converted to diaminopyrimidine such as 2.2 by stirring with an appropriately substituted primary amine (R3NH2). Reaction with ethyl glyoxalate affords the ester intermediate 2.3. Paladium mediated coupling reactions such as Suzuki couplings, Sonogashira couplings and Heck couplings can afford diversity. Hydrolysis of the ester followed by amide coupling can afford the desired purine amide analogs such as 2.5.
Scheme 3 shows a general scheme for the synthesis of pyrrolopyrimidines such as 3.7. The BOC protected amino bromo pyrimidine (3.2) can be prepared from the appropriately substituted amino bromo pyrimidine (3.1) using standard methods. Sonogashira coupling with ethyl propiolate would afford the alkyne 3.3. Cyclization to the 2-substituted pyrrolopyrimidine 3.4 can be done by heating with tetrabutyl ammonium fluoride. Heating 3.4 with an alkyl halide results in N-alkylation to the intermediate 3.5. Palladium mediated coupling reactions such as Suzuki couplings, Sonogashira couplings and Heck couplings can afford diversity at R5 in intermediates 3.6. Hydrolysis of the ester is effected by refluxing in 4N HCl and acetonitrile as co-solvent. The resulting acid is converted to amides 3.7 through standard amide coupling
Scheme 4 describes the synthesis of imidazopyridine analogs such as 4.5. The appropriately substituted 3-amino 2-chloropyridine 4.1 when heated with a primary amine such as R3NH2 affords the 2,3-diaminopyridine 4.2. Reaction with ethyl glyoxalate affords the ester intermediate 4.3. Hydrolysis of the ester followed by amide coupling can afford the desired imidazopyridine amide analogs such as 4.5.
Scheme 5 describes the synthesis of pyrrolopyridine analogs such as 5.5. The appropriately substituted 3-aminopyridine such as 5.1 can be brominated at the 2-position by reaction with NBS. Sonogashira coupling with ethyl propiolate would afford the alkyne 5.3. Cyclization to the 2-substituted pyrolopyridine can be done by first protecting the amine as the Boc derivative, then heating with tetrabutyl ammonium fluoride. Hydrolysis of the ester is effected by refluxing in 4N HCl and acetonitrile as co-solvent. The resulting acid (5.4) is converted to amides 5.5 through standard amide coupling agents such as HBTU.
Scheme 6 shows the synthesis of pyrazolo[1,5-a]pyridines. Compounds can be prepared by 1,3-dipolar cycloaddition of substituted N-aminopyridines 6.2 with an alkyne such as methyl propiolate, dimethyl acetylenedicarboxylate or the like. N-amination of pyridines can be carried out by treating substituted pyridines 6.1 with aminating reagents such as hydroxylamine-O-sulfonic acid, O-mesitylenesulfonylhydroxylamine (MSH), O-(2,4-dinitrophenyl)hydroxylamine (Ref: C. Legault, A. B. Charette, J. Org. Chem., 2003, 68, 7119-7122; S. Lober, H. Htibner, W. Utz, P. Gmeiner, J. Med. Chem., 2001, 44, 2691-2694; also WO2006068826). Substituted pyridines can in turn be prepared by a variety of methods known in the literature such as the Chichibabin pyridine synthesis, Hantzsch pyridine synthesis, Guareschi-Thorpe pyridine synthesis, Bohlmann-Rahtz pyridine synthesis, Krohnke pyridine synthesis or Boger pyridine synthesis. Regarding the preparation of pyridines, see Comprehensive Heterocyclic Chemistry II Vol. 5, A. Katrizky, C. Rees, E. Scriven. For example, compounds of formula 6.3, can be prepared in which dimethyl acetylenedicarboxylate is treated with optionally substituted N-aminopyridine in the presence of a suitable base such as potassium carbonate, DBU and the like, in a suitable solvent such as DMF, and the like. Compounds of formula 6.4 can be prepared by the acidic hydrolysis and chemoselective decarboxylation with a suitable acid such as concentrated sulfuric acid and the like under heating conditions.
For example, compounds of formula 6.5, in which R2 is C(O)NR10R11 can be prepared by reacting a deprotected carboxylic acid with a primary or secondary amine or amine salt, e.g. amine of the formula NR10R11.
The reaction can be carried out with the acid in the presence of a coupling agent such as benzotriazole-1-yloxytrispyrrolidino-phosphonium hexafluorophosphate (PyBOP®), bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP®), 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HBTU), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU), or 1,3-dicyclohexylcarbodiimide (DCC) or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) optionally in the presence of 1-hydroxybenzotriazole (HOBt). As appropriate, a base such as N,N-diisopropylethylamine, triethylamine, or N-methylmorpholine can be used. The reaction is carried out in suitable organic solvents, such as DMF, THF and the like. Suitable amines and amine salts are either commercially available or they can be prepared from commercial available starting materials by methods known in the art.
A compound of formula 7.4 or 7.5 in which R7 is Br, I, or alkyl can be prepared by deprotection of compound of formula 7.1 in which R7 is H with a base followed by addition of an electrophilic agent as shown in Scheme 7. This reaction is carried out in suitable organic solvents such as THF, ether and the like and at temperature about −78° C. Base such as n-buthyl lithium can be used for the deprotonation. Electrophilic reagents such as bromine, iodine, 1,2-dibromo-tetrachloroethane, methyl iodide can be used.
Referring to Scheme 8, a compound of formula 8.3 in which R3 is Cl, Br, or I, can be prepared by treating compounds of formula 8.1 or 8.4 in which R3 is H with electrophilic agents such as N-bromosuccinimide (NBS), N-chlorosuccinimide (NCS), N-iodosuccinimide (NIS). The reaction can be carried out in suitable solvents such as DMF, acetonitrile, chloroform, acetic acid and the like and at room temperature or heating at 40-50° C.
A compound of formula 8.3 in which R3 is NO2 can be prepared by treating compounds of formula 8.1 in which R3 is H with nitrating agents such as fuming nitric acid, potassium nitrate or the like. The reaction can be carried out with suitable solvents such as sulfuric acid, acetic anhydride, trifluoroacetic acid and the like.
Referring to Scheme 9, a compound of formula 9.2 with R7 is NR10R11 or OR15 can be prepared by substitution of a compound 9.1 with R7 is Br or Cl with an amine or alcohol in a suitable solvent such as DMF, DMA, NMP and the like. These reactions can be carried out at 120-200° C. under conventional heating or under microwave conditions.
Referring to Scheme 10, a compound of formula 10.2 with R7 is CN, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted amino can be prepared by transition metal-mediated reactions of a compound with formula 10.1 with R7 is Cl, Br, or I. For example, these transition metal-mediated reactions can be one of those in the literature such as Suzuki-Miyaura reacions, Heck reactions, Stille reactions, Sonogashira reactions, and Buchwald aminations.
Similarly, a compound of formula 10.4 with R5 is CN, optionally substituted aryl, optionally substituted heteroaromatic rings, or optionally substituted amino can be prepared by transition metal-mediated reactions of a compound with formula 10.3 with R5 is Cl, Br, or I. For example, these transition metal-mediated reactions can be one of those in the literature such as Suzuki-Miyaura reacions, Heck reactions, Stille reactions, Sonogashira reactions, and Buchwal-Hartwig aminations.
Referring to Scheme 11, compounds of formula 11.10 in which R7 is polyhalogenated alkyl, such as CF2C1 or CF3, can be prepared. Pyrazolo[1,5-a]pyridines may be prepared by Hemetsberger-Knittel synthesis by thermolysis of substituted 2-azido-2-pyridine acrylate of formula 11.8. (K. L. Stevens, et al, Org. Lett., 2005, 7, 4653-4756; P. J. Roy, et al., Synthesis, 2005, 16, 2751-2757.)
Substituted pyridines of formula 11.5 with R7 is polyhalogenated alkyl, such as CF3, or CF2Cl, can be prepared using the Krohnke pyridine synthesis (F. Krihnke, Synthesis, 1976, 1-24) by reacting a pyridinium salt of formula 11.4 and 4-substituted-2-oxo-but-3-enoic acid or its acid salt in the presence of ammonium acetate. The reaction can be carried out in suitable solvents such as methanol, acetic acid, water and the like and heating at 80-100° C. maybe used.
Pyridinium salt of formula 11.4 in which R7 is CF2C1 or CF3 can be prepared by reacting 1-carboxymethylpyridinium chloride 11.1 (T. Thorsteinsson, et al, J. Med. Chem. 2003, 46, 4173-4181) with anhydrides such as trifluoroacetic anhydride, dichlorofluoroacetic anhydride in the presence of a base. As appropriate, a base such as N,N-diisopropylethylamine, or triethylamine can be used. The reaction is carried out in suitable organic solvents, such as ether, THF or the like and at temperature around 0° C. The betaeine of formula 11.3 can be hydrolyzed under acidic conditions to give Pyridinium salt of formula 11.4. Acids such as hydrochloric acid can be used and heating at 40-80° C. may be used.
Substituted-2-oxo-but-3-enoic acid can be obtained from commercial sources or can be prepared as known in the art. Compounds with R5 is furan-2-yl can be prepared by reacting 2-furaldehyde with pyruvic acid in the presence of base. Suitable bases such as aqueous sodium hydroxide or aqueous potassium hydroxide can be used and temperature around 0° C. may be used.
Substituted pyridine 2-carboxyaldehyde 11.6 can be prepared by conversion of pyridine 2-carboxylic acid 11.5 to an ester followed by reduction with hydride reagents such as lithium aluminum hydride (LAH), di-isobutylaluminum hydride (DIBAL-H) and the like. The reaction can be carried out in suitable solvents such Et2O, THF and the like and temperatures of from about −78 to 0° C. may be used. Alternatively, substituted pyridine 2-carboxyaldehyde 11.6 can be prepared by conversion of pyridine 2-carboxylic acid 11.5 to a Weinreb amide followed by reduction with hydride reagents such as lithium aluminum hydride (LAH), di-isobutylaluminum hydride (DIBAL-H) and the like. The reaction can be carried out in suitable solvents such Et2O, THF and the like and temperatures of from about −78 to 0° C. may be used.
Substituted pyridine 2-carboxyaldehyde 11.6 can react with an alkyl azido acetate 11.7 under basic condition to give substituted 2-azido-2-pyridine acrylate of formula 11.8. Suitable bases such as sodium methoxide, sodium ethoxide, sodium tert-butoxide and the like can be used. The reaction can be carried out in suitable solvents such as methanol, ethanol, iso-propanol, tert-butanol and the like and the temperatures of from about −50 to 0° C. may be used.
Pyrazolo[1,5-a]pyridines of formula 11.9 can be prepared by heating substituted 2-azido-2-pyridine acrylate of formula 11.8. The reaction can be carried out in suitable solvents such as toluene, xylene, DMF, DMA, NMP and the like. These reactions can be carried out at 120-200° C. under conventional heating or under microwave conditions.
Esters of pyrazolo[1,5-a]pyridines of formula 11.9 can be saponified under basic conditions such as lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. The reaction can be carried out in suitable solvents such as THF, methanol and the like with the addition of water. These reactions can be carried out at room temperature or optionally with heating. Similarly, the acids obtained can be coupled with an amine NHR10R11 or amine salt to give compounds of formula 11.10 under standard amide coupling conditions described above.
Scheme 12 describes the synthesis of imidazo[1,2-b]pyridazine analogs such as 12.6. The appropriately substituted 2-chloropyridazine 12.1 can be aminated with ammonia in solvents such as iso-propanol to give 2-aminopyridazine 12.2 and the reaction is usually carried out under heating in a sealed tube. 2-Chloropyridazine can in turn be prepared from chlorination of 2H-pyridazin-3-one with phosphoryl chloride and the like. Substituted 2-aminopyridazine can be cyclized with substituted methyl bromopyruvate in solvents such as DMF and the like and at temperatures 50-80° C. to give substituted imidazo[1,2-b]pyridazine 12.3. Halogenation at the 3-position can be carried out by reacting imidazo[1,2-b]pyridazine 12.3 with N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide and the like. The methyl ester of substituted imidazo[1,2-b]pyridazine 12.4 can be saponified with bases such as lithium hydroxide, sodium hydroxide, and the like and in solvents such as tetrahydrofuran, alcohol, and water. Substituted imidazo[1,2-b]pyridazine-2-carboxylic acids 12.5 can be converted to the amides 12.6 in the presence of a coupling agent such as benzotriazole-1-yloxytrispyrrolidino-phosphonium hexafluorophosphate (PyBOP®), bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP®), 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HBTU), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU), or 1,3-dicyclohexylcarbodiimide (DCC) or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) optionally in the presence of 1-hydroxybenzotriazole (HOBt). As appropriate, a base such as N,N-diisopropylethylamine, triethylamine, or N-methylmorpholine can be used. The reaction is carried out in suitable organic solvents, such as DMF, THF and the like. Suitable amines and amine salts are either commercially available or they can be prepared from commercial available starting materials by methods known in the art.
Scheme 13 describes the synthesis of benzimidazole analogs such as 13.7 and 13.8. Benzimidazole scaffold can be assembled by cyclization of substituted 2-acyl-1,2-diaminophenediamine. Substituted aniline 13.1 can be acylated with ethyl oxalyl chloride to give substituted N-phenyl-oxalamic acid ethyl ester 13.2 which in turn can be nitrated using nitric acid/sulfuric acid to give substituted N-(2-nitro-phenyl)-oxalamic acid ethyl ester 13.3. Reduction of nitro group can be carried out using sodium dithionite or other reducing reagents. Addition of aromatic or heteroaromatic groups with concomitant cyclization to benimidazole and saponification of ethyl ester can be achieved under Suzuki coupling conditions. The resultant substituted benzimidazole-2-carboxylic acids 13.5 can be converted to the amides 13.6 using standard coupling conditions as described above. Alkylation of benzimidazole can be carried out using alkyl halides, alkyl mesylate, alkyl triflates or the like and with suitable bases such as sodium hydride in solvents such as DMF, THF and the like, to give benzimidazole analogs 13.7 and 13.8
Alternatively, 1-alkyl-1H-benzimidazole derivatives can be prepared in Scheme 14. N-alkylation of substituted N-(2-nitro-phenyl)-oxalamic acid ethyl ester 14.1 can be prepared with alkyl halides, alkyl mesylates, alkyl triflates or the like with suitable bases such as sodium hydride in solvents such as DMF, THF and the like. Reduction of nitro group can be carried out using sodium dithionite or other reducing reagents. Addition of aromatic or heteroaromatic groups with concomitant cyclication to benzimidazole and saponification of ethyl ester can be achieved under Suzuki coupling conditions. The resultant substituted 1-alkyl-1H-benzoimidazole-2-carboxylic acids 14.4 can be converted to the amides 14.5 using standard coupling conditions as described above.
Provided are chemical entities possessing antiviral activity, including against hepatitis C virus. The chemical entities provided herein may inhibit viral replication by inhibiting the enzymes involved in replication, including RNA dependent RNA polymerase. They may also inhibit other enzymes utilized in the activity or proliferation of viruses in the flaviviridae family, such as HCV.
The chemical entities described herein are administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described. While human dosage levels have yet to be optimized for the chemical entities described herein, generally, a daily dose ranges from about 0.05 to 100 mg/kg of body weight; in certain embodiments, from about 0.10 to 10.0 mg/kg of body weight, and in certain embodiments, from about 0.15 to 1.0 mg/kg of body weight. Thus, for administration to a 70 kg person, in certain embodiments, the dosage range would be about from 3.5 to 7000 mg per day; in certain embodiments, about from 7.0 to 700.0 mg per day, and in certain embodiments, about from 10.0 to 100.0 mg per day. The amount of the chemical entity administered will, of course, be dependent on the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician; for example, a likely dose range for oral administration would be from about 70 to 700 mg per day, whereas for intravenous administration a likely dose range would be from about 70 to 700 mg per day depending on compound pharmacokinetics.
Administration of the chemical entities described herein can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, sublingually, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly. In some embodiments, oral or parenteral administration is used.
Pharmaceutical compositions or formulations include solid, semi-solid, liquid and aerosol dosage forms, such as, e.g., tablets, capsules, powders, liquids, suspensions, suppositories, aerosols or the like. The chemical entities can also be administered in sustained or controlled release dosage forms, including depot injections, osmotic pumps, pills, transdermal (including electrotransport) patches, and the like, for prolonged and/or timed, pulsed administration at a predetermined rate. In certain embodiments, the compositions are provided in unit dosage forms suitable for single administration of a precise dose.
The chemical entities described herein can be administered either alone or more typically in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like). If desired, the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like). Generally, depending on the intended mode of administration, the pharmaceutical composition will contain about 0.005% to 95%; in certain embodiments, about 0.5% to 50% by weight of a chemical entity. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.
In addition, the chemical entities described herein can be co-administered with, and the pharmaceutical compositions can include, other medicinal agents, pharmaceutical agents, adjuvants, and the like. Suitable medicinal and pharmaceutical agents include therapeutically effective amounts of one or more agents active against HCV. In some embodiments, the agent active against HCV is an inhibitor of HCV proteases, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV replicase, HCV NS5A protein, or inosine 5′-monophosphate dehydrogenase. In some embodiments, the agent active against HCV is an inhibitor of HCV proteases, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, or inosine 5′-monophosphate dehydrogenase.
Active agents against HCV include ribavirin, levovirin, viramidine, thymosin alpha-1, an inhibitor of NS3 serine protease, and inhibitor of inosine monophosphate dehydrogenase, interferon-alpha, either alone or in combination with ribavirin or levovirin. In some embodiments, the additional agent active against HCV is interferon-alpha or pegylated interferon-alpha alone or in combination with ribavirin or levovirin. In some embodiments, the agent active against hepatitis C virus is interferon.
Other suitable medicinal and pharmaceutical agents include TRH, diethylstilbesterol, theophylline, enkephalins, E series prostaglandins, compounds disclosed in U.S. Pat. No. 3,239,345 (e.g., zeranol), compounds disclosed in U.S. Pat. No. 4,036,979 (e.g., sulbenox), peptides disclosed in U.S. Pat. No. 4,411,890 growth hormone secretagogues such as GHRP-6, GHRP-1 (disclosed in U.S. Pat. No. 4,411,890 and publications WO 89/07110 and WO 89/07111), GHRP-2 (disclosed in WO 93/04081), NN703 (Novo Nordisk), LY444711 (Lilly), MK-677 (Merck), CP424391 (Pfizer) and B-HT920, growth hormone releasing factor and its analogs, growth hormone and its analogs and somatomedins including IGF-1 and IGF-2, alpha-adrenergic agonists, such as clonidine or serotonin 5-HTD agonists, such as sumatriptan, agents which inhibit somatostatin or its release, such as physostigmine, pyridostigmine, parathyroid hormone, PTH(1-34), and bisphosphonates, such as MK-217 (alendronate).
Still other suitable medicinal and pharmaceutical agents include estrogen, testosterone, selective estrogen receptor modulators, such as tamoxifen or raloxifene, other androgen receptor modulators, such as those disclosed in Edwards, J. P. et. al., Bio. Med. Chem. Let., 9, 1003-1008 (1999) and Hamann, L. G. et. al., J. Med. Chem., 42, 210-212 (1999), and progesterone receptor agonists (“PRA”), such as levonorgestrel, medroxyprogesterone acetate (MPA).
Still other suitable medicinal and pharmaceutical agents include HIV and AIDS therapies, such as indinavir sulfate, saquinavir, saquinavir mesylate, ritonavir, lamivudine, zidovudine, lamivudine/zidovudine combinations, zalcitabine, didanosine, stavudine, and megestrol acetate.
Still other suitable medicinal and pharmaceutical agents include antiresorptive agents, hormone replacement therapies, vitamin D analogues, elemental calcium and calcium supplements, cathepsin K inhibitors, MMP inhibitors, vitronectin receptor antagonists, Src SH.sub.2 antagonists, vacular—H+-ATPase inhibitors, ipriflavone, fluoride, Tibo lone, pro stanoids, 17-beta hydroxysteroid dehydrogenase inhibitors and Src kinase inhibitors.
The above other therapeutic agents, when employed in combination with the chemical entities described herein, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.
In certain embodiments, the compositions will take the form of a pill or tablet and thus the composition will contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like. In another solid dosage form, a powder, marume, solution or suspension (e.g., in propylene carbonate, vegetable oils or triglycerides) is encapsulated in a gelatin capsule.
Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. at least one chemical entity and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to injection. The percentage of chemical entities contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the chemical entities and the needs of the subject. However, percentages of active ingredient of 0.01% to 10% in solution are employable, and will be higher if the composition is a solid which will be subsequently diluted to the above percentages. In certain embodiments, the composition will comprise from about 0.2 to 2% of the active agent in solution.
Pharmaceutical compositions of the chemical entities described herein may also be administered to the respiratory tract as an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the pharmaceutical composition have diameters of less than 50 microns, in certain embodiments, less than 10 microns.
The following examples serve to more fully describe the manner of using the above-described invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes.
In general, the chemical entities provided will be administered in a therapeutically effective amount by any of the accepted modes of administration for agents that serve similar utilities. The actual amount of the chemical entity, i.e., the active ingredient, will depend upon numerous factors such as the severity of the disease to be treated, the age and relative health of the subject, the potency of the chemical entity used, the route and form of administration, and other factors. The drug can be administered more than once a day, such as once or twice a day.
Therapeutically effective amounts of the chemical entities described herein may range from approximately 0.05 to 50 mg per kilogram body weight of the recipient per day; such as about 0.01-25 mg/kg/day, for example, from about 0.5 to 10 mg/kg/day. Thus, for administration to a 70 kg person, the dosage range may be about 35-70 mg per day.
In general, the chemical entities will be administered as pharmaceutical compositions by any one of the following routes: oral, systemic (e.g., transdermal, intranasal or by suppository), or parenteral (e.g., intramuscular, intravenous or subcutaneous) administration. In certain embodiments, oral administration with a convenient daily dosage regimen that can be adjusted according to the degree of affliction may be used. Compositions can take the form of tablets, pills, capsules, semisolids, powders, sustained release formulations, solutions, suspensions, elixirs, aerosols, or any other appropriate compositions. Another manner for administering the provided chemical entities is inhalation.
The choice of formulation depends on various factors such as the mode of drug administration and bioavailability of the drug substance. For delivery via inhalation the chemical entity can be formulated as liquid solution, suspensions, aerosol propellants or dry powder and loaded into a suitable dispenser for administration. There are several types of pharmaceutical inhalation devices-nebulizer inhalers, metered dose inhalers (MDI) and dry powder inhalers (DPI). Nebulizer devices produce a stream of high velocity air that causes the therapeutic agents (which are formulated in a liquid form) to spray as a mist that is carried into the patient's respiratory tract. MDI's typically are formulation packaged with a compressed gas. Upon actuation, the device discharges a measured amount of therapeutic agent by compressed gas, thus affording a reliable method of administering a set amount of agent. DPI dispenses therapeutic agents in the form of a free flowing powder that can be dispersed in the patient's inspiratory air-stream during breathing by the device. In order to achieve a free flowing powder, the therapeutic agent is formulated with an excipient such as lactose. A measured amount of the therapeutic agent is stored in a capsule form and is dispensed with each actuation.
Recently, pharmaceutical compositions have been developed for drugs that show poor bioavailability based upon the principle that bioavailability can be increased by increasing the surface area i.e., decreasing particle size. For example, U.S. Pat. No. 4,107,288 describes a pharmaceutical formulation having particles in the size range from 10 to 1,000 nM in which the active material is supported on a cross-linked matrix of macromolecules. U.S. Pat. No. 5,145,684 describes the production of a pharmaceutical formulation in which the drug substance is pulverized to nanoparticles (average particle size of 400 nm) in the presence of a surface modifier and then dispersed in a liquid medium to give a pharmaceutical formulation that exhibits remarkably high bioavailability.
The compositions are comprised of, in general, at least one chemical entity described herein in combination with at least one pharmaceutically acceptable excipient. Acceptable excipients are non-toxic, aid administration, and do not adversely affect the therapeutic benefit of the at least one chemical entity described herein. Such excipient may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art.
Solid pharmaceutical excipients include starch, cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like. Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils, including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc. Liquid carriers, for injectable solutions, include water, saline, aqueous dextrose, and glycols.
Compressed gases may be used to disperse a chemical entity described herein in aerosol form. Inert gases suitable for this purpose are nitrogen, carbon dioxide, etc. Other suitable pharmaceutical excipients and their formulations are described in Remington's Pharmaceutical Sciences, edited by E. W. Martin (Mack Publishing Company, 18th ed., 1990).
The amount of the chemical entity in a composition can vary within the full range employed by those skilled in the art. Typically, the composition will contain, on a weight percent (wt %) basis, from about 0.01-99.99 wt % of at least one chemical entity described herein based on the total composition, with the balance being one or more suitable pharmaceutical excipients. In certain embodiments, the at least one chemical entity described herein is present at a level of about 1-80 wt %. Representative pharmaceutical compositions containing at least one chemical entity described herein are described below.
Additionally, the present specification is directed to a pharmaceutical composition comprising a therapeutically effective amount of at least one chemical entity described herein in combination with a therapeutically effective amount of another active agent against RNA-dependent RNA virus and, in particular, against HCV. Agents active against HCV include, but are not limited to, ribavirin, levovirin, viramidine, thymosin alpha-1, an inhibitor of HCV NS3 serine protease, or an inhibitor of inosine monophosphate dehydrognease, interferon-a, pegylated interferon-α (peginterferon-a), a combination of interferon-a and ribavirin, a combination of peginterferon-a and ribavirin, a combination of interferon-a and levovirin, and a combination of peginterferon-a and levovirin. Interferon-a includes, but is not limited to, recombinant interferon-a2a (such as ROFERON interferon available from Hoffman-LaRoche, Nutley, N.J.), interferon-a2b (such as Intron-A interferon available from Schering Corp., Kenilworth, N.J., USA), a consensus interferon, and a purified interferon-a product. For a discussion of ribavirin and its activity against HCV, see J. O, Saunders and S. A. Raybuck, “Inosine Monophosphate Dehydrogenase: Consideration of Structure, Kinetics and Therapeutic Potential,” Ann. Rep. Med. Chem., 2:201-210 (2000).
The following examples serve to more fully describe the manner of using the above-described invention. It is understood that these examples in no way serve to limit the true scope of the invention, but rather are presented for illustrative purposes.
A mixture of 4-phenyl pyridine (1.55 g, 10 mmol) and 2,4-dinitro-phenyl-hydroxylamine (2.86 g, 11.5 mmol) was stirred in acetonitrile (15 mL) at 45° C. for 12.5 hours. Upon cooling, the mixture was triturated with diethyl ether (50 mL) and centrifuged to give a solid. The solid was triturated again with diethyl ether (5 mL), centrifuged and dried under high vacuum to give 1-amino-4-phenyl-pyridinium 2,4-dinitro-phenolate (3.08 g, 87%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 6.29 (d, 1H, J=9.8 Hz), 7.59-7.63 (m, 3H), 7.75 (dd, 1H, J=3.2, 9.7 Hz), 7.95-7.98 (m, 2H), 8.34-8.38 (m, 4H), 8.57 (d, 1H, J=3.2 Hz), 8.76-8.80 (m, 2H); MS (ESI) m/z=171 (M+).
To a mixture of 1-amino-4-phenyl-pyridinium 2,4-dinitro-phenolate (3.1 g, 8.75 mmol) and K2CO3 (2.42 g, 17.50 mmol) in DMF (20 mL) was added dimethyl acetylenedicarboxylate (1.13 mL, 9.19 mmol) dropwise. Air was bubbled through the reaction mixture. After 2.5 hours, the solid was filtered followed by concentration of solvent under reduced pressure. The crude material was diluted with water (60 mL) and extracted with diethyl ether (3×60 mL). The combined organic extracts were dried (MgSO4), filtered and concentrated. Column chromatography [n-hex:EtOAc (2:1) followed by n-hex:EtOAc (3:2)] of the crude gave 5-phenyl-pyrazolo[1,5-a]pyridine-2,3-dicarboxylic acid dimethyl ester (1.64 g, 60%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.86 (s, 3H), 3.93 (s, 3H), 7.47-7.59 (m, 3H), 7.62 (dd, 1H, J=2, 7.3 Hz), 7.82-7.87 (m, 2H), 8.24 (dd, 1H, J=0.9, 2 Hz), 8.97 (dd, 1H, J=0.9, 7.3 Hz); MS (ESI) m/z=333 (MNa+).
A solution of 5-phenyl-pyrazolo[1,5-a]pyridine-2,3-dicarboxylic acid dimethyl ester (6.33 g, 20.4 mmol) in H2SO4 (100 mL) and water (20 mL) was heated at 90° C. for 27 hours. The mixture was cooled to room temperature followed by the addition of water to precipitate the product. The solid was filtered, washed with water and dried under high vacuum overnight to give 5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (4.6 g, 95%) as a solid.
To a solution of 5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (600 mg, 2.52 mmol) in THF (35 mL) at −78° C. was added dropwise a solution of n-butyl lithium (2.5 M in hexanes, 2.22 mL, 5.54 mmol) over 5 min. After 30 min at −78° C., a solution of iodine (1.278 g, 5.04 mmol) in THF (20 mL) was added. After 15 min, the reaction was allowed to stir at 0° C. for 30 min. An aqueous solution of sodium thiosulfate (1 M, 30 mL) was added slowly to the reaction followed by hydrochloric acid (2 N, 10 mL). The mixture was extracted with EtOAc (2×125 mL). The oragnic extracts were dried (MgSO4), filtered and concentrated to give a mixture of acids (1.25 g) which was used for the next step without further purification.
A mixture of 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid and 3,7-diiodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (1.25 g), 2-thiophenemethylamine (0.284 mL, 2.77 mmol), N,N-di-isopropylethylamine (DIPEA, 1.32 mL, 7.56 mmol), and bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP®, 1.23 g, 2.64 mmol) was stirred in DMF (25 mL) at room temperature for 30 min. The mixture was diluted with EtOAc (250 mL) and washed successively with 2N HCl (2×40 mL), saturated aqueous NaHCO3 (40 mL), and brine (40 mL). The organic phase was dried (MgSO4), filtered and concentrated. The crude products were column chromatographed [n-hex/EtOAc (5:1 v/v) to n-hex/EtOAc (3.5:1 v/v)] to give 3,7-diiodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (43.2 mg, 3%) followed by 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (468.1 mg, 40%).
Data for 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6.2 Hz), 6.96 (dd, 1H, J=3.2, 5 Hz), 7.04 (dd, 1H, J=1.2, 3.5 Hz), 7.28 (s, 1H), 7.39 (dd, 1H, J=1.2, 5 Hz), 7.41-7.53 (m, 2H), 7.80-7.84 (m, 2H), 7.94 (d, 1H, J=1.8 Hz), 8.13 (d, 1H, J=2.1 Hz), 8.97 (t, 1H, J=6.2 Hz); MS (ESI) m/z=460 (MH+).
Data for 3,7-diiodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6.2 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.06 (dd, 1H, J=1.2, 3.5 Hz), 7.40 (dd, 1H, J=1.5, 5 Hz), 7.42-7.54 (m, 3H), 7.74 (d, 1H, J=2 Hz), 7.84-7.88 (m, 2H), 8.00 (d, 1H, J=2 Hz), 8.96 (t, 1H, J=6.2 Hz); MS (ESI) m/z=586 (MH+).
(ref: D. G. Batt, G. C. Houghton, J. Het. Chem., 1995, 32,963)
Following the literature procedure, 4,4,4-trifluoromethyl-1-phenyl-1,3-butanedione (1.69 g, 7.81 mmol) and nitroacetamidine (805 mg, 7.81 mmol) was heated in EtOH (40 mL) at 95° C. for 4 days. Concentration of the solvent followed by addition of CH2Cl2/EtOAc/MeOH to precipitate unreacted starting material. The suspension was centrifuged and the solvent decanted and absorbed on silica gel. Column chromatography [toluene/n-hex/EtOAc (40:60:4 v/v)] of the crude product gave 3-nitro-6-phenyl-4-trifluoromethyl-pyridin-2-ylamine (515.8 mg, 23%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.48-7.56 (m, 4H), 7.60 (brs, 2H), 8.12-8.15 (m, 2H); MS (ESI) m/z=284 (MH+).
A suspension of 3-nitro-6-phenyl-4-trifluoromethyl-pyridin-2-ylamine (513.7 mg, 18.14 mmol) and Pd/C (10%, 48 mg) in EtOH/THF (1:1 v/v, 40 mL) was shaken under H2 atmosphere at 50 psi using a Parr apparatus for 7 hours. The catalyst was filtered through a small pad of Celite and the solvent removed under reduced pressure to give the desired product as a light orange oil (499 mg). The diaminopyridine was used for the next step without further purification. A mixture of diaminopyridine (495 mg) and methyl trimethoxyacetate (1.2 mL) (prepared according to literature: W. Kentlchner, et al, Liebigs Ann. Chem., 1980, 1448-1454) at 100° C. for 20 hours. A second batch of methyl trimethoxyacetate (0.2 mL) was added and the mixture was heated at 120° C. for 5.5 hours. The solvent was concentrated, and refluxed with charcoal (950 mg) in acetone (50 mL) for 4 hours. Upon cooling, the charcoal was filtered and the solvent concentrated. Column chromatography [n-hex/EtOAc (1:1 v/v) to n-hex/EtOAc (1:1.5 v/v)] of the crude material gave 5-phenyl-7-trifluoromethyl-3H-imidazo[4,5-b]pyridine-2-carboxylic acid methyl ester (164.6 mg, 28% yield) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.07 (s, 3H), 7.44-7.55 (m, 3H), 8.17-8.20 (m, 3H); MS (ESI) m/z=322.2 (MH+).
A mixture of 5-phenyl-7-trifluoromethyl-3H-imidazo[4,5-b]pyridine-2-carboxylic acid methyl ester (22.5 mg, 0.07 mmol) and LiOH.H2O (29.4 mg, 0.7 mmol) was heated in THF/H2O (3:1 v/v, 4 mL) under microwave conditions at 150° C. for 12 min. The organic solvent was removed and the mixture was acidified with 5N HCl. The aqueous solution was extracted with EtOAc (2×10 mL), dried (MgSO4), filtered and concentrated to give the acid (26.7 mg) as a light yellow solid which was used without further purification. A mixture of the crude acid (22 mg, 0.0716 mmol), 2-thiophenemethylamine (8.1 μL, 0.079 mmol), N,N-di-isopropylethylamine (37.4 μL, 0.215 mmol), and bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP®, 36.7 mg, 0.079 mmol) was stirred in DMF (1 mL) at room temperature for 45 min. The mixture was diluted with EtOAc (20 mL) and washed successively with 2N HCl (2×10 mL), saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The organic phase was dried (MgSO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (3:1 v/v)] of the crude material gave 5-phenyl-7-trifluoromethyl-3H-imidazo[4,5-b]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (11.2 mg, 40%) as a light yellow powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.78 (d, 2H, J=6.6 Hz), 6.93 (dd, 1H, J=3.5, 4.8 Hz), 7.09 (dd, 1H, J=0.9, 3.5 Hz), 7.36 (dd, 1H, J=0.9, 3.5 Hz), 7.36 (dd, 1H, J=1, 4.8 Hz), 7.40-7.53 (m, 3H), 7.97 (s, 1H), 8.11-8.14 (m, 2H), 8.92 (t, 1H, J=6.6 Hz); MS (ESI) m/z=403 (MH+).
A mixture of 7-(trifluoromethyl)-1H-indole-2-carboxylic acid (1.34 g, 5.86 mmol), and N-chlorosuccinimide (939 mg, 7.03 mmol) was stirred in CHCl3/ACN/DMF (25 mL/25 mL/5 mL) at room temperature. After 3 hours, the solvents were removed and diluted with EtOAc (150 mL), washed with 1M sodium thiosulfate (40 mL), dried (MgSO4), filtered and concentrated to give 3-chloro-7-trifluoromethyl-1H-indole-2-carboxylic acid (2.15 g) as a brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.937.36 (t, 1H, J=7.6 Hz), 7.73 (d, 1H, J=7.3 Hz), 7.93 (d, 1H, J=7 Hz), 11.04 (brs, 1H), 12.13 (s, 1H).
A mixture of 3-chloro-7-trifluoromethyl-1H-indole-2-carboxylic acid (1.84 g, 6.97 mmol) and conc. H2SO4 (0.5 mL) was heated under refux in MeOH (60 mL). After 16 hours, extra conc. H2SO4 (0.5 mL) and MeOH (25 mL) were added. After 2 hours, the solvent was removed and diluted with EtOAc (200 mL) and washed with saturated aqueous NaHCO3 (50 mL), then brine (50 mL). The organic phase was filtered through a pad of silica gel, and the filtrate was concentrated. Column chromatography of the crude gave 3-chloro-7-trifluoromethyl-1H-indole-2-carboxylic acid methyl ester (583.6 mg) as an off-white solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.93 (s, 3H), 7.37 (dt, 1H, J=0.8, 7.5 Hz), 7.76 (d, 1H, J=7.3 Hz), 7.95 (d, 1H, J=7.2 Hz), 12.30 (s, 1H); MS (ESI) m/z=278 (MHI).
Iodine (43.2 mg, 0.17 mmol) and sodium periodate (12.2 mg, 0.057 mmol) were dissolved in conc. H2SO4 (2 mL) with sonication for 15 min and stirred for extra 15 min. The iodinating reagent was then added dropwise to 3-chloro-7-trifluoromethyl-1H-indole-2-carboxylic acid methyl ester in cone. H2SO4 (1 mL) over 10 min. After 30 min, the reaction mixture was poured into ice-water (˜20 mL) to precipitate the product which was collected by centrifugation. The precipitate was diluted with EtOAc and passed through a small plug and concentrated to give 3-chloro-5-iodo-7-trifluoromethyl-1H-indole-2-carboxylic acid methyl ester (95.6 mg). 1H NMR (d6-DMSO, 300 MHz) δ 3.93 (s, 3H), 7.94 (s, 1H), 8.26 (s, 1H), 12.60 (s, 1H).
A mixture of 3-chloro-5-iodo-7-trifluoromethyl-1H-indole-2-carboxylic acid methyl ester (92 mg, 0.228 mmol), phenylboronic acid (83.4 mg, 0.684 mmol), and tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4, 5 mol %) was heated in 1M K3PO4 (1 mL) and 1,4-dioxane (3 mL) at 140° C. for 10 min under microwave conditions. The black precipitate was filtered, diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (15 mL), then brine (15 mL). The organic extracts were filtered through a small pad of silica gel and the solvent was removed under reduced pressure. Column chromatography of the crude material gave 3-chloro-5-phenyl-7-trifluoromethyl-1H-indole-2-carboxylic acid (41.3 mg). 1H NMR (d6-DMSO, 300 MHz) δ 7.26-8.19 (m, 7H); MS (ESI) m/z=340 (MH+).
3-Chloro-5-phenyl-7-trifluoromethyl-1H-indole-2-carboxylic acid and 2-thiophenemethylamine was coupled under standard amide coupling conditions to give
3-Chloro-5-phenyl-7-trifluoromethyl-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) δ 4.71 (d, 2H, J=5.9 Hz), 6.99 (dd, 1H, J=3.5, 5 Hz), 7.10 (dd, 1H, J=1.2, 3.2 Hz), 7.36-7.51 (m, 3H), 7.44 (dd, 1H, J=1.2, 5 Hz), 7.76-7.80 (m, 2H), 7.92 (brs, 1H), 8.08 (brs, 1H), 9.16 (t, 1H, J=6.2 Hz), 12.00 (s, 1H); MS (ESI) m/z=435 (MH+).
Prepared using similar procedure for compound 106
1H NMR (d6-DMSO, 300 MHz) δ 4.68 (d, 2H, J=5.9 Hz), 6.57 (dd, 1H, J=1.8, 3.5 Hz), 6.95 (dd, 1H, J=0.6, 3.2 Hz), 6.98 (dd, 1H, J=3.5, 5.3 Hz), 7.06 (dd, 1H, J=1.2, 3.5 Hz), 7.25 (d, 1H, J=2 Hz), 7.41 (dd, 1H, J=1.2, 5 Hz), 7.66 (d, 1H, J=1.5 Hz), 7.71 (dd, 1H, J=0.6, 1.8 Hz), 7.92 (d, 1H, J=1.2 Hz), 9.19 (t, 1H, J=5.9 Hz), 11.83 (s, 1H); MS (ESI) m/z=357, 359 (MH+).
A mixture of 5-bromo-7-chloroindole-2-carboxylic acid (1.02 g, 3.71 mmol), 2-thiophenemethylamine (418.5 μL, 4.08 mmol), N,N-di-isopropylethylamine (1.94 mL, 11.12 mmol), and PyBroP® (1.90 g, 4.08 mmol) was stirred in DMF (15 mL) at room temperature for min. The mixture was diluted with EtOAc (150 mL) and washed successively with 2N HCl (2×50 mL), saturated aqueous NaHCO3 (50 mL), and brine (50 mL). The organic phase was dried (MgSO4), and filtered through a small pad of silica gel. Concentration of the solvent gave 5-bromo-7-chloro-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (1.50 g) as a white solid which was used for the next step without further purification. 1H NMR (d6-DMSO, 300 MHz) δ 4.67 (d, 2H, J=5.9 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.06 (dd, 1H, J=1.2, 3.5 Hz), 7.19 (s, 1H), 7.41 (dd, 1H, J=1.2, 5 Hz), 7.46 (d, 1H, J=1.5 Hz), 7.86 (d, 1H, J=1.5 Hz), 9.21 (t, 1H, J=5.9 Hz), 11.98 (s, 1H); MS (ESI) m/z=368.9, 370.9 (MH+).
A mixture of 5-bromo-7-chloro-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (200 mg, 0.541 mmol), phenylboronic acid (119 mg, 0.974 mmol) and Pd(PPh3)4 in aq K3PO4 (1M, 1 mL) and 1,4-dioxane (3 mL) was heated at 100° C. under microwave conditions for 10 min. The mixture was filtered, diluted with EtOAc (30 mL) and washed with saturated aq (15 mL), then brine (15 mL). The phase was dried (MgSO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (4:1 v/v)] of the crude material followed by crystallization from EtOAc/n-hex gave 7-chloro-5-phenyl-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (97.9 mg, 49%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.69 (d, 2H, J=5.6 Hz), 6.98 (dd, 1H, J=3.5, 5 Hz), 7.07 (dd, 1H, J=1.2, 3.5 Hz), 7.27 (d, 1H, J=2 Hz), 7.33 (tt, 1H, J=2, 7.3 Hz), 7.42 (dd, 1H, J=1.2, 5 Hz), 7.42-7.47 (m, 2H), 7.59 (d, 1H, J=1.5 Hz), 7.67-7.71 (m, 2H), 7.90 (d, 1H, J=1.2 Hz), 9.19 (t, 1H, J=6 Hz), 11.78 (brs, 1H); MS (ESI) m/z=367.0, 369.0 (MH+).
A mixture of 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (100 mg, 0.22 mmol), methyl 2-chloro-2,2-difluoroacetate (53.4 μL, 0.50 mmol), copper(I) iodide (50 mg, 0.26 mmol), and potassium fluoride (15.2 mg, 0.26 mmol) was stirred in DMF (0.6 mL) at 125-130° C. for 15 hours in a sealed tube. Upon cooling, the mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NH4Cl (10 mL), then brine (10 mL). The organic layer was dried (MgSO4), filtered and concentrated. Column chromatography [toluene/THF (98:2 v/v) to toluene/THF (96:4 v/v)] of the crude oil gave 5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (11.7 mg, 13%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=5.9 Hz), 6.96 (dd, 1H, J=3.5, 5 Hz), 7.04 (dd, 1H, J=1.2, 3.5 Hz), 7.28 (s, 1H), 7.39 (dd, 1H, J=1.2, 5 Hz), 7.44-7.56 (m, 3H), 7.87-7.94 (m, 3H), 8.44 (d, 1H, J=1.8 Hz), 9.02 (t, 1H, J=5.9 Hz); MS (ESI) m/z=402 (MH+).
A mixture of 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (62 mg, 0.135 mmol), copper (I) cyanide (48.4 mg, 0.54 mmol), 1,1′-bis(diphenylphosphino)ferrocene (dppf, 12 mg, 0.0216 mmol), and tris(dibenzylideneacetone)dipalladium(0) (Pd2 (dba)3, 4.9 mg, 0.0054 mmol) was heated in 1,4-dioxane (1 mL) and DMF (0.4 mL) at 135° C. for 45 min under microwave conditions. The mixture was diluted with EtOAc (20 mL) and washed with water (10 mL), dried (MgSO4), filtered and concentrated. Column chromatography [toluene/THF (98:2 v/v) to toluene/THF (96:4 v/v) of crude material gave 7-cyano-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (12.9 mg, 27%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6 Hz), 6.96 (dd, 1H, J=3.5, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.5 Hz), 7.27 (s, 1H), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.43-7.56 (m, 3H), 7.86-7.90 (m, 2H), 8.40 (d, 1H, J=1.8 Hz), 8.49 (d, 1H, J=1.8 Hz), 9.18 (t, 1H, J=6 Hz); MS (ESI) m/z=359.1 (MH+).
A mixture of 7-chloro-5-phenyl-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (15.4 mg, 0.042 mmol), and N-chlorosuccinimide (7.3 mg, 0.0546 mmol) was heated in DMF (1.5 mL) at 50° C. for 1 day. The mixture was diluted with EtOAc (25 mL) and washed with aqueous sodium thiosulfate (1M, 6 mL), then brine (10 mL). The organic phase was dried (MgSO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (6:1 v/v)] of the crude material gave 3,7-dichloro-5-phenyl-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (11.9 mg, 71%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.71 (d, 2H, J=5.9 Hz), 6.99 (dd, 1H, J=3.5, 5 Hz), 7.10 (dd, 1H, J=1.2, 3.5 Hz), 7.34-7.49 (m, 3H), 7.43 (dd, 1H, J=1.5, 5 Hz), 7.71-7.76 (m, 4H), 8.95 (t, 1H, J=5.9 Hz), 12.13 (s, 1H); MS (ESI) m/z=401, 403 (MH+).
To a solution of 5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (305 mg, 1.28 mmol) in THF (18 mL) at −78° C. was added a solution of n-butyl lithium (2.5 M in hexanes, 1.13 mL, 2.83 mmol). After 30 min, a solution of 1,2-dibromotetrachloroethane (834 mg, 2.56 mmol) in THF (8 mL) was added dropwise to the reaction mixture. After 30 min, the mixture was allowed to stir at 0° C. After 1 hour, the reaction was quenched by the slow addition of 2N HCl (15 mL). The mixture was extracted with EtOAc (50 mL, 25 mL). The organic phase was dried (MgSO4), filtered and concentrated to give a crude yellow solid (514.9 mg) which was used for the next step without further purification. The crude acids (514.9 mg), 2-thiophenemethylamine (158 L, 1.54 mmol), N,N-di-isopropylethylamine (669 μL, 3.84 mmol), and PyBroP® (657 mg, 1.41 mmol) was stirred in DMF (15 mL) at room temperature. After 30 min, the mixture was diluted with EtOAc (150 mL) and washed successively with 2N HCl (2×mL), saturated aqueous NaHCO3 (30 mL), and brine (30 mL). The organic phase was dried (MgSO4), filtered and concentrated. The crude products were column chromatographed [n-hex/EtOAc (5:1 v/v) to n-hex/EtOAc (3.5:1 v/v)] to give 3,7-dibromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (46.2 mg, 7%) followed by 7-bromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (133.7 mg, 25%).
Data for 7-bromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6 Hz), 6.96 (dd, 1H, J=3.5, Hz), 7.04 (dd, 1H, J=1.2, 3.5 Hz), 7.25 (s, 1H), 7.39 (dd, 1H, J=1.2, 5 Hz), 7.40-7.54 (m, 3H), 7.83-7.88 (m, 2H), 8.18 (d, 1H, J=1.8 Hz), 9.04 (t, 1H, J=6 Hz); MS (ESI) m/z=412, 414 (MH+).
Data for 3,7-dibromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1.5, 3.5 Hz), 7.40 (dd, 1H, J=1.5, 5 Hz), 7.43-7.55 (m, 3H), 7.90 (d, 1H, J=2 Hz), 7.90-7.93 (m, 2H), 7.96 (d, 1H, J=2 Hz), 9.10 (t, 1H, J=6 Hz); MS (ESI) m/z=490, 492 (MH+).
A solution of 7-bromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (36.8 mg, 0.0893 mmol) and NCS (14.3 mg, 0.107 mmol) was stirred in DMF (1 mL) at 50° C. for 4 hours. The mixture was diluted with EtOAc (20 mL) and washed with aqueous sodium thiosulfate (1M, 5 mL), then brine (5 mL). The organic phase was dried (MgSO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (7:1 v/v) to n-hex/EtOAc (5:1 v/v)] of the crude product followed by crystallization from EtOAc/n-hex gave 7-bromo-3-chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide as a white powder (15 mg, 38%); 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1, 3.5 Hz), 7.40 (1, 5 Hz), 7.45-7.55 (m, 3H), 7.90-7.94 (m, 2H), 7.97-8.00 (m, 2H), 9.10 (t, 1H, J=6 Hz); MS (ESI) m/z=446, 447.9 (MH+).
To a stirred solution of 5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (200 mg, 0.84 mmol) in THF (15 mL) at −78° C. was added a solution of n-butyl lithium (2.5M in hexanes, 0.74 mL, 1.847 mmol) dropwise. After 30 min, methyl iodide (115 L, 1.847 mmol) was added and the mixture was allowed to slowly rise to room temperature overnight. Aqueous HCl (2N, mL) was added slowly and extracted with EtOAc (2×25 mL). The organic phase was dried (MgSO4), filtered and concentrated to give a brown solid (236 mg) which was used for the next step without further purification. The ciude acids (236 mg), 2-thiophenemethylamine (103 μL, 1.007 mmol), N,N-di-isopropylethylamine (439 L, 2.52 mmol), and PyBroP® (430 mg, 0.923 mmol) was stirred in DMF (10 mL) at room temperature. After 1 hour, the mixture was diluted with EtOAc (125 mL) and washed successively with 2N HCl (2×25 mL), saturated aqueous NaHCO3 (25 mL), and brine (25 mL). The organic phase was dried (MgSO4), filtered and concentrated. The crude products were column chromatographed [n-hex/EtOAc (5:1 v/v) to n-hex/EtOAc (3.5:1 v/v)] to give 3,7-dimethyl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (13.9 mg, 5%) followed by 7-methyl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (72.9 mg, 25%) both as white powder.
Data for 7-methyl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 2.79 (s, 3H), 4.65 (d, 2H, J=6.2 Hz), 6.95 (dd, 1H, J=3.5, 5 Hz), 7.03 (dd, 1H, J=1.5, 3.5 Hz), 7.08 (s, 1H), 7.37 (d, 1H, J=1.5 Hz), 7.38 (dd, 1H, J=1.5, 5 Hz), 7.36-7.53 (m, 3H), 7.78-7.83 (m, 2H), 7.99 (d, 1H, J=1.5 Hz), 9.01 (t, 1H, J=6.2 Hz); MS (ESI) m/z=348.1 (MH+).
Data for 3,7-dimethyl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 2.55 (s, 3H), 2.75 (s, 3H), 4.65 (d, 2H, J=6.2 Hz), 6.96 (dd, 1H, J=3.2, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.2 Hz), 7.32 (dd, 1H, J=1.2, 2 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.36-7.52 (m, 3H), 7.82-7.86 (m, 2H), 7.92 (d, 1H, J=1.5 Hz), 8.82 (t, 1H, J=6.2 Hz); MS (ESI) m/z=362.1 (MH+).
A mixture of 7-bromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (38 mg, 0.0922 mmol), 2-furanboronic acid (31 mg, 0.276 mmol), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4, 5.3 mg, 0.005 mmol) was heated in aq. K3PO4 (1M, 0.5 mL) and 1,4-dioxane (1.5 mL) at 100° C. for 20 min under microwave conditions. The mixture was diluted with EtOAc (100 mL), and washed with saturated aqueous NaHCO3 (20 mL), and brine (20 mL). The organic phase was dried (MgSO4), filtered and concentrated. The crude material was column chromatographed [n-hex/EtOAc (5:1 v/v) to n-hex/EtOAc (3:1 v/v)] to give 7-furan-2-yl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (24.9 mg, 68%).). 1H NMR (d6-DMSO, 300 MHz) δ 4.71 (d, 2H, J=6.2 Hz), 6.86 (dd, 1H, J=1.8, 3.5 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.06 (dd, 1H, J=1.2, 3.5 Hz), 7.21 (s, 1H), 7.39 (dd, 1H, J=1.2, 5 Hz), 7.42-7.57 (m, 3H), 7.81 (d, 1H, J=1.8 Hz), 7.85-7.88 (m, 2H), 8.05 (d, 1H, J=1.2 Hz), 8.11 (d, 1H, J=1.8 Hz), 8.41 (d, 1H, J=3.5 Hz), 9.33 (t, 1H, J=6.2 Hz); MS (ESI) m/z=400.1 (MH+).
A mixture of 7-bromo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (16 mg, 0.0388 mmol), sodium methoxide (2.2 mg, 0.0407 mmol) in MeOH (1.3 mL) was heated at 140° C. for 40 min under microwave conditions. Additional sodium methoxide was added followed by heating at 130° C. for 1 hour under microwave condition. A solution of HCl (2M in ether, 0.5 mL) was added followed by concentration of solvent. The crude product was digested with CH2Cl2 followed by filtration of precipitate. The filtrate was concentrated followed by column chromatography [n-hex/EtOAc (3:2 v/v)] to give 7-methoxy-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (5.6 mg, 40%). 1H NMR (d6-DMSO, 300 MHz) δ 4.22 (s, 3H), 4.62 (d, 2H, J=6.2 Hz), 6.79 (d, 1H, J=1.8 Hz), 6.94 (dd, 1H, J=3.5, 5 Hz), 7.01 (dd, 1H, J=1.2, 3.5 Hz), 7.01 (s, 1H), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.39-7.54 (m, 3H), 7.69 (d, 1H, J=1.8 Hz), 7.82-7.86 (m, 2H), 9.08 (t, 1H, J=6.2 Hz); MS (ESI) m/z=364.1 (MH+).
A mixture of 5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (19.2 mg, 0.048 mmol) and NBS (8.9 mg, 0.0502 mmol) in DMF (1 mL) was heated at 45° C. for 1 hour. Upon cooling, the product was purified by preparative HPLC (40-100% ACN gradient) to give 3-bromo-5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (10.9 mg, 47%). 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=5.9 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1.2, 3.5 Hz), 7.40 (dd, 1H, J=1.5, 5 Hz), 7.46-7.57 (m, 3H), 7.95-7.98 (m, 2H), 8.03 (d, 1H, J=1.8 Hz), 8.15 (d, 1H, J=1.8 Hz), 9.05 (t, 1H, J=5.9 Hz); MS (ESI) m/z=480, 482 (MH+).
A mixture of 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (40 mg, 0.087 mmol) and N-bromosuccinimide (NBS, 17 mg, 0.0958 mmol) was stirred in DMF at 40° C. for 14 hours. Upon cooling, the mixture was diluted with EtOAc (20 mL) and washed with aq. sodium thiosulfate solution (1M, 10 mL), then brine (10 mL). The organic phase was dried (MgSO4), filtered and concentrated. The product was purified by preparative HPLC (30-100% ACN gradient) to give 3-bromo-7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide as a white powder (24.1 mg, 52%). 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=5.9 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1.2, 3.5 Hz), 7.40 (dd, 1H, J=1.5, 5 Hz), 7.45-7.54 (m, 3H), 7.85 (d, 1H, J=2 Hz), 7.86-7.90 (m, 2H), 8.04 (d, 1H, J=2 Hz), 9.02 (t, 1H, J=5.9 Hz); MS (ESI) m/z=538 (MH+).
A mixture of the 7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (40.5 mg, 0.0882 mmol) and N-chlorosuccinimide (NCS, 14.1 mg, 0.106 mmol) was stirred in DMF at 40° C. for 14 hours. A second batch of NCS (4.3 mg) was added and the reaction heated at 50° C. for 1 day. Upon cooling, the mixture was purified by preparative HPLC (40-100% ACN gradient) to give 3-chloro-7-iodo-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (23.7 mg, 45%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=5.9 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1.2, 3.5 Hz), 7.40 (dd, 1H, J=1.2, 5 Hz), 7.42-7.54 (m, 3H), 7.87-7.91 (m, 2H), 7.94 (d, 1H, J=1.8 Hz), 8.05 (d, 1H, J=1.8 Hz), 9.01 (t, 1H, J=5.9 Hz); MS (ESI) m/z=494 (MH+).
A mixture of 5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (16.3 mg, 0.0406 mmol) and NCS (6.5 mg, 0.0487 mmol) in DMF (1 mL) was heated at 55° C. for 2.5 hours. A second batch of NCS (11 mg) was added to the reaction mixture and heated at 45° C. for 21.5 hours. Upon cooling, the product was purified by preparative HPLC (50-100% ACN gradient) to give the 3-Chloro-5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (5.8 mg, 27%), and 3-Chloro-5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (5-chloro-thiophen-2-ylmethyl)-amide (4 mg, 21%).
Data for 3-chloro-5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=5.9 Hz), 6.97 (dd, 1H, J=3.5, 5 Hz), 7.05 (dd, 1H, J=1.2, 3.5 Hz), 7.40 (dd, 1H, J=1.2, 5 Hz), 7.45-7.57 (m, 3H), 7.95-7.99 (m, 2H), 8.03 (d, 1H, J=1.8 Hz), 8.25 (d, 1H, J=1.8 Hz), 9.05 (t, 1H, J=5.9 Hz); MS (ESI) m/z=436 (MH+).
Data for 3-chloro-5-phenyl-7-trifluoromethyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (5-chloro-thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 4.57 (d, 2H, J=6.2 Hz), 6.91 (d, 1H, J=3.5 Hz), 6.97 (d, 1H, J=3.5 Hz), 7.45-7.57 (m, 3H), 7.96-7.99 (m, 2H), 8.04 (d, 1H, J=1.8 Hz), 8.25 (d, 1H, J=1.8 Hz), 9.10 (t, 1H, J=6.2 Hz); MS (ESI) m/z=470, 472 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 4.50 (d, 2H, J=5.7 Hz), 6.29 (d, 1H, J=3 Hz), 6.40 (dd, 1H, J=1.8, 3 Hz), 7.28 (s, 1H), 7.40-7.52 (m, 3H), 7.58 (s, 1H), 7.81 (m, 2H), 7.93 (d, 1H, J=1.8 Hz), 8.12 (d, 1H, J=1.8 Hz), 8.78 (t, 1H, J=5.7 Hz); MS (ESI) m/z=444 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 3.11 (t, 2H, J=7 Hz), 3.57 (q, 2H, J=7 Hz), 6.92-6.98 (m, 2H), 7.25 (s, 1H), 7.34 (dd, 1H, J=1.2, 5.4 Hz), 7.40-7.52 (m, 3H), 7.80-7.84 (m, 2H), 7.93 (d, 1H, J=1.8 Hz), 8.12 (d, 1H, J=1.8 Hz), 8.45 (t, 1H, J=7 Hz); MS (ESI) m/z=474 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 4.45 (d, 2H, J=6.2 Hz), 7.12 (dd, 1H, J=1.3, 4.8 Hz), 7.32 (dd, 1H, J=0.9, 2.6 Hz), 7.43-7.56 (m, 5H), 7.73 (dd, 1H, J=0.9, 2.2 Hz), 7.82-7.87 (m, 2H), 8.78 (d, 1H, J=7.9 Hz), 8.99 (t, 1H, J=6.2 Hz); MS (ESI) m/z=460 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 7.11 (brt, 1H, J=7.4 Hz), 7.35 (brt, 2H, J=7.9 Hz), 7.44-7.57 (m, 4H), 7.77-7.89 (m, 5H), 8.86 (d, 1H), 10.50 (s, 1H); MS (ESI) m/z=440 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 4.57 (d, 2H, J=6.2 Hz), 7.14-7.22 (m, 2H), 7.27-7.53 (m, 6H), 7.80-7.84 (m, 2H), 7.94 (d, 1H, J=1.8 Hz), 8.13 (d, 1H, J=1.8 Hz), 8.89 (t, 1H, J=6.2 Hz); MS (ESI) m/z=472 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 4.51 (d, 2H, J=6 Hz), 7.20-7.54 (m, 9H), 7.80-7.83 (m, 2H), 7.93 (d, 1H, J=1.8 Hz), 8.13 (d, 1H, J=1.8 Hz), 8.91 (t, 1H, J=6 Hz); MS (ESI) m/z=454 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 2.89 (t, 2H, J=7 Hz), 3.54 (q, 2H, J=6.2 Hz), 7.16-7.34 (m, 6H), 7.39-7.52 (m, 3H), 7.82 (d, 2H, J=7 Hz), 7.93 (d, 1H, J=1.8 Hz), 8.12 (d, 1H, J=1.8 Hz), 8.34 (t, 1H, J=6.2 Hz); MS (ESI) m/z=468 (MH+).
Prepared using the procedure as for compound 102.
1H NMR (d6-DMSO, 300 MHz) δ 1.54-1.98 (m, 4H), 3.58-4.05 (m, 3H), 7.25 (s, 1H), 7.38-7.52 (m, 3H), 7.78-7.82 (m, 2H), 7.92 (d, 1H, J=1.8 Hz), 8.10 (d, 1H, J=1.8 Hz), 8.15 (t, 1H, J=6 Hz); MS (ESI) m/z=448 (MH+).
To a stirred solution of 2-furaldehyde (15 mL, 181 mmol), and pyruvic acid (12.6 mL, 181 mmol) at 0° C. was added dropwise a solution of 10% NaOH over 15 min during which a yellow cake was formed. After 10 min, the cake was poured into a 1 L flask and the cake was dissolved with water (650 mL). The solution was acidified with 10% H2SO4 (˜65 mL) to precipitate product. The mixture was cooled with an ice-water bath for an hour followed by filtration to give (E)-4-furan-2-yl-2-oxo-but-3-enoic acid (16.47 g, 55%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 6.71 (dd, 1H, J=1.8, 3.5 Hz), 6.96 (d, 1H, J=15.8 Hz), 7.17 (d, 1H, J=3.5 Hz), 7.54 (d, 1H, J=15.4 Hz), 7.95 (d, 1H, J=1.8 Hz); MS (ESI) m/z=189 (MNa+).
To a suspension of 1-carboxymethyl-pyridinium betaine (prepared based on literature method: Thorsteinsson, et al, J. Med. Chem., 2003, 46, 4173) (15 g, 0.109 mol) in Et2O (70 mL) was added triethylamine (TEA, 6.1 mL, 0.044 mol) followed by the dropwise addition of chlorodifluoroacetic anhydride (45.72 mL, 0.263 mol) over 25 min. After 95 min, the ice bath was removed and the mixture was allowed to stir at room temperature for 3 hours. The mixture was cooled with an ice-water bath and TEA (˜50 mL) was added to neutralize the reaction. The ethereal layer was concentrated to give a brown semi-solid which was poured into ice-water (500 mL) and stirred for 30 min. The precipitate was filtered and dried under high vacuum overnight. The crude material was crystallized from EtOAc/n-hex to give pyridinium di-chlorodifluoroacetyl methylid (23.05 g, qunatitative). 1H NMR (d6-DMSO, 300 MHz) δ 8.16 (m, 2H), 8.70 (tt, 1H, J=1.5 Hz, 7.6 Hz), 9.05 (d, 2H, J=5.6 Hz); MS (ESI) m/z=317.9, 320 (MH+).
A suspension of pyridinium di-chlorodifluoroacetyl methylid (23.05 g, 0.13 mol) was heated in 2N HCl (300 mL) at 65° C. for 30 min. The cleared solution was concentrated under reduced pressure and triturated with water (80 mL). The precipitate was filtered and dried under reduced pressure to give chlorodifluoromethylacylpyridinium chloride (15.67 g) as beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.94 (s, 2H), 7.96 (s, 2H), 8.18 (dd, 2H, J=6.7, 7.6 Hz), 8.68 (tt, 1H, J=1.6, 7.6 Hz), 8.99 (brd, 2H, J=6.7 Hz); MS (ESI) m/z=224 (M+).
A suspension of chlorodifluoromethylacylpyridinium chloride (9.02 g, 34.68 mmol), (E)-4-furan-2-yl-2-oxo-but-3-enoic acid (5.76 g, 34.68 mmol) and ammonium acetate (21.4 g, 277.5 mmol) was heated in water (50 mL) at 95° C. for 8.5 hours. The mixture was cooled and extracted with EtOAc (200 mL, 2×100 mL), dried (MgSO4), filtered and concentrated. The product was precipitated from toluene/n-hex (1:1 v/v, 400 mL) to give a brown precipitate (6.29 g, 66% yield). 1H NMR (d6-DMSO, 300 MHz) δ 6.72 (dd, 1H, J=1.8, 3.6 Hz), 7.53 (d, 1H, J=3.3 Hz), 7.94 (brd, 1H, J=1.8 Hz), 8.00 (s, 1H), 8.27 (s, 1H); MS (ESI) m/z=274 (MH+).
To a stirred solution of 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carboxylic acid 4.63 g, 16.92 mmol) in DMF (65 mL) was added, N,O-dimethylhydroxylamine hydrochloride (1.98 g, 20.2 mmol), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC.HCl, 3.89 g, 20.3 mmol), 1-hydroxybenzotriazole (HOBt, 2.74 g, 20.3 mmol), and N,N-di-iso-propylethylamine (14.7 mL, 84.6 mmol). After 15 hours at room temperature, the mixture was heated at 40° C. for 8.5 hours. A second batch of N,O-dimethylhydroxylamine hydrochloride (413 mg, 4.23 mmol), EDC.HCl (811 g, 4.23 mmol), HOBt (572 mg, 4.23 mmol), and N,N-di-iso-propylethylamine (2.95 mL, 16.92 mmol) was added and the mixture was stirred for 16 hours. The mixture was cooled and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU, 1.61 g, 4.23 mmol) was added. The mixture was heated at 50° C. for 75 min. Upon cooling, the mixture was diluted with EtOAc (650 mL) and washed successively with 2N HCl (80 mL), saturated aqueous NaHCO3 (80 mL) and brine (80 mL). The organic phase was dried (Na2SO4), filtered and concentrated. The crude material was purified by column chromatography [n-hex/EtOAc (4:1) to n-hex/EtOAc (2.5:1)] to give 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carboxylic acid methoxy-methyl-amide (3.26 g, 61%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.31 (s, 3H), 3.71 (s, 3H), 6.76 (dd, 1H, J=1.8, 3.5 Hz), 7.64 (d, 1H, J=3.5 Hz), 7.99 (dd, 1H, J=0.6, 1.8 Hz), 8.07 (brs, 1H), 8.13 (d, 1H, J=1.5 Hz); MS (ESI) m/z=317 (MH+).
To a stirred solution of 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carboxylic acid methoxy-methyl-amide (2.97 g, 9.39 mmol) in THF (70 mL) at −78° C. was added dropwise a solution of diisobutylaluminum hydride (DIBAL-H, 1M in THF) (16.9 mL, 16.9 mmol). After 1.5 hours, the reaction was quenched by the careful addition of 2N HCl (15 mL). After 5 min, the mixture was allowed to stir at 0° C. for 10 min. The mixture was diluted with EtOAc (700 mL) and saturated aqueous NaHCO3 (75 mL) and brine (35 mL). The gel was passed through a small pad of Celite and the aqueous phase was separated and extracted with EtOAc (150 mL). The combined organic extracts were dried (Na2SO4), filtered and concentrated. The crude material was purified by column chromatography [n-hex/EtOAc (10:1) to n-hex/EtOAc (7:1)] to give 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carbaldehyde (2.20 g, 91%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 6.78 (dd, 1H, J=1.8, 3.5 Hz), 7.73 (dd, 1H, J=0.6, 3.5 Hz), 8.02 (dd, 1H, J=0.9, 1.8 Hz), 8.29 (d, 1H, J=1.5 Hz), 8.32 (d, 1H, J=1.5 Hz), 10.00 (s, 1H); MS (ESI) m/z=258 (MH+).
To a stirred solution of 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carbaldehyde (52.7 mg, 0.205 mmol) in EtOH (0.8 mL) at −45° C. was added a solution of sodium ethoxide (21 wt % in EtOH, 232 μL, 0.716 mmol). A solution of tert-butyl azidoacetate (prepared according to literature Moore and Rydon, Organic Synthesis, Coll Vol 5, 586.) in EtOH (0.4 mL) was then added dropwise at −45° C. The mixture was allowed to slowly warm to −8° C. overnight. The mixture was diluted with EtOAc (30 mL) and washed with saturated aqueous NH4Cl (10 mL), then brine (10 mL). The organic phase was dried (MgSO4), filtered and concentrated. Purification of the crude material by preparative TLC (eluted with n-hex/EtOAc (5:1 v/v)] gave (Z)-2-azido-3-[6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridin-2-yl]-acrylic acid ethyl ester (15.4 mg, 20%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.35 (t, 3H, J=7 Hz), 4.34 (q, 2H, J=7 Hz), 6.75 (dd, 1H, J=1.8, 3.5 Hz), 6.86 (s, 1H), 7.61 (dd, 2H, J=0.9, 3.5 Hz), 7.99 (m, 2H), 8.54 (d, 1H, J=1.2 Hz); MS (ESI) m/z=391 (MNa+).
A solution of (Z)-2-azido-3-[6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridin-2-yl]-acrylic acid ethyl ester (32.9 mg, 0.0892 mmol) in DMF (3 mL) was heated at 180° C. for 10 min under microwave conditions. The solvent was removed under reduced pressure followed by column chromatography [n-hex/EtOAc (8:1 v/v) to n-hex/EtOAc (6:1 v/v)] to give 7-(chloro-difluoro-methyl)-5-furan-2-yl-pyrazolo[1,5-a]pyridine-2-carboxylic acid ethyl ester (10.6 mg, 35%) as an off-white solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.36 (t, 3H, J=7 Hz), 4.39 (q, 2H, J=7 Hz), 6.71 (dd, 1H, J=1.8, 3.5 Hz), 7.36 (s, 1H), 7.42 (d, 1H, J=3.2 Hz), 7.91 (d, 1H, J=1.5 Hz), 7.93 (d, 1H, J=1.8 Hz), 8.30 (d, 1H, J=1.5 Hz); MS (ESI) m/z=341 (MH+).
To a solution of 7-(chloro-difluoro-methyl)-5-furan-2-yl-pyrazolo[1,5-a]pyridine-2-carboxylic acid ethyl ester (11.5 mg, 0.0338 mmol) in THF/MeOH/H2O (3:1:1 v/v, 1.5 mL) was added a solution of LiOH (2.5M in water, 40 μL, 0.1013 mmol). After 1 hour, the solvent was concentrated and 2N HCl (0.5 mL) was added followed by extraction with EtOAc (10 mL, 5 mL). The organic extracts were dried (Na2SO4), filtered and concentrated to give the acid (16.6 mg) which was used for the next step without further purification. To a stirred solution of the acid (16.6 mg) in DMF (0.8 mL) was added 2-thiophenemethylamine (5.2 μL, 0.0506 mmol), N,N-di-isopropylethylamine (23.5 μL, 0.135 mmol), and PyBroP® (19.7 mg, 0.0422 mmol). After 30 min, the mixture was diluted with EtOAc (20 mL) and washed successively with 2N HCl (2×5 mL), saturated aqueous NaHCO3 (5 mL), and brine (5 mL). The organic phase was dried (Na2SO4), filtered and concentrated. The crude product was column chromatographed [n-hex/EtOAc (4:1 v/v) to n-hex/EtOAc (3:1 v/v)] to give 7-(chloro-difluoro-methyl)-5-furan-2-yl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (11.9 mg, 86%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.7, 3.5 Hz), 6.95 (dd, 1H, J=3.5, 5.2 Hz), 7.03 (dd, 1H, J=1, 3.2 Hz), 7.29 (s, 1H), 7.38 (dd, 1H, J=1.4, 5.2 Hz), 7.40 (brd, 1H, J=3.2 Hz), 7.87 (d, 1H, J=2 Hz), 7.90 (d, 1H, J=1.5 Hz), 8.29 (d, 1H, J=1.8 Hz), 8.96 (t, 1H, J=6.2 Hz); MS (ESI) m/z=408 (MH+).
2-Amino-3-trifluoromethylpyridine (5.4 gm, 33.3 mmol) was dissolved in DMF (31 mL) and N-bromosuccinimide (5.9 gm, 33.3 mmol) dissolved in DMF (31 mL) was added dropwise. The mixture was stirred for 4 hours, concentrated to −20 mL and added dropwise into ice-water (600 mL). The product crashed out, was filtered, washed with water (100 mL) and dried under vacuum to afford 5-bromo-3-trifluoromethyl-pyridin-2-ylamine as a light brown solid (7.12 gm, 88%). 1H NMR (d6-DMSO, 300 MHz) δ 8.22 (s, 1H), 7.85 (s, 1H), 6.66 (s, 2H); MS (ESI) m/z=242.9 (MH+).
A mixture of 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (21.78 g, 90.37 mmol) and ethyl bromopyruvate (90% pure, 25.3 mL, 180.74 mmol) was heated in DMF (180 mL) at 50° C. for 1 day. Upon cooling, the solvent was removed to half the volume under reduced pressure. The mixture was diluted with EtOAc (500 mL) and washed with water (3×150 mL), dried (Na2SO4), filtered and concentrated. The crude brown oil was dissolved in minimum amount of EtOAc and dripped slowly into n-hexanes (500 mL) with vigorous stirring. The suspension was allowed to stir overnight and filtered to give 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (26.83 g, 89%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.33 (t, 3H, J=7 Hz), 4.34 (q, 2H, J=7 Hz), 8.00 (brs, 1H), 8.60 (s, 1H), 9.16 (brs, 1H); MS (ESI) m/z=337, 339 (MH+).
6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (1 gm, 2.96 mmol) was suspended in acetonitrile (30 mL) and HCl (2N aqueous, 20 mL) was added and the mixture refluxed over 12 hours. Upon cooling to room temperature, a white solid crystallized out and was filtered, washed (water) and dried to afford 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.45 gm, 49%) as a white solid. MS (ESI) m/z=310.0 (MH+).
6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.45 g, 1.47 mmol) and HBTU (0.67 g, 1.76 mmol) were dissolved in DMF (3 mL) and 2-thiophene methyl amine (0.18 g, 1.47 mmol) was added followed by DIPEA (0.38 g, 2.94 mmol). The mixture was stirred for 4 hours then added dropwise into 5% aqueous sodium bicarbonate (100 mL) and ice to give a brown solid which was filtered and dried. A small part was purified after it was suspended in a mixture of acetonitrile and 1N HCl, filtered and washed (water) and dried to afford pure 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. The rest was used for the next step without further purification. 1H NMR (d6-DMSO, 300 MHz) δ 9.18 (s, 1H), 8.85 (t, 1H, J=6 Hz), 8.45 (s, 1H), 7.96 (s, 1H), 7.36 (d, 1H, J=1.5 Hz), 7.00 (d, 1H, J=3.3 Hz), 6.93 (t, 1H, J=6 Hz), 4.62 (d, 2H, J=6 Hz); MS (ESI) m/z=405.9 (MH+).
8-Trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.098 gm, 0.24 mmol) and phenyl boronic acid were dissolved in 1,4-dioxane (3 mL) and saturated aqueous sodium bicarbonate (1 mL) was added. Argon was bubbled through this mixture for 1 minute, then tetrkis(triphenylphosphine)palladium(0) (0.014 g, 0.012 mmol) was added and the mixture refluxed for 4 hours. The mixture was partitioned between ethyl acetate and water and the organic layer was dried (MgSO4) to afford the crude product. The product was purified by passing through a short silica column to afford 6-phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.058 gm, 60%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 9.20 (s, 1H), 8.82 (t, 1H, J=6 Hz), 8.52 (s, 1H), 8.08 (s, 1H), 7.76 (d, 2H, J=7.8 Hz), 7.43 (m, 3H), 7.35 (d, 1H, J=3.6 Hz), 7.01 (d, 1H, J=2.4 Hz), 6.94 (dd, 1H, J=3.6, 5.4 Hz), 4.64 (d, 2H, J=6.3 Hz); MS (ESI) m/z=402.1 (MH+).
Prepared using similar procedure as for compound 137; MS (ESI) m/z=392.0 (MH+).
6-Phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.045 g, 0.11 mmol) was dissolved in DMF (3 mL), NBS (0.02 g, 0.11 mmol) was added and the mixture stirred for 2 hours. The mixture was concentrated to 1 mL and added dropwise into ice-water (50 mL). The crude product crashed out and was purified using a silica column to afford 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.05 g, 95%). 1H NMR (d6-DMSO, 300 MHz) 8.88 (t, 1H, J=6.3 Hz), 8.70 (s, 1H), 8.18 (s, 1H), 7.83 (d, 2H, J=7.2 Hz), 7.49 (m, 3H), 7.37 (d, 1H, J=4.5 Hz), 7.03 (d, 1H, J=3.3 Hz), 6.95 (dd, 1H, J=3.6, 4.8 Hz), 4.63 (d, 2H, J=6.0 Hz); MS (ESI) m/z=481.7 (MH+).
Prepared using similar procedure as for compound 137.
1H NMR (d6-DMSO, 300 MHz) 9.10 (s, 1H), 8.80 (t, 1H, J=5.4 Hz), 8.48 (s, 1H), 8.03 (s, 1H), 7.63 (d, 2H, J=8.4 Hz), 7.36 (dd, 1H, J=1.2, 5.1 Hz), 7.06 (d, 2H, J=9.3 Hz), 7.01 (d, 1H, J=3.6 Hz), 6.92 (dd, 1H, J=3.6, 4.8 Hz), 4.63 (d, 2H, J=6.6 Hz), 3.75 (br t, 4H), 3.18 (br t, 4H); MS (ESI) m/z=487.1 (MH+).
Prepared using similar procedure as for compound 137.
1H NMR (d6-DMSO, 300 MHz) δ 9.28 (s, 1H), 8.85 (t, 1H, J=6.6 Hz), 8.78 (br s, 1H), 8.51 (s, 1H), 8.47 (s, 1H), 8.17 (s, 1H), 8.05 (s, 1H), 7.36 (dd, 1H, J=1.5, 5.4 Hz), 7.01 (d, 1H, J=3.3 Hz), 6.94 (dd, 1H, J=3.6, 5.1 Hz), 4.64 (d, 2H, J=6.3 Hz), 2.39 (s, 3H); MS (ESI) m/z=417.1 (MH+).
Prepared using similar procedure as for compound 137.
1H NMR (d6-DMSO, 300 MHz) 9.17 (s, 1H) 8.82 (t, 1H, J=6.3 Hz), 8.49 (s, 1H), 8.07 (s, 1H), 7.35 (m, 2H), 7.27 (br s, 1H), 7.16 (br d, 1H), 7.01 (m, 2H), 6.94 (dd, 1H, J=3.6, 5.4 Hz), 4.64 (d, 2H, J=6.3 Hz), 3.76 (br t, 4H), 3.21 (br t, 4H); MS (ESI) m/z=487.1 (MH+).
Prepared using a similar procedure as for compound 144 with 2-trifluoromethylpyridine as starting material.
1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=5.9 Hz), 6.95 (dd, 1H, J=3.5, 5 Hz), 7.02 (dd, 1H, J=1.2, 3.5 Hz), 7.26 (s, 1H), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.41 (dd, 1H, J=7, 9 Hz), 7.66 (d, 1H, J=6.2 Hz), 8.11 (d, 1H, J=8.5 Hz), 8.99 (t, 1H, J=5.9 Hz); MS (ESI) m/z=326.0 (MH+).
To a stirred solution of 4-bromo-2-chloropyridine (2.048 g, 10.64 mmol) in CH2Cl2 (5 mL) was added O-mesitylsulfonylhydroxylamine (MSH, 2.52 g, 11.71 mmol). After 7 hours, the solvent was concentrated and triturated with Et2O to give a white syrup. The solvent was decanted and triturated again with Et2O. The product was dried under vacuum to give 1-amino-4-bromo-2-chloro-pyridinium mesitylenesulfonate (3.16 g, 73%). 1H NMR (d6-DMSO, 300 MHz) δ 2.17 (s, 6H), 2.49 (s, 12H), 6.73 (s, 4H), 8.23 (dd, 1H, J=2.3, & Hz), 8.41 (brs, 2H), 8.75 (d, 1H, J=7 Hz), 8.77 (d, 1H, J=2.3 Hz); MS (ESI) m/z=206.9, 208.9 (MNa+).
To a solution of 1-amino-4-bromo-2-chloro-pyridinium mesitylenesulfonate (3.16 g, 7.75 mmol) in DMF (15 mL) was added K2CO3 (3.21 g, 23.25 mmol) followed by dropwise addition of dimethyl acetylenedicarboxylate (1.43 mL, 11.63 mmol). Air was then bubbled through the mixture. After 3 hours, the precipitate was filtered and the solvent was concentrated under reduced pressure. The crude material was diluted with EtOAc (200 mL) and washed successively with aqueous HCl (2N, 50 mL), saturated aqueous NaHCO3 (2×50 mL), then brine (50 mL). The organic extracts were dried (MgSO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (5:1 v/v) to n-hex/EtOAc (3.5:1 v/v)] of the crude brown solid gave 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2,3-dicarboxylic acid dimethyl ester (0.85 g, 23%). 1H NMR (d6-DMSO, 300 MHz) δ 3.86 (s, 3H), 3.93 (s, 3H), 7.93 (d, 1H, J=1.8 Hz), 8.26 (d, 1H, J=1.8 Hz); MS (ESI) m/z=346.9 (MH+).
A suspension of 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2,3-dicarboxylic acid dimethyl ester (720 mg, 2.07 mmol) was heated at 90° C. in 50% v/v sulfuric acid for 29 hours. The mixture was cooled with an ice-water bath followed by addition of NaOH solution (50% w/v, ˜60 mL) and water to dissolve the product. The aqueous phase was then washed with Et2O (2×70 mL). The aqueous phase was separated and acidified with 2N HCl and extracted with EtOAc (250 mL, 150 mL). The organic phase was dried (Na2SO4), filtered and concentrated to give 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2-carboxylic acid (0.61 g, quantitative) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.17 (s, 1H), 7.65 (d, 1H, J=2 Hz), 8.17 (d, 1H, J=2 Hz), 13.39 (brs, 1H); MS (ESI) m/z=274.9, 276.9 (MH+).
A mixture of 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2-carboxylic acid (0.61 g, 2.21 mmol), 2-thiophenemethylamine (0.25 mL, 2.44 mmol), N,N-di-isopropylethylamine (1.16 mL, 6.64 mmol), and PyBroP® (1.135 g, 2.44 mmol) was stirred in DMF (10 mL) at room temperature. After 15 min, the mixture was diluted with EtOAc (150 mL) and washed successively with 2N HCl (2×30 mL), saturated aqueous NaHCO3 (30 mL), and brine (30 mL). The organic phase was filtered through a small pad of silica gel and concentrated to give 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (983.6 mg, quantitative) as a foam. 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=5.9 Hz), 6.95 (dd, 1H, J=3.2, 5 Hz), 7.02 (dd, 1H, J=0.9, 3.2 Hz), 7.14 (s, 1H), 7.37 (dd, 1H, J=1.5, 5 Hz), 7.63 (d, 1H, J=2 Hz), 8.17 (d, 1H, J=2 Hz), 9.12 (t, 1H, J=5.9 Hz); MS (ESI) m/z=369.9, 371.9 (MH+).
A mixture of 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (890 mg, 2.40 mmol), phenylboronic acid (439 mg, 3.60 mmol) and Pd(PPh3)4 (139 mg, 0.12 mmol) was heated in aq. K3PO4 (1M, 4 mL) and 1,4-dioxane (12 mL) at 80° C. for 10 min under microwave conditions. Dioxane was removed under reduced pressure and the mixture was diluted with EtOAc (100 mL). The aqueous phase was separated and the organic phase was washed with saturated aqueous NaHCO3 (2×30 mL), then brine (30 mL). The organic phase was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (4:1 v/v) to n-hex/EtOAc (2.5:1 v/v)] of the crude material gave 7-chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (748.5 mg, 85%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.2 Hz), 6.96 (dd, 1H, J=3.2, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.2 Hz), 7.22 (s, 1H), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.41-7.54 (m, 3H), 7.76 (d, 2H, J=2 Hz), 7.83-7.87 (m, 2H), 8.17 (d, 1H, J=2 Hz), 9.09 (t, 1H, J=6.2 Hz); MS (ESI) m/z=368.0 (MH+).
A mixture of 5-bromo-7-chloro-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (40.9 mg, 0.11 mmol), 2-furanboronic acid (16.1 mg, 0.14 mmol) and Pd(PPh3)4 (6.4 mg, 0.0055 mmol) was heated in aq. K3PO4 (1M, 0.2 mL) and 1,4-dioxane (0.6 mL) at 60° C. for 20 min under microwave conditions. The mixture was diluted with EtOAc (10 mL) and washed successively with water (5 mL), saturated aqueous NaHCO3 (5 mL), and brine (5 mL). The organic phase was dried (Na2SO4), filtered and concentrated. The product was purified by preparative HPLC (40-100% ACN gradient) and then silica gel column [CH2Cl2/ACN (95:5 v/v)] to give 7-chloro-5-furan-2-yl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (7.7 mg, 20%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=5.9 Hz), 6.68 (dd, 1H, J=1.7, 3.2 Hz), 6.95 (dd, 1H, J=3.2, 5 Hz), 7.02 (dd, 1H, J=1.2, 3.5 Hz), 7.21 (s, 1H), 7.28 (d, 1H, J=3.2 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.75 (d, 1H, J=1.8 Hz), 7.87 (d, 1H, J=1.2 Hz), 8.03 (d, 1H, J=1.8 Hz), 9.07 (t, 1H, J=5.9 Hz); MS (ESI) m/z=358 (MH+).
6-Furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.1 gm, 0.26 mmol) was dissolved in DMF (0.5 mL) and added dropwise to a suspension of NaH (60%, 0.012 gm, 0.31 mmol) in DMF (2 mL). The mixture was stirred for min. Methyl iodide (0.019 mL, 0.31 mmol) was added and the mixture stirred at room temperature over 12 hours. The reaction was quenched with water and the product was extracted with ethyl acetate. The crude product was purified through silica gel chromatography to afford 6-furan-2-yl-8-trifluoromethylimidazo[1,2a]pyridine-2-6 acid methyl-thiophen-2-ylmethyl-amide (0.02 g, 20%). 1H NMR (d6-DMSO, 300 MHz) 9.18 (s, 0.5H), 9.15 (s, 0.5H), 8.56 (s, 0.5H), 8.54 (s, 0.5H), 8.14 (br s, 1H), 7.84 (br s, 1H), 7.42 (m, 1H), 7.23 (d, 1H, J=3.3 Hz), 7.09 (m, 1H), 6.95 (m, 1H), 6.66 (m, 1H), 5.48 (s, 1H), 4.80 (s, 1H), 3.39 (s, 1.5H), 2.96 (s, 1.5H); MS (ESI) m/z=406.0 (MH+).
Prepared using a similar procedure as for compound 137.
1H NMR (d6-DMSO, 300 MHz) δ 3.00 (s, 3.6H), 3.23 (s, 3H), 4.85 (s, 2.4H), 5.19 (s, 2H), 6.95-7.05 (m, 3.5H), 7.12-7.18 (m, 3.5H), 7.42-7.57 (m, 9H), 7.84-7.92 (m, 6H), 8.41 (dd, 2H, J=1.5, 6.3 Hz)); MS (ESI) m/z=416.1 (MH+).
7-Chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (45 mg, 0.12 mmol) was treated with excess morpholine and heated in DMF under microwave conditions to give 7-morpholin-4-yl-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (28.3 mg, 55%) as a white powder after column chromatography. 1H NMR (d6-DMSO, 300 MHz) δ 3.46-3.48 (brs, 4H), 3.86-3.90 (m, 4H), 4.67 (d, 2H, J=6.2 Hz), 6.67 (d, 1H, J=1.8 Hz), 6.96 (dd, 1H, J=3.2, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.5 Hz), 7.03 (s, 1H), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.38-7.52 (m, 3H), 7.72 (d, 1H, J=1.8 Hz), 7.78-7.83 (m, 2H), 8.98 (t, 1H, J=6.2 Hz); MS (ESI) m/z=419.1 (MH+).
7-Chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (50 mg) was treated with excess 4-(2-aminoethyl)morpholine and heated in DMF under microwave conditions to give 7-(2-morpholin-4-yl-ethylamino)-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (6.1 mg) and 7-dimethylamino-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (5.6 mg) after HPLC purification.
Data for 7-(2-morpholin-4-yl-ethylamino)-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 3.31-3.28 (m, 2H), 3.5-4.08 (m, 10H), 4.70 (d, 2H, J=5.9 Hz), 6.50 (d, 1H, J=1.8 Hz), 6.97 (dd, 1H, J=3.5, Hz), 6.98 (s, 1H), 7.05 (dd, 1H, J=1.5, 3.5 Hz), 7.34 (brs, 1H), 7.37-7.52 (m, 3H), 7.41 (dd, 1H, J=1.8 Hz), 7.81-7.84 (m, 2H), 8.83 (t, 1H, J=5.9 Hz), 10.18 (s, 1H); MS (ESI) m/z=462.1 (MH+).
Data for 7-dimethylamino-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide: 1H NMR (d6-DMSO, 300 MHz) δ 3.13 (s, 6H), 4.65 (d, 2H, J=6 Hz), 6.60 (d, 1H, J=1.8 Hz), 6.95 (dd, 1H, J=3.2, 5 Hz), 7.00 (s, 1H), 7.03 (dd, 1H, J=1.2, 3.2 Hz), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.40-7.52 (m, 3H), 7.64 (d, 1H, J=1.8 Hz), 7.77-7.82 (m, 2H), 9.02 (t, 1H, J=6 Hz); MS (ESI) m/z=377.1 (MH+).
A mixture of 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (Compound 134) (8.08 g, 23.97 mmol) and NCS (3.68 g, 27.56 mmol) was stirred in DMF (80 mL) at room temperature for 14.5 hours. The solvent was removed under reduced pressure to −20 mL and diluted with EtOAc (400 mL). The organic layer was washed successively with aqueous sodium thiosulfate (1M, 2×100 mL), saturated aqueous NaHCO3 (100 mL) and brine (100 mL), filtered through a small pad of silica gel and concentrated to give 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester as a yellow solid (7.64 g, 86%). 1H NMR (d6-DMSO, 300 MHz) δ 1.35 (t, 3H, J=7 Hz), 4.37 (q, 2H, J=7 Hz), 8.11 (brs, 1H), 9.01 (brs, 1H); MS (ESI) m/z=370.9, 372.9, 374.9 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (0.8 g, 2.15 mmol) in acetonitrile (ACN, 4 mL) and 6N HCl (8 mL) was heated at 140° C. for 15 min under microwave conditions. The reaction was repeated four times and the precipitate filtered and discarded. The filtrate was concentrated to −10 mL and triturated with water (70 mL). The precipitate was filtered and dried under high vacuum to give 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.23 g, 73%) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 8.09 (brs, 1H), 8.98 (d, 1H, J=0.8 Hz), 13.5 (brs, 1H); MS (ESI) m/z=342.9, 344.9, 346.9 (MH+).
A solution of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (3.29 g, 9.58 mmol), 2-thiophenemethylamine (1.13 mL, 11.01 mmol), N,N-di-isopropylethylamine (6.67 mL, 38.31 mmol), and PyBroP® (5.50 g, 11.01 mmol) was stirred in DMF (20 mL) at room temperature for 25 min. The mixture was diluted with EtOAc (500 mL) and washed successively with 2N HCl (2×75 mL), saturated aqueous NaHCO3 (2×75 mL), and brine (75 mL). The organic phase was dried (Na2SO4), filtered and concentrated. Crystallization of the crude material from EtOAc/n-hex gave 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (3.29 g, 78%) as white crystals. 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.2 Hz), 6.94 (dd, 1H, J=3.5, 5 Hz), 7.02 (dd, 1H, J=1.2, 3.2 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 8.09 (m, 1H), 8.93 (t, 1H, J=6.2 Hz), 8.98 (brs, 1H); MS (ESI) m/z=437.9, 439.9 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H), 6.69 (m, 1H), 6.96 (m, 2H), 7.36 (m, 2H), 7.87 (d, 1H), 8.25 (s, 1H), 8.68 (s, 1H), 8.90 (t, 1H); MS (ESI) m/z=426.7 (M+).
7-Chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic Acid (thiophen-2-ylmethyl)-amide (50 mg) was treated with methylamine (2M in THF) and heated at 120° C. to give 7-methylamino-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (34.2 mg) after column chromatography. 1H NMR (d6-DMSO, 300 MHz) δ 3.06 (d, 3H, J=5 Hz), 4.69 (d, 2H, J=6.2 Hz), 6.27 (d, 1H, J=1.8 Hz), 6.91 (s, 1H), 6.97 (dd, 1H, J=3.2, 5 Hz), 6.99 (q, 1H, J=5 Hz), 7.05 (dd, 1H, J=1.2, 3.5 Hz), 7.28 (d, 1H, J=1.8 Hz), 7.41 (dd, 1H, J=1.2, 5 Hz), 7.36-7.51 (m, 3H), 7.76-7.80 (m, 2H), 8.81 (t, 1H, J=6.2 Hz); MS (ESI) m/z=363.1 (MH+).
7-Chloro-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (50 mg) was treated with excess ethanolamine and heated in iso-amyl alcohol at 135° C. Purification by reversed phase HPLC gave 7-(2-hydroxy-ethylamino)-5-phenyl-pyrazolo[1,5-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (12.1 mg). 1H NMR (d6-DMSO, 300 MHz) δ 3.53 (q, 2H, J=5.6 Hz), 3.71 (q, 2H, J=5.3 Hz), 4.67 (d, 2H, J=5.9 Hz), 4.97 (t, 1H, J=5.3 Hz), 6.40 (d, 1H, J=1.8 Hz), 6.79 (t, 1H, J=5.9 Hz), 6.92 (s, 1H), 6.96 (dd, 1H, J=3.5, 5 Hz), 7.04 (dd, 1H, J=1.2, 3.2 Hz), 7.29 (d, 1H, J=1.8 Hz), 7.39 (dd, 1H, J=1.2, 5 Hz), 7.37-7.51 (m, 3H), 7.78-7.80 (m, 2H), 9.01 (t, 1H, J=5.9 Hz); MS (ESI) m/z=393.1 (MH+).
Using similar procedure as for the preparation of compound 136, 3,5-bis(trifluoromethyl)-2-aminopyridine was used as starting material to give 6,8-bis-trifluoromethyl-imidazo[1,2a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) 9.52 (s, 1H), 8.95 (t, 1H, J=6.3 Hz), 8.60 (s, 1H), 8.07 (s, 1H), 7.35 (dd, 1H, J=1.2, 4.8 Hz), 7.01 (dd, 1H, J=0.9, 3.3 Hz), 6.93 (dd, 1H, J=3.3, 4.8 Hz), 4.63 (d, 2H, J=6.3 Hz); MS 394.0 (MH+).
Bromine (3.65 g, 22.8 mmol) was added dropwise to 2-oxo-butyric acid (2.33 g, 22.8 mmol). A vigorous reaction resulted. The mixture was stirred for 30 min, then water and ethyl acetate were added and the organic layer separated. This was washed with 5% NaHSO3, water, then brine. The organic extracts were concentrated under reduced pressure to afford 3-bromo-2-oxo-butyric acid (2.3 g, 56%).
Using similar procedure as for the preparation of compound but with the use of 2-bromo-2-oxo-butyric acid gave 6-furan-2-yl-3-methyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) 8.74 (s, 1H), 8.69 (t, 1H, J=6.6 Hz), 8.11 (s, 1H), 7.85 (s, 1H), 7.35 (br d, 1H), 7.27 (d, 1H, J=3.6 Hz), 7.00 (br s, 1H), 6.93 (m, 1H), 6.67 (dd, 1H, J=1.8, 3.3 Hz), 4.63 (d, 2H, J=6.0 Hz), 2.88 (s, 3H); MS (ESI) m/z=406.1 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (43.9 mg, 0.1 mmol), 3-furanboronic acid (16.8 mg, 0.15 mmol) and Pd(PPh3)4 (5.8 mg, 0.005 mmol) in aqueous K3PO4 (1M, 0.3 mL) and 1,4-dioxane (0.9 mL) was heated at 100° C. for 3 min under microwave conditions. The mixture was diluted with EtOAc (40 mL) and washed with saturated aqueous NaHCO3 (20 mL), then brine (20 mL). The organic phase was dried (Na2SO4), filtered and concentrated. Purification of the crude product by preparative HPLC (30-100% ACN gradient) followed by crystallization from EtOAc/n-hex gave 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (15.7 mg, 37%) as off-white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.4 Hz), 6.95 (dd, 1H, J=3.5, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.5 Hz), 7.32 (dd, 1H, J=0.9, 1.8 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.83 (t, 1H, J=1.8 Hz), 8.22 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H), 8.88 (t, 1H, J=6.4 Hz); MS (ESI) m/z=426 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (1.2 g, 3.23 mmol) and 2-furanboronic acid (722.8 mg, 6.45 mmol) in aqueous K3PO4 (1M, 4 mL) and 1,4-dioxane (12 mL) was heated at 140° C. for 15 min under microwave conditions. The reaction was repeated 4 times and combined. Upon cooling, the precipitate was filtered and rinsed with EtOAc to give 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (5.42 g, 94%) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.36 (t, 3H, J=7 Hz), 4.38 (q, 2H, J=7 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.41 (d, 1H, J=3.2 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.27 (m, 1H), 8.69 (s, 1H); MS (ESI) m/z=359, 361 (MH+).
A mixture of 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (0.5 g, 1.39 mmol) in 1,4-dioxane (5 mL) and 6N HCl (10 mL) was heated at 120° C. for 45 min under microwave conditions. Upon cooling, the solvent was removed under reduced pressure to give 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (536 mg) as a yellow solid which was used for the next step without further purification. 1H NMR (d6-DMSO, 300 MHz) δ 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.40 (d, 1H, J=3.5 Hz), 7.88 (d, 1H, J=1.8 Hz), 8.25 (s, 1H), 8.68 (s, 1H); MS (ESI) m/z=331, 333 (MH+).
A mixture of 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (50 mg, 0.151 mmol), 2-furylmethylamine (16 μL, 0.182 mmol), N,N-di-isopropylethylamine (105.4 μL, 0.605 mmol), and HATU (69 mg, 0.182 mmol) was stirred in DMF (0.8 mL) at room temperature for 30 min. The mixture was diluted with EtOAc (20 mL) and washed successively with 2N HCl (2×10 mL), saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The organic phase was dried (Na2SO4), filtered and concentrated. Column chromatography of the crude material gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (furan-2-ylmethyl)-amide (32.9 mg, 53%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.49 (d, 2H, J=6.2 Hz), 6.26 (brd, 1H, J=2.6 Hz), 6.39 (dd, 1H, J=1.8, 3.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.40 (d, 1H, J=3.5 Hz), 7.56 (dd, 1H, J=0.9, 1.8 Hz), 7.88 (d, 1H, J=1.5 Hz), 8.26 (s, 1H), 8.70 (t, 1H, J=6.2 Hz), 8.70 (s, 1H); MS (ESI) m/z=410 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.31 (d, 2H, J=6.2 Hz), 6.48 (brs, 1H), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.57 (d, 1H, J=1.4 Hz), 7.88 (d, 1H, J=1.8 Hz), 8.25 (s, 1H), 8.63 (t, 1H, J=6.2 Hz), 8.69 (s, 1H); MS (ESI) m/z=410 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.95 (m, 1H), 7.02 (d, 1H, J=2.4 Hz), 7.37 (dd, 1H, J=1.2, 4.8 Hz), 7.74 (m, 1H), 7.83 (dd, 1H, J=1.2, 5.0 Hz), 8.29 (m, 1H), 8.87 (m, 2H); MS (ESI) m/z=442 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.92 (s, 2H), 5.20 (s, 2H), 6.71 (dd, 1H, J=1.8, 3.5 Hz), 7.28-7.44 (m, 3H), 7.89 (d, 1H, J=1.2 Hz), 8.27 (s, 1H), 8.73 (s, 1H); MS (ESI) m/z=432 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 1.65 (d, 3H, J=7 Hz), 5.46 (pentet, 1H, J=7 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 6.98 (dd, 1H, J=3.5, 5 Hz), 7.06 (dt, 1H, J=1.2, 3.5 Hz), 7.38-7.40 (m, 2H), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (s, 1H), 8.59 (d, 1H, J=8.8 Hz), 8.70 (s, 1H); MS (ESI) m/z=440 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=5.9 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.26 (ddd, 1H, J=0.9, 4.7, 7.3 Hz), 7.32 (brd, 1H, J=7.6 Hz), 7.40 (d, 1H, J=3.2 Hz), 7.75 (dt, 1H, J=2, 7.6 Hz), 7.98 (brd, 1H, J=1.2 Hz), 8.27 (s, 1H), 8.51 (ddd, 1H, J=0.9, 1.8, 4.7 Hz), 8.71 (s, 1H), 8.89 (t, 1H, J=5.9 Hz); MS (ESI) m/z=421 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.51 (d, 2H, J=6.2 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.36 (ddd, 1H, J=0.9, 4.7, 7.9 Hz), 7.40 (d, 1H, J=3.2 Hz), 7.76 (dt, 1H, J=2, 7.9 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (s, 1H), 8.45 (dd, 1H, J=1.5, 5 Hz), 8.56 (d, 1H, J=1.8 Hz), 8.69 (s, 1H), 8.98 (t, 1H, J=6.2 Hz); MS (ESI) m/z=421 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.52 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.32 (dd, 2H, J=1.8, 4.7 Hz), 7.41 (d, 1H, J=3.5 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.27 (s, 1H), 8.50 (dd, 2H, J=1.8, 4.7 Hz), 8.71 (s, 1H), 9.01 (t, 1H, J=6.2 Hz); MS (ESI) m/z=421 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.72 (s, 3H), 5.93 (d, 1H, J=7.3 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.01 (dd, 1H, J=3.5, 5 Hz), 7.18 (ddd, 1H, J=0.9, 1.2, 3.5 Hz), 7.41 (d, 1H, J=3.2 Hz), 7.51 (dd, 1H, J=1.2, 5 Hz), 7.88 (d, 1H, J=1.2 Hz), 8.28 (s, 1H), 8.70 (s, 1H), 8.80 (d, 1H, J=7.3 Hz); MS (ESI) m/z=484 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 6.68-6.78 (m, 3H), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.12-7.18 (m, 2H), 7.41 (d, 1H, J=3.5 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 7.93 (d, 1H, J=2.6 Hz), 8.27 (s, 1H), 8.71 (s, 1H), 10.18 (d, 1H, J=2.6 Hz); MS (ESI) m/z=421 (MH+).
To a stirred solution of [(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-amino]-thiophen-2-yl-acetic acid methyl ester (146.8 mg, 0.303 mmol) in THF (6 mL) and MeOH (2 mL) was added a solution of LiOH.H2O (19.1 mg, 0.455 mmol) in water (1 mL) at room temperature. After 15 min, 2N HCl (0.2 mL) was added followed by removal of organic solvent under reduced pressure. The residue was diluted with 1N HCl (10 mL) and extracted with EtOAc (2×75 mL). The organic phase was dried (Na2SO4), filtered and concentrated to give [(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-amino]-thiophen-2-yl-acetic acid (146.7 mg) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 5.78 (d, 1H, J=7.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.01 (dd, 1H, J=3.5, 5.2 Hz), 7.15 (dt, 1H, J=0.9, 3.5 Hz), 7.41 (d, 1H, J=3.2 Hz), 7.48 (dd, 1H, J=1.5, 5 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.29 (s, 1H), 8.55 (d, 1H, J=7.2 Hz), 8.70 (s, 1H); MS (ESI) m/z=470 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 0.25-0.47 (m, 4H), 1.09 (m, 1H), 3.17 (t, 2H, J=6.4 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.88 (d, 2H, J=1.8 Hz), 8.25 (s, 1H), 8.32 (t, 1H, J=5.9 Hz), 8.70 (s, 1H); MS (ESI) m/z=384 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 0.85-1.70 (m, 11H), 3.15 (t, 2H, J=6.5 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.87 (d, 1H, J=1.8 Hz), 8.22 (t, 1H, J=6.5 Hz), 8.25 (s, 1H), 8.69 (s, 1H); MS (ESI) m/z=426.1 (MH+).
[(3-Chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-amino]-thiophen-2-yl-acetic acid was coupled to 3-morpholin-4-yl-propylamine under standard amide bond coupling conditions to give 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid [(3-morpholin-4-yl-propylcarbamoyl)-thiophen-2-yl-methyl]-amide. 1H NMR (d6-DMSO, 300 MHz) δ 1.85 (m, 2H), 2.90-3.32 (m, 8H), 3.38-3.97 (m, 6H), 5.87 (d, 1H, J=7.6 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.01 (dd, 1H, J=3.5, 5.2 Hz), 7.15 (brd, 1H, J=3.2 Hz), 7.41 (d, 1H, J=3.5 Hz), 7.47 (dd, 1H, J=1.2, 5 Hz), 7.89 (d, 1H, J=1.5 Hz), 8.30 (s, 1H), 8.42 (d, 1H, J=7.6 Hz), 8.70 (s, 1H), 8.76 (t, 1H, J=6.2 Hz), 9.92 (s, 1H); MS (ESI) m/z=596.1 (MH+).
[(3-Chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-amino]-thiophen-2-yl-acetic acid was coupled to N,N-dimethylethylenediamine under standard amide bond coupling conditions to give 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid [(2-dimethylamino-ethylcarbamoyl)-thiophen-2-yl-methyl]-amide. 1H NMR (d6-DMSO, 300 MHz) δ 2.79 (t, 6H, J=4.4 Hz), 3.10-3.90 (m, 4H), 5.89 (d, 1H, J=7.6 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.01 (dd, 1H, J=3.5, 5 Hz), 7.16 (dt, 1H, J=1.2, 2.9 Hz), 7.41 (d, 1H, J=3.2 Hz), 7.47 (dd, 1H, J=1.5, 5 Hz), 7.88 (d, 1H, J=1.2 Hz), 8.29 (s, 1H), 8.48 (d, 1H, J=7.6 Hz), 8.70 (s, 1H), 8.84 (t, 1H, J=6.2 Hz), 9.65 (s, 1H); MS (ESI) m/z=540.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.47 (d, 2H, J=6.2 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.10 (dd, 1H, J=1.2, 5 Hz), 7.31 (dd, 1H, J=1.2, 3 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.46 (dd, 1H, J=3, 5 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (s, 1H), 8.69 (s, 1H), 8.77 (t, 1H, J=6.2 Hz); MS (ESI) m/z=426 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.49 (d, 2H, J=6.2 Hz), 6.69 (dd, 1H, J=1.8, 3.2 Hz), 7.20-7.34 (m, 5H), 7.39 (d, 1H, J=3.2 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (brs, 1H), 8.70 (s, 1H), 8.86 (t, 1H, J=6.2 Hz); MS (ESI) m/z=420 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.96 (m, 1H), 7.02 (d, 1H, J=2.4 Hz), 7.21 (m, 1H), 7.37 (dd, 1H, J=1.2, 4.8 Hz), 7.70 (d, 1H, J=4.8 Hz), 7.83 (d, 1H, J=3.6 Hz), 8.15 (s, 1H), 8.69 (s, 1H), 8.89 (t, 1H, J=5.7 Hz); MS (ESI) m/z=442 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.3 Hz), 6.94 (m, 1H), 7.02 (d, 1H, J=3.0 Hz), 7.26 (d, 1H, J=4.2 Hz), 7.37 (dd, 1H, J=0.9, 4.8 Hz), 7.70 (d, 1H, J=3.9 Hz), 8.12 (s, 1H), 8.69 (s, 1H), 8.90 (t, 1H, J=6.0 Hz); MS (ESI) m/z=477 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.02 (d, 1H, J=2.4 Hz), 7.36 (m, 1H), 7.55-7.46 (m, 3H), 7.86 (d, 1H, J=6.9 Hz), 8.19 (s, 1H), 8.78 (s, 1H), 8.91 (t, 1H, J=6.0 Hz); MS (ESI) m/z=436 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.02 (d, 1H, J=3.6 Hz), 7.39-7.33 (m, 3H), 7.95-7.89 (m, 2H), 8.18 (s, 1H), 8.79 (s, 1H), 8.89 (t, 1H, J=6.2 Hz); MS (ESI) m/z=454 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.70 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.41 (d, 1H, J=3.2 Hz), 7.42-7.50 (m, 2H), 7.65 (t, 1H, J=7.6 Hz), 7.73 (d, 1H, J=7.9 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.28 (s, 1H), 8.71 (s, 1H), 8.97 (t, 1H, J=6.2 Hz); MS (ESI) m/z=488 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.57 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.40 (d, 1H, J=3.2 Hz), 7.53-7.70 (m, 4H), 7.88 (d, 1H, J=2 Hz), 8.26 (s, 1H), 8.69 (s, 1H), 9.02 (t, 1H, J=6.2 Hz); MS (ESI) m/z=488 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.57 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.2 Hz), 7.40 (d, 1H, J=3.2 Hz), 7.54 (d, 2H, J=8 Hz), 7.69 (d, 2H, J=8 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (m, 1H), 8.70 (s, 1H), 9.01 (t, 1H, J=6.2 Hz); MS (ESI) m/z=488 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.78 (d, 2H, J=6.4 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.40 (d, 1H, J=3.2 Hz), 7.61 (d, 1H, J=3.2 Hz), 7.72 (d, 1H, J=3.5 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.27 (s, 1H), 8.71 (s, 1H), 9.17 (t, 1H, J=6.2 Hz); MS (ESI) m/z=427 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.60 (s, 3H), 4.47 (d, 2H, J=6.2 Hz), 5.88 (dd, 1H, J=1.6, 3.5 Hz), 5.99 (dd, 1H, J=1.8, 3.5 Hz), 6.64 (dd, 1H, J=2, 2.7 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.87 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (s, 1H), 8.41 (t, 1H, J=5.9 Hz), 8.64 (s, 1H); MS (ESI) m/z=423.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 1.60 (m, 1H), 1.75-1.97 (m, 3H), 3.26-3.45 (m, 2H), 3.60-3.81 (m, 2H), 4.02 (m, 1H), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.87 (d, 1H, J=1.5 Hz), 8.11 (t, 1H, J=6 Hz), 8.26 (s, 1H), 8.69 (s, 1H); MS (ESI) m/z=414.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.09 (t, 2H, J=7 Hz), 3.56 (q, 2H, J=7 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 6.92 (dd, 1H, J=1.2, 3.5 Hz), 6.95 (dd, 1H, J=3.5, 5 Hz), 7.34 (dd, 1H, J=1.2, 5 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.88 (d, 1H, J=1.5 Hz), 8.25 (s, 1H), 8.41 (t, 1H, J=6.2 Hz), 8.69 (s, 1H); MS (ESI) m/z=440 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 1.99-2.38 (m, 2H), 3.40-4.10 (m, 4.5H), 4.26 (dd, 0.5H, J=8, 11 Hz), 6.69 (dd, 0.5H, J=1.8, 3.2 Hz), 6.70 (dd, 0.5H, J=1.8, 3.5 Hz), 7.20-7.40 (m, 6H), 7.87 (d, 0.5H, 1.2 Hz), 7.88 (d, 0.5H, J=1.8 Hz), 8.21 (s, 0.5H), 8.24 (s, 0.5H), 8.69 (s, 0.5H), 8.71 (s, 0.5H); MS (ESI) m/z=460.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 2.13 (ddd, 1H, J=8.8, 12.6, 17 Hz), 2.44 (m, 1H), 2.86 (dt, 1H, J=8.2, 15.5 Hz), 3.02 (ddd, 1H, J=3, 9, 15.5 Hz), 5.58 (q, 1H, J=8.5 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.15-7.29 (m, 4H), 7.40 (d, 1H, J=3.2 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (s, 1H), 8.49 (d, 1H, J=9 Hz), 8.71 (s, 1H); MS (ESI) m/z=446.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 1.25 (dt, 1H, J=5.9, 8 Hz), 1.51 (dt, 1H, J=5, 9 Hz), 2.21 (ddd, 1H, J=3.5, 6.5, 9.7 Hz), 3.04 (m, 1H), 6.69 (dd, 1H, J=1.8, 3.2 Hz), 7.14-7.30 (m, 5H), 7.39 (d, 1H, J=3.2 Hz), 7.87 (d, 1H, J=1.8 Hz), 8.25 (s, 1H), 8.54 (d, 1H, J=4.7 Hz), 8.69 (s, 1H); MS (ESI) m/z=446.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 1.92-2.5 (m, 5H), 3.63-4.11 (m, 2H), 5.56 (dd, 0.55H, J=1.9, 8.2 Hz), 6.17 (dd, 0.45H, J=3.5, 7 Hz), 6.56 (brd, 0.55H, J=3.2 Hz), 6.67 (m, 1.6H), 6.96 (dd, 0.55H, J=3.5, 5 Hz), 7.01 (dt, 0.55H, J=0.9, 3.5 Hz), 7.18 (dd, 0.45H, J=1.2, Hz), 7.34-7.37 (m, 1H), 7.39 (d, 0.55H, J=3.2 Hz), 7.85 (d, 0.45H, J=1.5 Hz), 7.87 (d, 0.55H, J=1.5 Hz), 8.20 (s, 0.45H), 8.23 (s, 0.55H), 8.58 (s, 0.45H), 8.70 (s, 0.55H); MS (ESI) m/z=466 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.85 (s, 3H), 4.48 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=2, 3.2 Hz), 6.89 (dt, 1H, J=0.9, 7.3 Hz), 7.00 (dd, 1H, J=0.9, 8.2 Hz), 7.15-7.27 (m, 2H), 7.40 (d, 1H, J=3.2 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (s, 1H), 8.59 (t, 1H, J=6 Hz), 8.70 (s, 1H); MS (ESI) m/z=450.1 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.73 (s, 3H), 4.46 (d, 2H, J=6.5 Hz), 6.69 (dd, 1H, J=2, 3.5 Hz), 6.80 (ddd, 1H, J=0.9, 2.6, 8.2 Hz), 6.89-6.94 (m, 2H), 7.23 (t, 1H, J=8.2 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.87 (dd, 1H, J=0.6, 1.8 Hz), 8.25 (s, 1H), 8.69 (s, 1H), 8.82 (t, 1H, J=6.5 Hz); MS (ESI) m/z=450 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 3.72 (s, 3H), 4.41 (d, 2H, J=6.2 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 6.87 (brd, 2h, J=8.8 Hz), 7.27 (brd, 2H, J=8.8 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.87 (d, 1H, J=1.5 Hz), 8.25 (s, 1H), 8.69 (s, 1H), 8.75 (t, 1H, J=6.2 Hz); MS (ESI) m/z=450.1 (MH+).
A mixture of 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (206.6 mg, 0.5 mmol), methyl 2-chloro-2,2-difluoroacetate (123 μL, 1.15 mmol), copper(I) iodide (114.3 mg, 0.6 mmol), and potassium fluoride (35 mg, 0.6 mmol) was heated in DMF (1.25 mL) at 120° C. for 15 hours in a sealed tube. The mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NH4Cl (10 mL), then brine (10 mL). The organic phase was dried (Na2SO4), filtered and concentrated. Column chromatography of the crude material gave 6-phenyl-3,8-bis-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (43.2 mg, 21%). 1H NMR (d6-DMSO, 300 MHz) δ 1.35 (t, 3H, J=7 Hz), 4.42 (q, 2H, J=7 Hz), 7.47-7.58 (m, 3H), 7.82-7.85 (m, 2H), 8.36 (s, 1H), 8.83 (s, 1H); MS (ESI) m/z=403.1 (MH+).
6-Phenyl-3,8-bis-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (41.5 mg, 0.1 mmol) was hydrolyzed in ACN (10 mL) and 6N HCl (10 mL) at 100° C. for 24 hours. The solvents were removed to give a precipitate which was triturated with water to give the acid which was used for the next step without further purification. The acid was coupled with 2-thiophenemethylamine under standard amide coupling conditions to give 6-phenyl-3,8-bis-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6.2 Hz), 6.97 (dd, 1H, J=3.5, 4.8 Hz), 7.04 (dd, 1H, J=0.9, 3.5 Hz), 7.41 (dd, 1H, J=1.3, 4.8 Hz), 7.45-7.58 (m, 3H), 7.81-7.85 (m, 2H), 8.33 (s, 1H), 8.81 (s, 1H), 9.21 (t, 1H, J=6.2 Hz); MS (ESI) m/z=470 (MH+).
Using similar procedure as for the preparation of compound 156
1H NMR (d6-DMSO, 300 MHz) 8.82 (s, 1H), 8.67 (t, 1H, J=6.3 Hz), 8.09 (s, 1H), 7.84 (s, 1H), 7.35 (d, 1H, J=1.5 Hz), 7.34 (d, 1H, J=0.9 Hz), 7.29 (d, 1H, J=3.6 Hz), 7.01 (m, 1H), 6.93 (m, 1H), 6.67 (dd, 1H, J=2.1, 3.6 Hz), 4.63 (d, 2H, J=6.3 Hz), 3.42 (q, 2H, J=7.6 Hz), 1.20 (t, 3H, J=7.5 Hz); MS (ESI) m/z=420.1 (MH+).
3-Chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.01 g, 6.1 mmol) was dissolved in tert-butanol (20 mL), triethylamine (2.6 mL, 18.3 mmol) and diphenylphosphoryl azide (DPPA, 3.35 g, 12.2 mmol) were added and the mixture refluxed for 14 hours. The solvent was removed under reduced pressure and the mixture partitioned between ethyl acetate and 5% aqueous NaHCO3. The organic layer was washed (water, brine) and dried and the crude product was purified by silica gel chromatography to afford (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-carbamic acid tert-butyl ester as a light brown solid (1.2 gm, 50%). 1H NMR (d6-DMSO, 300 MHz) 9.56 (s, 1H), 8.64 (s, 1H), 8.11 (s, 1H), 7.83 (d, 1H, J=1.8 Hz), 7.31 (d, 1H, J=3.3 Hz), 6.66 (dd, 1H, J=1.5, 3.3 Hz), 1.45 (s, 9H); MS (ESI) m/z=402.1 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.3 Hz), 6.96-6.93 (m, 1H), 7.25 (dd, 1H, J=0.6, 3.3 Hz), 7.29 (dt, 1H, J=2.4, 8.7 Hz), 7.36 (dd, 1H, J=0.6, 4.8 Hz), 7.59-7.52 (m, 1H), 7.72 (d, 1H, J=8.1 Hz), 7.80 (m, 1H), 8.22 (bs, 1H), 8.86 (s, 1H), 8.89 (t, 1H, J=6.3 Hz); MS (ESI) m/z=454 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.3 Hz), 6.96-6.93 (m, 1H), 7.02 (m, 1H), 7.43-7.34 (m, 3H), 7.54-7.49 (m, 1H), 7.76 (dt, 1H, J=1.8, 7.5 Hz), 8.09 (s, 1H), 8.77 (s, 1H), 8.91 (t, 1H, J=6.3 Hz); MS (ESI) m/z=454 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.96-6.93 (m, 1H), 7.02 (dd, 1H, J=0.9, 3.0 Hz), 8.08 (ddd, 1H, J=2.4, 8.1, 12.0 Hz), 7.36-7.54 (m, 1H), 7.79-7.74 (m, 1H), 7.54-7.49 (m, 1H), 7.76 (dt, 1H, J=1.8, 7.5 Hz), 8.22 (s, 1H), 8.87 (s, 1H), 8.90 (t, 1H, J=6.3 Hz); MS (ESI) m/z=472 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.96-6.93 (m, 1H), 7.02 (d, 1H, J=3.0 Hz), 7.36 (dd, 1H, J=1.2, 4.8 Hz), 7.87 (d, 1H, J=8.1 Hz), 8.11 (d, 1H, J=8.4 Hz), 8.22 (s, 1H), 8.26 (s, 1H), 8.90 (s, 1H), 8.92 (t, 1H, J=6.3 Hz); MS (ESI) m/z=504 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.61 (d, 2H, J=6.0 Hz), 6.93 (dd, 1H, J=3.3, 5.1 Hz), 6.99 (d, 1H, J=2.4 Hz), 7.34 (dd, 1H, J=1.2, 5.1 Hz), 7.45 (dd, 1H, J=1.2, 4.8 Hz), 7.57 (dd, 1H, J=1.2, 4.8 Hz), 7.68 (dd, 1H, J=3.0, 5.1 Hz), 7.72 (dd, 1H, J=3.0, 5.1 Hz), 8.09 (dd, 1H, J=1.2, 3.0 Hz), 8.12 (dd, 1H, J=1.5, 3.0 Hz), 8.19 (s, 1H), 8.57 (s, 1H), 8.77 (t, 1H, J=6.3 Hz); MS (ESI) m/z=490 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.55 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=2, 3.5 Hz), 7.13-7.21 (m, 2H), 7.26-7.40 (m, 3H), 7.88 (d, 1H, J=1.5 Hz), 8.26 (s, 1H), 8.70 (s, 1H), 8.83 (t, 1H, J=6.5 Hz); MS (ESI) m/z=438 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.58 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.32-7.44 (m, 5H), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.27 (s, 1H), 8.70 (s, 1H), 8.87 (t, 1H, J=6.2 Hz); MS (ESI) m/z=504 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.53 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.22-7.40 (m, 3H), 7.46 (t, 1H, J=8 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (s, 1H), 8.70 (s, 1H), 8.98 (t, 1H, J=6.2 Hz); MS (ESI) m/z=504 (MH+).
Prepared using similar procedure as for compound 158.
1H NMR (d6-DMSO, 300 MHz) δ 4.51 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 7.28-7.34 (m, 2H), 7.40 (d, 1H, J=3.2 Hz), 7.45 (brd, 2H, J=8.8 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (s, 1H), 8.70 (s, 1H), 8.95 (t, 1H, J=6.2 Hz); MS (ESI) m/z=504
(3-Chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-carbamic acid tert-butyl ester (0.1 gm, 0.26 mmol) in THF (1 mL) was added to a suspension of sodium hydride (60%, 0.073 g, 1.83 mmol) in THF (5 mL). The mixture was stirred for 15 min and phenyl acetyl chloride was added and the mixture refluxed for 14 hours. The mixture was partitioned between ethyl acetate and water and the organic layer was washed (water, brine) and dried to afford the crude product. This was redissloved in dichloromethane (3 mL), trifluoroacetic acid (3 mL) was added and the mixture stirred for 4 h. The crude mixture was purified by silica gel chromatography followed by washing with 1N HCl and acetonitrile to afford N-(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-2-phenyl-acetamide (0.016 g, 11%). 1H NMR (d6-DMSO, 300 MHz) 10.73 (s, 1H), 8.65 (s, 1H), 8.13 (s, 1H), 7.84 (s, 1H), 7.30, m, 6H), 6.66 (dd, 1H, J=2.1, 3.6 Hz), 3.69 (s, 2H); MS (ESI) m/z=420.0 (MH+).
To a suspension of 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridine-2-carboxylic acid (300 mg, 1.096 mmol) in tert-butanol (7.5 mL) was added triethylamine (229 μL, 1.645 mmol) followed by diphenylphosphoryl azide (354 μL, 1.645 mmol). The mixture was then heated at 85° C. for 17 hours. Upon cooling, the solvent was removed under reduced pressure. The crude material was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The organic phase was dried (Na2SO4), filtered and concentratedto give a brown oil. The crude material was heated in 3N HCl (10 mL) under reflux for 6 hours. Upon cooling, the upper yellow solution was removed, and the aqueous phase was concentrated under reduced pressure. To the residue was added Et2O (30 mL) and 1N NaOH (5 mL). The aqueous phase was separated and extracted again with Et2O (30 mL). The combined organic extracts were dried (Na2SO4), filtered and concentrated to give 6-(chloro-difluoro-methyl)-4-furan-2-yl-pyridin-2-ylamine (59 mg) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 6.65 (dd, 1H, J=1.8, 3.5 Hz), 6.66 (brs, 2H), 6.87 (d, 1H, J=1.2 Hz), 7.13 (d, 1H, J=1.2 Hz), 7.25 (dd, 1H, J=0.9, 3.5 Hz), 7.85 (dd, 1H, J=0.9, 1.8 Hz); MS (ESI) m/z=245 (MH+).
6-(Chloro-difluoro-methyl)-4-furan-2-yl-pyridin-2-ylamine (49.6 mg) was treated with ethyl bromopyruvate in DMF under similar conditions as for the preparation of compound 151 to give 5-(chloro-difluoro-methyl)-7-furan-2-yl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (36.7 mg, 53%) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.35 (t, 3H, J=7 Hz), 4.36 (q, 2H, J=7 Hz), 6.72 (dd, 1H, J=1.8, 3.5 Hz), 7.46 (d, 1H, J=3.5 Hz), 7.93 (dd, 1H, J=1.8, 3.5 Hz), 8.12 (s, 1H), 8.35 (s, 1H); MS (ESI) m/z=341 (MH+).
5-(Chloro-difluoro-methyl)-7-furan-2-yl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester was hydrolyzed in 1,4-dioxane (1 mL) and 6N HCl (2 mL) at 125° C. for 30 min under microwave conditions. The solvents were removed under reduced pressure to give the acid which was used for the next step without further purification. The acid was coupled to 2-thiophenemethylamine under standard coupling conditions to give 5-(chloro-difluoro-methyl)-7-furan-2-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (13.1 mg) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.2 Hz), 6.72 (dd, 1H, J=1.8, 3.2 Hz), 6.94 (dd, 1H, J=3.2, 5 Hz), 7.02 (dd, 1H, J=1.2, 3.2 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.46 (d, 1H, J=1.2, 5 Hz), 7.46 (d, 1H, J=3.2 Hz), 7.91 (d, 2H, J=1.2 Hz), 8.01 (s, 1H), 8.27 (s, 1H), 9.21 (t, 1H, J=6.2 Hz); MS (ESI) m/z=408 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.70 (d, 2H, J=6.3 Hz), 7.02 (dd, 1H, J=3.6, 5.1 Hz), 7.10 (d, 1H, J=3.3 Hz), 7.43 (dd, 1H, J=0.6, 4.5 Hz), 8.46 (t, 1H, J=6.3 Hz), 8.96 (d, 1H, J=6.6 Hz), 9.0 (t, 1H, J=6.0 Hz), 9.25 (s, 1H); MS (ESI) m/z=437 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.0 Hz), 6.96-6.93 (m, 1H), 7.06 (d, 1H, J=3.6 Hz), 7.37 (dd, 1H, J=1.5, 5.4 Hz), 7.83 (dd, 1H, J=5.4, 8.1 Hz), 8.33 (s, 1H), 8.63 (d, 1H, J=7.8 Hz), 8.79 (dd, 1H, J=1.5, 5.4 Hz), 8.94 (t, 1H, J=6.3 Hz), 9.07 (s, 1H), 9.23 (d, 1H, J=2.4 Hz); MS (ESI) m/z=437 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) δ 2.29 (s, 3H), 4.63 (d, 2H, J=6.3 Hz), 6.95 (dd, 1H, J=3.6, 4.8 Hz), 7.01 (d, 1H, J=2.4 Hz), 7.36 (m, 1H), 7.83 (d, 1H, J=3.3 Hz), 7.98 (s, 1H), 8.57 (s, 1H), 8.88 (t, 1H, J=6.3 Hz); MS (ESI) m/z=456 (MH+).
Prepared using similar procedure as for compound 157.
1H NMR (d6-DMSO, 300 MHz) 2.25 (s, 3H), 2.44 (s, 3H), 4.63 (d, 2H, J=6.0 Hz), 6.95 (m, 1H), 7.0 (s, 1H), 7.37 (d, 1H, J=4.2 Hz), 7.95 (s, 1H), 7.98 (s, 1H), 8.68 (s, 1H), 8.90 (t, 1H, J=6.3 Hz); MS (ESI) m/z=455 (MH+).
(3-Chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-carbamic acid tert-butyl ester (0.117 gm, 0.29 mmol) in THF (1 mL) was added to a suspension of sodium hydride (60%, 0.08 g, 2.04 mmol) in THF (5 mL). The mixture was stirred for 15 min and phenyl isocyanate was added and the mixture refluxed for 14 hours. The mixture was partitioned between ethyl acetate and water and the organic layer was washed (water, brine) and dried to afford the crude product. (MS analysis of the crude product indicated that the BOC protecting group had got removed under the reaction conditions.) The product was purified by suspending the crude mixture in acetonitrile and aqueous 1N HCl and washing the solids further with aqueous acid to afford 1-(3-cloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-3-phenyl-urea (0.01 g, 8%). 1H NMR (d6-DMSO, 300 MHZ) 9.81 (s, 1H), 9.46 (s, 1H), 8.65 (s, 1H), 8.14 (s, 1H), 7.84 (d, 1H, J=1.5 Hz), 7.45 (d, 2H, J=8.7 Hz), 7.32 (m, 3H), 6.99 (t, 1H, J=7.5 Hz), 6.67 (dd, 1H, J=1.8, 3.6 Hz); MS (ESI) m/z=421.0 (MH+).
A mixture of 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (40 mg, 0.1210 mmol), 4-morpholinobenzylamine (27.9 mg, 0.1452 mmol), HATU (55.2 mg, 0.1452 mmol), and di-isopropylethylamine (84.3 μL, 0.4839 mmol) was stirred in DMF (0.8 mL) at room temperature. After 1.5 hours, the mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (5:4 v/v)] of the crude material gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid 4-morpholin-4-yl-benzylamide (compound 212) (51.1 mg, 84%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 3.03-3.08 (m, 4H), 3.69-3.74 (m, 4H), 4.39 (d, 2H, J=6.2 Hz), 6.69 (dd, 1H, J=1.6, 3.2 Hz), 6.89 (d, 2H, J=8.8 Hz), 7.21 (d, 2H, J=8.5 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.87 (d, 1H, J=1.2 Hz), 8.24 (brs, 1H), 8.68 (t, 1H, J=6.2 Hz), 8.69 (brs, 1H); MS (ESI) m/z=505.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and (3-morpholinophenyl)methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid 3-morpholin-4-yl-benzylamide (compound 213). 1H NMR (d6-DMSO, 300 MHz) δ 3.06-3.10 (m, 4H), 3.70-3.75 (m, 4H), 4.44 (d, 2H, J=6.1 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 6.77-6.83 (m, 2H), 6.94 (brs, 1H), 7.17 (t, 1H, J=8 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.88 (d, 1H, J=1.2 Hz), 8.25 (brs, 1H), 8.70 (brs, 1H), 8.74 (t, 1H, J=6.1 Hz); MS (ESI) m/z=505.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 4-(2-(dimethylamino)ethoxy)benzylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid 4-(2-dimethylamino-ethoxy)-benzylamide (compound 214). 1H NMR (d6-DMSO, 300 MHz) δ 2.82 (s, 6H), 3.46 (t, 2H, J=5 Hz), 4.29 (t, 2H, J=5 Hz), 4.43 (d, 2H, J=6.4 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 6.95 (d, 2H, J=8.5 Hz), 7.31 (d, 2H, J=8.5 Hz), 7.39 (d, 1H, J=3.5 Hz), 7.88 (d, 1H, J=1.8 Hz), 8.26 (s, 1H), 8.70 (s, 1H), 8.73 (t, 1H, J=6.1 Hz), 9.84 (s, 1H); MS (ESI) m/z=507.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-(2-(dimethylamino)ethoxy)benzylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid 2-(2-dimethylamino-ethoxy)-benzylamide (compound 215). 1H NMR (d6-DMSO, 300 MHz) δ 2.93 (s, 6H), 3.56 (brs, 2H), 4.36 (t, 2H, J=5 Hz), 4.56 (d, 2H, J=6.2 Hz), 6.70 (dd, 1H, J=1.8, 3.5 Hz), 6.97 (dt, 1H, J=0.6, 7.5 Hz), 7.02 (dd, 1H, J=0.6, 8.2 Hz), 7.24-7.32 (m, 2H), 7.40 (d, 1H, J=3.2 Hz), 7.88 (d, 1H, J=1.2 Hz), 8.27 (brs, 1H), 8.71 (s, 1H), 8.73 (t, 1H, J=6.2 Hz), 9.76 (brs, 1H); MS (ESI) m/z=507.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-phenylpiperidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-piperidin-1-yl)-methanone (compound 216). 1H NMR (d6-DMSO, 300 MHz) δ 1.58-2.02 (m, 4H), 2.72-3.20 (m, 3H), 4.10-4.62 (m, 2H), 6.68 (dd, 0.5H, J=1.8, 3.5 Hz), 6.70 (dd, 0.5H, J=1.8, 3.5 Hz), 7.14-7.39 (m, 6H), 7.86 (d, 0.5H, J=1.1 Hz), 7.88 (d, 0.5H, J=1.5 Hz), 8.19 (s, 0.5H), 8.23 (s, 0.5H), 8.67 (s, 0.5H), 8.70 (s, 0.5H); MS (ESI) m/z=474.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(5,7-dihydro-pyrrolo[3,4-b]pyridin-6-yl)-methanone (compound 217). 1H NMR (d6-DMSO, 300 MHz) δ 4.94 (d, 2H, J=16 Hz), 5.28 (s, 2H), 6.71 (dd, 1H, J=1.8, 3.5 Hz), 7.34-7.42 (m, 2H), 7.83-7.92 (m, 2H), 8.28 (brs, 1H), 8.50 (m, 1H), 8.74 (s, 1H); MS (ESI) m/z=433 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 4-phenylpiperidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(4-phenyl-piperidin-1-yl)-methanone (compound 218). 1H NMR (d6-DMSO, 300 MHz) δ 1.56-1.95 (m, 4H), 2.80-2.99 (m, 2H), 3.24 (t, 1H, J=11 Hz), 4.19 (brd, 1H, J=12.3 Hz), 4.67 (brd, 1H, J=12.6 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.16-7.33 (m, 5H), 7.38 (d, 1H, J=3.2 Hz), 7.88 (d, 1H, J=1.2 Hz), 8.22 (s, 1H), 8.70 (s, 1H); MS (ESI) m/z=474.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and [5-(2-pyridyl)-2-thienyl]methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (5-pyridin-2-yl-thiophen-2-ylmethyl)-amide (compound 219). 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=5.9 Hz), 6.69 (dd, 1H, J=1.8, 3.5 Hz), 7.04 (d, 1H, J=3.5 Hz), 7.23 (ddd, 1H, J=1.5, 5.0, 7.0 Hz), 7.39 (d, 1H, J=3.2 Hz), 7.62 (d, 1H, J=3.8 Hz), 7.79 (dt, 1H, J=1.8, 7.3 Hz), 7.85 (dt, 1H, J=1.2, 7.9 Hz), 7.88 (dd, 1H, J=0.6, 1.8 Hz), 8.26 (brs, 1H), 8.46 (ddd, 1H, J=0.8, 1.2, 4.7 Hz), 8.70 (s, 1H), 8.97 (t, 1H, J=6.3 Hz); MS (ESI) m/z=503 (MH+).
A mixture of 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (2 g, 5.933 mmol) was heated at 50° C. in fuming nitric acid (10 mL) and sulfuric acid (20 mL) for 5.5 hours. The mixture was cooled and poured into ice-water (400 mL) to give a precipitate which was filtered to give 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (1.25 g, 55%) as a light yellow solid. MS (ESI) m/z=405.9 (MNa+).
A mixture of 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (650 mg, 1.7011 mmol), furan-3-boronic acid (286 mg, 2.5517 mmol), tetrakis(triphenylphosphine)palladium(0) (98.3 mg, 0.085 mmol) in 1M K3PO4 (4 mL) and 1,4-dioxane (12 mL) was treated under microwave conditions at 140° C. for 5 min. The microwave reaction was repeated again and the crude reaction mixtures were combined for workup. The mixture was diluted with EtOAc (120 mL) and washed with saturated aqueous NaHCO3 (30 mL), then brine (30 mL). The filtrate was dried (Na2SO4), filtered and concentrated. The crude material was absorbed on silica gel and purified by chromatography [n-hex/EtOAc (5:1 v/v) to (4:1 v/v)] to give 6-furan-3-yl-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (620 mg, 49%) as a yellow solid. MS (ESI) m/z=370 (MH+).
A mixture of 6-furan-3-yl-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (235 mg, 0.6364 mmol) and thiophene-2-methylamine (653 μL, 0.6364 mmol) was heated at 150° C. in NMP under microwave conditions for 10 min. The crude reaction mixture was loaded on a pad of silica gel and eluted with EtOAc/n-hex. The fractions containing the product were concentrated and repurified by silica gel chromatography [n-hex/EtOAc (5:1 v/v)] to give 6-furan-3-yl-3-[(thiophen-2-ylmethyl)-amino]-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (266 mg, 96%). MS (ESI) m/z=436.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 4-phenylpyrrolidine-3-methylcarboxylate gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester (compound 221). 1H NMR (d6-DMSO, 300 MHz) δ 3.44-3.70 (m, 2H), 3.53 (s, 1.5H), 3.57 (s, 1.5H), 3.77 (dd, 0.5H, J=9.1, 12 Hz), 3.85 (t, 0.5 H, J=10.5 Hz), 3.98-4.14 (m, 2H), 4.33 (d, 0.5H, J=7.6 Hz), 4.37 (d, 0.5H, J=7.6 Hz), 7.24-7.40 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.21 (s, 0.5H), 8.53 (s, 0.5H), 8.56 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=518.1 (MH+).
A mixture of 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (2.93 g, 12.14 mmol) and 3-bromo-2-oxo-pentanedioic acid dimethyl ester (prepared from bromination of dimethyl 2-oxoglutarate) (6.15 g, 24.29 mmol) was heated in DMF at 70° C. for a week. The mixture was poured into water (700 mL) to give a precipitate which was filtered and dried to give the product (1.74 g). The filtrate was extracted with EtOAc (300 mL) which after concentration of the solvent yielded 3.71 g of crude material. The crude prduct was absorbed on silica gel followed by column chromatography [(3:1 v/v) n-hex:EtOAc)] to give 6-bromo-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester as a yellow solid (1.37 g). 1H NMR (d6-DMSO, 300 MHz) δ 3.65 (s, 3H), 3.86 (s, 3H), 4.51 (s, 2H), 8.02 (s, 1H), 8.23 (s, 1H); MS (ESI) m/z=395 (MH+).
A mixture of 6-bromo-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (600 mg, 1.5185 mmol), furan-3-boronic acid (254.9 mg, 2.2778 mmol), tetrakis(triphenylphosphine)palladium(0) (87.7 mg, 0.0759 mmol) in 1M K3PO4 (4 mL) and 1,4-dioxane (12 mL) was treated under microwave conditions at 120° C. for 5 min. Additional K3PO4 (1M, 2 mL) was added to the mixture and microwaved at 120° C. for 10 min. This was repeated with additional K3PO4 (1M, 0.5 mL) and microwaved at 120° C. for 5 min. The solvent was removed and 10% NaOH was added (12 mL). The aqueous phase was washed with Et2O (2×60 mL) followed by addition of 6N HCl until pH 1. The precipitate was filtered and dried under vacuum to give 3-carboxymethyl-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (445 mg, 83%) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.48 (s, 2H), 7.23 (dd, 1H, J=0.8, 1.7 Hz), 7.82 (t, 1H, J=1.5 Hz), 8.12 (s, 1H), 8.47 (s, 1H), 8.98 (s, 1H); MS (ESI) m/z=355 (MH+).
To a stirred solution of 3-carboxymethyl-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (745 mg, 2.1031 mmol) in MeOH (150 mL) was added thionyl chloride (7.7 μL, 0.1052 mmol). Additional thionyl chloride (total of 200 μL) was added throughout the reaction. After 6 days, the solvent was concentrated to give a mixture of the mono-methyl ester and the dimethyl ester. The crude material was diluted with EtOAc (100 mL) and washed with 2N HCl, dried (Na2SO4), filter and concentrated to give an off-white solid (759 mg) which was used for the next step without further purification. MS (ESI) m/z=369 (MH+).
A mixture of 6-furan-3-yl-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (23 mg, 0.06245 mmol), thiophene-2-methylamine (7.7 μL, 0.07495 mmol), HATU (28.5 mg, 0.07495 mmol), and di-isopropylethylamine (32.6 L, 0.1847 mmol) in DMF (0.8 mL) was stirred at room temperature. After 30 min, the mixture was diluted with EtOAc (10 mL) and washed successively with 2N HCl (10 mL), saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (2:1 v/v)] of the crude product gave {6-furan-3-yl-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid methyl ester (15 mg) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 3.65 (s, 3H), 4.63 (s, 2H, J=7 Hz), 4.61 (s, 2H), 6.94 (dd, 1H, J=3.2, 5 Hz), 7.01 (dd, 1H, J=1.2, 3.2 Hz), 7.22 (dd, 1H, J=0.6, 1.8 Hz), 7.36 (dd, 1H, J=1.2, 5 Hz), 7.82 (t, 1H, J=1.8 Hz), 8.14 (s, 1H), 8.46 (brs, 1H), 8.77 (t, 1H, J=6.2 Hz), 8.98 (s, 1H); MS (ESI) m/z=464 (MH+).
To a solution of 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester (201 mg, 0.3882 mmol) in THF (30 mL) and MeOH (10 mL) was added a solution of lithium hydroxide monohydrate (24.4 mg, 0.5822 mmol) in water (10 mL). After 3.5 hours, 2N HCl (2 mL) was added followed by the removal of solvent under reduced pressure. The remaining aqueous solution was extracted with EtOAc (100 mL, 20 mL). The extracts were dried (Na2SO4), filtered and concentrated. A portion of the crude material (50 mg) was purified by preparative HPLC (30-100% ACN gradient) to give 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid (compound 223) (30.5 mg). The rest of the material (169 mg) was used for further reactions without purification. 1H NMR (d6-DMSO, 300 MHz) δ 3.00-3.80 (m, 3H), 3.96-4.13 (m, 2H), 4.30-4.37 (m, 1H), 7.20-7.41 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.5 Hz), 8.16 (s, 0.5H), 8.20 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.79 (s, 0.5H), 8.82 (s, 0.5H), 12.53 (s, 1H); MS (ESI) m/z=504 (MH+).
Using standard HATU coupling conditions, 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid (compound 223), and N,N-dimethylethylenediamine gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid (2-dimethylamino-ethyl)-amide (compound 224). 1H NMR (d6-DMSO, 300 MHz) δ 2.64 (s, 3H), 2.70 (s, 3H), 2.90-3.48 (m, 5H), 3.58-4.40 (m, 5H), 7.20-7.37 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.84 (t, 0.5H, J=1.8 Hz), 8.17 (s, 0.5H), 8.20 (s, 0.5H), 8.31-8.42 (m, 1H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=574.2 (MH+).
Using standard HATU coupling conditions, 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid (compound 223), and 4-(2-aminoethyl)morpholine gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidine-3-carboxylic acid (compound 225). 1H NMR (d6-DMSO, 300 MHz) δ 2.80-4.40 (m, 18H), 7.20-7.38 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.84 (t, 0.5H, J=1.8 Hz), 8.17 (s, 0.5H), 8.20 (s, 0.5H), 8.32-8.45 (m, 1H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=616.2 (MH+).
To a solution of {6-furan-3-yl-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid methyl ester (compound 222) (48.5 mg, 0.1047 mmol) in THF (6 mL) and water (2 mL) was added lithium hydroxide monohydrate (6.6 mg, 0.1570 mmol) in water (0.1 mL). After 35 min, 2N HCl was added to acidify the solution followed by concentration of solvent. The remaining aqueous solution was extracted with EtOAc (20 mL). The organic phase was separated, dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (2:1 v/v) followed by n-hex/EtOAc (1:2 v/v), then MeOH/EtOAc (5:95 v/v)] of the crude material gave {6-furan-3-yl-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (16 mg, 34%) as a white solid.
1H NMR (d6-DMSO, 300 MHz) δ 4.57 (s, 2H), 4.63 (d, 2H, J=6.2 Hz), 6.94 (dd, 1H, J=3.7, 5.1 Hz), 7.02 (dd, 1H, J=1.1, 3.3 Hz), 7.24 (dd, 1H, J=0.7, 1.8 Hz), 7.36 (dd, 1H, J=1.7, 3.2 Hz), 7.82 (t, 1H, J=1.8 hz), 8.13 (s, 1H), 8.47 (s, 1H), 8.75 (t, 1H, J=6.2 Hz), 8.97 (s, 1H); MS (ESI) m/z=450 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and methyl-3-phenylpyrrolidine-2-carboxylate gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid methyl ester (compound 227). 1H NMR (d6-DMSO, 300 MHz) δ 2.00-2.40 (m, 2H), 3.30-4.40 (m, 3H), 3.55 (s, 1.5H), 3.61 (s, 1.5H), 4.49 (d, 0.5H, J=8.5 Hz), 5.36 (d, 0.5H, J=4.4 Hz), 7.20-7.38 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.22 (s, 0.5H), 8.53 (s, 0.5H), 8.56 (s, 0.5H), 8.79 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=518.1 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid methyl ester was saponified using lithium hydroxide to give 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid (compound 228). MS (ESI) m/z=504.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-phenyl-pyrrolidine-2-carboxylic acid gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-2-phenyl-pyrrolidine-2-carboxylic acid (compound 229). MS (ESI) m/z=504.1 (MH+).
Using standard HATU coupling conditions, 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid (compound 228), and N,N-dimethylethylenediamine gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid (2-dimethylamino-ethyl)-amide (compound 230). 1H NMR (d6-DMSO, 300 MHz) δ 2.16-2.40 (m, 2H), 2.79 (s, 3H), 2.80 (s, 3H), 3.00-4.30 (m, 7H), 4.44 (d, 1H, J=7.6 Hz), 7.20-7.36 (m, 5H), 7.84 (t, 1H, J=2 Hz), 8.23 (s, 1H), 8.36 (t, 1H, J=5.8 Hz), 8.56 (s, 1H), 9.22 (s, 1H), 9.29 (s, 1H); MS (ESI) m/z=574.2 (MH+).
Using standard HATU coupling conditions, 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid (compound 228), and 4-(2-aminoethyl)morpholine gave 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-3-phenyl-pyrrolidine-2-carboxylic acid (2-morpholin-4-yl-ethyl)-amide (compound 231). MS (ESI) m/z=616.2 (MH+).
To a solution of 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.1 g, 6.7952 mmol) in cone H2SO4 (20 mL) at 0° C. was added fuming HNO3 (5 mL) dropwise. The solution was then heated to 50° C. After 10 hours, the mixture was cooled to room temperature and stirred overnight. The mixture was carefully poured into ice-water (200 mL) to give a precipitate which was filtered and dried under high vacuum to give 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (1.8844 g, 78%) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 8.52 (s, 1H), 9.49 (d, 1H, J=1.8 Hz); MS (ESI) m/z=355.9 (MH+).
A mixture of 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (1 g, 2.8508 mmol), thiophene-2-methylamine (322 μL, 3.1359 mmol), HATU (1.192 g, 3.1359 mmol), and di-isopropylethylamine (1.49 mL, 8.5524 mmol in DMF (12 mL) was stirred at room temperature. After 45 min, 0.3 eq of HATU and 0.3 eq of thiophene-2-methylamine were added. After 20 min, the mixture was diluted with EtOAc (150 mL) and washed successively with 2N HCl (2×50 mL), saturated aqueous NaHCO3 (50 mL), and brine (50 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give a brown solid which was absorbed on silica gel. Column chromatography [n-hex/EtOAc (3:1 v/v)] of the crude material 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.85 g, 66%) as a yellow solid.
A mixture of 6-bromo-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (600 mg, 1.3357 mmol), furan-3-boronic acid (224 mg, 2.0035 mmol), tetrakis(triphenylphosphine)palladium(0) (77.2 mg, 0.06678 mmol) in 1M K3PO4 (3 mL) and 1,4-dioxane (9 mL) was treated under microwave conditions at 120° C. for 5 min. The mixture was diluted with EtOAc (100 mL) and washed with saturated aqueous NaHCO3 (30 mL), then brine (30 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give the crude material which was column chromatographed [n-hex/EtOAc (3:1 v/v) to n-hex/EtOAc (2:1 v/v)] to give 6-furan-3-yl-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (418.6 mg, 72%) as a yellow powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.69 (d, 2H, J=5.9 Hz), 6.99 (dd, 1H, J=3.5, 5 Hz), 7.09 (dd, 1H, J=0.6, 3.2 Hz), 7.22 (dd, 1H, J=0.6, 1.8 Hz), 7.45 (dd, 1H, J=1.2, 5 Hz), 7.84 (t, 1H, J=1.8 Hz), 8.53 (s, 1H), 8.61 (s, 1H), 9.32 (t, 1H, J=5.9 Hz), 9.50 (brs, 1H); MS (ESI) m/z=437 (MH+).
A suspension of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (5.05 g, 13.59 mmol) was heated under reflux in 3N HCl (100 mL) and acetonitrile (100 mL) for 3 days. Upon cooling, the solvent was removed followed by addition of 10% NaOH until pH˜10. The mixture was washed with Et2O (2×80 mL) and acidified with 6N HCl to precipitate a white solid which was filtered and dried under high vacuum to give 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (4.3 g, 92%). 1H NMR (d6-DMSO, 300 MHz) δ 8.07 (m, 1H), 8.97 (m, 1H), 13.45 (brs, 1H); MS (ESI) m/z=344.9 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (937.3 mg, 2.7289 mmol), 3-(4-fluorophenyl)pyrrolidine (541 mg, 3.2746 mmol), HATU (1.25 g, 3.2746 mmol), and di-isopropylethylamine (1.9 mL, 10.9154 mmol) in DMF (14 mL) was stirred at room temperature. After 2 hours, the mixture was diluted with EtOAc (125 mL) and washed successively with 2N HCl (50 mL), saturated aqueous NaHCO3 (50 mL), and brine (50 mL). The filtrate was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (5:4 v/v)] of the crude material gave (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (1.17 g, 87%) as a foam. 1H NMR (d6-DMSO, 300 MHz) 1.96-2.34 (m, 2H), 3.38-4.08 (m, 4.5H), 4.19 (dd, 0.5H, J=7.3-11.4 Hz), 7.15 (q, 2H, J=8.8 Hz), 7.31-7.42 (m, 2H), 8.05 (m, 0.5H), 8.07 (m, 0.5H), 8.97 (m, 0.5H), 8.99 (m, 0.5H); MS (ESI) m/z=490, 492 (MH+).
A mixture of (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (55 mg, 0.1122 mmol), furan-3-boronic acid (18.8 mg, 0.1681 mmol), tetrakis(triphenylphosphine)palladium(0) (6.5 mg, 0.0056 mmol) in 1M K3PO4 (0.4 mL) and 1,4-dioxane (1.2 mL) was treated under microwave conditions at 100° C. for min. The mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). Column chromatography [n-hex/EtOAc (5:4 v/v)] of the crude material gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (49 mg, 91%) as an off-white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.97-2.36 (m, 2H), 3.40-4.10 (m, 4.5H), 4.24 (dd, 0.5H, J=7.6, 11 Hz), 7.10-7.19 (m, 2H), 7.29-7.42 (m, 3H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.54 (s, 0.5H), 8.79 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
3-Chloro-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 234) was prepared in a similar way as for (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 233). 1H NMR (d6-DMSO, 300 MHz) δ 1.99-2.38 (m, 2H), 3.40-4.10 (m, 4.5H), 4.24 (dd, 0.5H, J=7.6, 11.1 Hz), 7.10-7.85 (m, 8H), 8.18 (s, 0.5H), 8.21 (s, 0.5H), 8.86 (s, 0.5H), 8.88 (s, 0.5H); MS (ESI) m/z=506.1 (MH+).
Using standard HATU coupling conditions, 6-furan-3-yl-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(4-fluorophenyl)pyrrolidine gave {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid methyl ester (compound 235). 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.40 (m, 2H), 3.40-4.60 (m, 7H), 3.64 (s, 3H), 7.11-7.23 (m, 3H), 7.32-7.41 (m, 2H), 7.82 (t, 0.5H, J=1.8 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 8.10 (s, 0.5H), 8.13 (s, 0.5H), 8.46 (s, 0.5H), 8.47 (s, 0.5H), 8.90 (s, 0.5H), 8.99 (s, 0.5H); MS (ESI) m/z=516.1 (MH+).
{2-[3-(4-Fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid methyl ester was saponified using lithium hydroxide to give {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236). 1H NMR (d6-DMSO, 300 MHz) δ 1.92-2.40 (m, 2H), 3.40-4.51 (m, 7H), 7.11-7.24 (m, 3H), 7.32-7.42 (m, 2H), 7.81 (t, 0.5H, J=1.8 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 8.08 (s, 0.5H), 8.10 (s, 0.5H), 8.45 (s, 0.5H), 8.47 (s, 0.5H), 8.96 (brs, 1H), 12.57 (brs, 1H); MS (ESI) m/z=502.1 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and morpholine gave 2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-1-morpholin-4-yl-ethanone (compound 237). MS (ESI) m/z=571.2 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(4-fluorophenyl)pyrrolidine gave [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 238). 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.36 (m, 2H), 3.5-4.10 (m, 4.5H), 4.25 (dd, 0.5H, J=7.6, 11.7 Hz), 7.10-7.42 (m, 4H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.38 (s, 1H), 8.39 (s, 1H), 8.81 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and ammonium chloride gave 2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetamide (compound 239). 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.36 (m, 2H), 3.40-4.44 (m, 7H), 7.06 (brs, 1H), 7.11-7.42 (m, 5H), 7.64 (s, 1H), 7.81 (t, 0.5H, J=1.8 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 8.05 (s, 0.5H), 8.07 (s, 0.5H), 8.43 (s, 0.5H), 8.44 (s, 0.5H), 8.84 (s, 1H); MS (ESI) m/z=501.1 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and benzylamine gave N-benzyl-2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetamide (compound 240). 1H NMR (d6-DMSO, 300 MHz) δ 1.94-2.40 (m, 2H), 3.36-4.46 (m, 5H), 4.28 (d, 2H, J=5.9 Hz), 4.42 (brs, 2H), 7.10-7.41 (m, 10H), 7.82 (t, 0.5H, J=2 Hz), 7.83 (t, 0.5H, J=2 Hz), 8.05 (s, 0.5H), 8.08 (s, 0.5H), 8.42 (s, 0.5H), 8.43 (s, 0.5H), 8.63 (m, 1H), 8.87 (s, 1H); MS (ESI) m/z=591.2 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and N,N-dimethylethylenediamine gave N-(2-dimethylamino-ethyl)-2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetamide (compound 241). 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.40 (m, 2H), 2.79 (s, 3H), 2.80 (s, 3H), 4.49 (brs, 2H), 3.12-4.55 (m, 9H), 7.12-7.19 (m, 2H), 7.32-7.42 (m, 3H), 7.80 (t, 0.5H, J=1.8 Hz), 7.81 (t, 0.5H, J=1.8 Hz), 8.07 (s, 0.5H), 8.10 (s, 0.5H), 8.44 (m, 1H), 8.50 (s, 0.5H), 8.51 (s, 0.5H), 9.10 (brs, 1H); MS (ESI) m/z=572.2 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and cyclopropylamine gave N-cyclopropyl-2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetamide (compound 242). 1H NMR (d6-DMSO, 300 MHz) δ 0.40-0.46 (m, 2H), 0.58-0.65 (m, 2H), 1.96-2.40 (m, 2H), 2.61 (m, 1H), 3.40-4.30 (m, 6.5H), 4.40 (dd, 0.5H, J=7.3, 11.8 Hz), 7.11-7.19 (m, 3H), 7.32-7.41 (m, 2H), 7.82 (t, 0.5H, J=2 Hz), 7.83 (t; 0.5H, J=2 Hz), 8.05 (s, 0.5H), 8.08 (s, 0.5H), 8.27 (s, 0.5H), 8.28 (s, 0.5H), 8.44 (m, 1H), 8.85 (s, 1H); MS (ESI) m/z=541.2 (MH+).
A mixture of {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (90 mg, 0.1795 mmol), N-hydroxyacetamide (14.6 mg, 0.1974 mmol), HATU (75.1 mg, 0.1974 mmol) and di-isopropylethylamine (94 L, 0.5384 mmol) was stirred in DMF (1 mL) at room temperature for 145 min. The mixture was diluted with DMF (3 mL) and heated at 120° C. for 15 min under microwave conditions. The mixture was diluted with EtOAc (50 mL) and washed successively with 2N HCl (20 mL), saturated aqueous NaHCO3 (20 mL), and brine (20 mL). The filtrate was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/CH2Cl2/EtOAc (1:1:2 v/v)] of the crude material gave [3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-[6-furan-3-yl-3-(3-methyl-[1,2,4]oxadiazol-5-ylmethyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-methanone (50 mg, 52%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 90-2.40 (m, 2H), 2.23 (s, 3H), 3.39-4.09 (m, 4H), 4.31 (ddd, 0.5H, J=2.9, 8.5, 11.7 Hz), 4.51 (dd, 0.5H, J=7.0, 11.1 Hz), 5.08-5.12 (m, 2H), 7.11-7.19 (m, 3H), 7.32-7.39 (m, 2H), 7.80 (t, 0.5H, J=2 Hz), 7.81 (t, 0.5H, J=2 Hz), 8.14 (s, 0.5H), 8.17 (s, 0.5H), 8.45 (s, 0.5H), 8.46 (s, 0.5H), 9.04 (s, 0.5H), 9.05 (s, 0.5H); MS (ESI) m/z=540.2 (MH+).
A suspension of 6-furan-3-yl-3-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 232) (107.7 mg, 0.2468 mmol), iron powder (82.7 mg, 1.4809 mmol), and ammonium chloride (112.2 mg, 2.0979 mmol) was heated at 100° C. in MeOH (8 mL) and water (1 mL). After 3 hours, the mixture was allowed to stir at room temperature overnight. The mixture was diluted with EtOAc (80 mL) and filtered through a pad of Celite to give a yellow solution. The solution was washed with saturated aqueous NaHCO3 (20 mL), then brine (20 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give a crude solid which was crystallized from CH2Cl2/THF to give 3-amino-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (41.7 mg, 42%) as a yellow solid. MS (ESI) m/z=407 (MH+).
Using standard HATU coupling conditions, {2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-acetic acid (compound 236), and methylamine gave 2-{2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-3-yl}-N-methyl-acetamide (compound 245). 1H NMR (d6-DMSO, 300 MHz) δ 1.94-2.38 (m, 2H), 2.57 (s, 1.5H), 2.60 (s, 1.5H), 3.40-4.34 (m, 6.5H), 4.41 (dd, 0.5H, J=7.5, 11.4 Hz), 7.11-7.18 (m, 3H), 7.30-7.42 (m, 2H), 7.81 (t, 0.5H, J=1.8 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 8.04-8.10 (m, 2H), 8.43 (s, 0.5H), 8.44 (s, 0.5H), 8.87 (s, 1H); MS (ESI) m/z=515.2 (MH+).
To a solution of 2-amino-3-(trifluoromethyl)pyridine (2 g, 12.34 mmol) in conc sulfuric acid (10 mL) at 0° C. was added dropwise fuming nitric acid (0.56 mL, 12.34 mmol). After 15 min, the reaction was allowed to stir at room temperature. After 1 hour, the mixture was heated to 50° C. After 2 hours, the reaction was cooled to room temperature and slowly poured into ice-water (200 mL). The precipitate was filtered and dried under high vacuum to give 5-nitro-3-trifluoromethyl-pyridin-2-ylamine (1.92 g, 75%). 1H NMR (d6-DMSO, 300 MHz) δ 8.02 (brs, 2H), 8.38 (d, 1H, J=2.6 Hz), 9.04 (d, 1H, J=2.6 Hz); MS (ESI) m/z=208 (MH+).
Similar to the preparation of 6-bromo-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (Example 122, step 1), 5-nitro-3-trifluoromethyl-pyridin-2-ylamine (1.295 g, 6.2527 mmol) reacted with methyl bromopyruvate (1.85 mL, 15.632 mmol) in DMF to give 6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (1.71 g, 95%). 1H NMR (d6-DMSO, 300 MHz) δ 3.91 (s, 3H), 8.38 (dd, 1H, J=1, 2 Hz), 8.87 (s, 1H), 10.12 (d, 1H, J=2.3 Hz); MS (ESI) m/z=290 (MH+).
A mixture of 6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (1.71 g, 5.9242 mmol) and N-chlorosuccinimide (831 mg, 6.2204 mmol) was heated at 50° C. in DMF (30 mL) for 3 hours. The mixture was then stirred at room temperature overnight. The mixture was diluted with EtOAc (30 mL) and washed with water (100 mL), 1M sodium thiosulfate solution (100 mL), saturated aqueous NaHCO3 (100 mL), then brine (100 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give 3-chloro-6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (1.856 g, 97%) as a brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.97 (s, 3H), 8.47 (d, 1H, J=1.8 Hz), 9.57 (d, 1H, J=2 Hz); MS (ESI) m/z=324 (MH+).
A suspension of 3-chloro-6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (487 mg, 1.5049 mmol), and Raney®-nickel (0.5 mL) in acetic acid (0.5 mL) and MeOH (50 mL) was shaken under hydrogen at 40 psi for 7 hours. The catalyst was filtered and the solvent was concentrated under reduced pressure. The crude material was absorbed on silica gel and chromatographed [CH2Cl2/MeOH (98:2 v/v) to (97:3 v/v)] to give 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (400 mg, 91%) as a brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.86 (s, 3H), 5.67 (s, 2H), 7.56 (m, 1H), 7.71 (m, 1H); MS (ESI) m/z=294 (MH+).
To a stirred solution of 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (100 mg, 0.3406 mmol) in THF (9 mL) was added a solution of lithium hydroxide monohydrate (28.6 mg, 0.6811 mmol) in water (3 mL). After 4.5 hours, the solvent was concentrated followed by the addition of 2N HCl (1.2 mL). The aqueous solution was extracted with EtOAc (20 mL, 10 mL), and the extracts were dried (Na2SO4), filtered and concentrated to give 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (95 mg, 100%) as a brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.54 (s, 1H), 7.70 (s, 1H); MS (ESI) m/z=280 (MH+).
Under standard HATU coupling conditions, 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(4-fluoro-phenyl)-pyrrolidine gave (6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.34 (m, 2H), 3.36-4.12 (m, 4.5H), 4.27 (dd, 0.5H, J=7.6, 10.8 Hz), 5.59 (d, 2H, J=5.2 Hz), 7.10-7.18 (m, 2H), 7.32-7.42 (m, 2H), 7.50 (m, 1H), 7.72 (m, 1H); MS (ESI) m/z=429 (MH+).
To a solution of (6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (30 mg, 0.0703 mmol) in DMF (1 mL) was added pyridine (28.4 μL, 0.3515 mmol) and acetyl chloride (7.5 μL, 0.1054 mmol). After 4 hours, the mixture was diluted with EtOAc (20 mL) and washed with brine (2×10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [EtOAc/n-hex (3:1 v/v) to (5:1 v/v) then EtOAc] of the crude material gave N-{3-chloro-2-[3-(4-fluoro-phenyl)-pyrrolidine-1-carbonyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-6-yl}-acetamide (17.2 mg, 52%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.34 (m, 2H), 2.13 (s, 1.5H), 2.14 (s, 1.5H), 3.40-4.10 (m, 4.5H), 4.24 (dd, 0.5H, J=7.3, 10.8 Hz), 7.10-7.20 (m, 2H), 7.30-7.42 (m, 2H), 7.80 (brs, 0.5H), 7.83 (brs, 0.5H), 9.23 (brs, 0.5H), 9.24 (brs, 0.5H), 10.46 (s, 0.5H), 10.48 (s, 0.5H); MS (ESI) m/z=469.1 (MH+).
A mixture of 3-chloro-6-phenyl-4-trifluoromethyl-pyridazine (0.79 g, 3.05 mmol) was heated in 2N ammonia in iso-propanol (60 mL) at 100° C. in a sealed tube for 3 days. Additional 2N ammonia in iso-propanol (10 mL) was added to the reaction and heated for 1 day. Upon cooling, the solvent was removed under reduced pressure. The solid was digested with THF (25 mL) and the undissolved solid was filtered. Concentration of the filtrate gave 6-phenyl-4-trifluoromethyl-pyridazin-3-ylamine (749.8 mg, quantitative) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.11 (s, 2H), 7.39-7.51 (m, 3H), 8.02-8.07 (m, 3H); MS (ESI) m/z=240.1 (MH+).
Similar to the preparation of 6-bromo-3-methoxycarbonylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (Example 122, step 1), 6-phenyl-4-trifluoromethyl-pyridazin-3-ylamine (745 mg, 3.1145 mmol) reacted with methyl bromopyruvate (0.92 mL, 7.7864 mmol) in DMF (15 mL) to give 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester (701.2 mg, 70%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 3.90 (s, 3H), 7.58-7.62 (m, 3H), 8.13-8.20 (m, 2H), 8.31 (d, H, J=0.8 Hz), 9.11 (s, 1H); MS (ESI) m/z=322.1 (MH+).
6-Phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester was saponified using a similar method as for the preparation of 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (Example 146, step 5) to give 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid as a beige colored solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.56-7.62 (m, 3H), 8.13-8.20 (m, 2H), 8.28 (d, H, J=1.1 Hz), 9.00 (s, 1H), 13.18 (brs, 1H); MS (ESI) m/z=308 (MH+).
Under standard HATU coupling conditions, 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid and thiophene-2-methylamine gave 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) δ 4.66 (d, 2H, J=6.2 Hz), 6.95 (dd, 1H, J=3.5, 5 Hz), 7.03 (dd, 1H, J=1.2, 3.2 Hz), 7.37 (dd, 1H, J=1.2, 5 Hz), 7.56-7.62 (m, 3H), 8.14-8.20 (m, 2H), 8.29 (s, 1H), 8.91 (s, 1H), 8.99 (t, 1H, J=6.2 Hz); MS (ESI) m/z=403 (MH+).
Using similar procedure as for the preparation of 3-chloro-6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (Example 146, Step 3) 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester reacted with N-chlorosuccinimide to give 3-chloro-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester. 1H NMR (d6-DMSO, 300 MHz) δ 3.93 (s, 3H), 7.60-7.64 (m, 3H), 8.20-8.24 (m, 2H), 8.41 (d, 1H, J=1.2 Hz); MS (ESI) m/z=356 (MH+)
3-Chloro-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester was saponified using a similar method as for the preparation of 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (Example 146, step 5) to give 3-chloro-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid as an off-white solid. 1H NMR (d6-DMSO, 300 MHz) 7.58-7.64 (m, 3H), 8.20-8.25 (m, 2H), 8.39 (d, H, J=1.2 Hz); MS (ESI) m/z=342 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid and thiophene-2-methylamine gave 3-chloro-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.2 Hz), 6.96 (dd, 1H, J=3.2, 5 Hz), 7.04 (dd, 1H, J=1.2, 3.5 Hz), 7.38 (dd, 1H, J=1.2, 5 Hz), 7.58-7.64 (m, 3H), 8.18-8.26 (m, 2H), 8.39 (d, 1H, J=1.2 Hz), 9.03 (t, 1H, J=6.2 Hz); MS (ESI) m/z=437 (MH+).
Using similar procedure as for the preparation of 3-chloro-6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (Example 146, Step 3) 6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester reacted with N-bromosuccinimide to give 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester. 1H NMR (d6-DMSO, 300 MHz) δ 3.93 (s, 3H), 7.60-7.66 (m, 3H), 8.20-8.26 (m, 2H), 8.41 (s, 1H); MS (ESI) m/z=399.9 (MH+).
3-Bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid methyl ester was saponified using a similar method as for the preparation of 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (Example 146, step 5) to give 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.59-7.65 (m, 3H), 8.20-8.26 (m, 2H), 8.39 (d, H, J=0.9 Hz); MS (ESI) m/z=388 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid and thiophene-2-methylamine gave 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid (thiophen-2-ylmethyl)-amide. 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.2 Hz), 6.96 (dd, 1H, J=0.32, 5 Hz), 7.04 (dd, 1H, J=1.5, 3.5 Hz), 7.38 (dd, 1H, J=1.5, 5 Hz), 7.58-7.64 (m, 3H), 8.18-8.26 (m, 2H), 8.39 (d, 1H, J=0.9 Hz), 9.01 (t, 1H, J=6.2 Hz); MS (ESI) m/z=483 (MH+).
A mixture of 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (600 mg, 1.8572 mmol), furan-3-boronic acid (291 mg, 2.60 mmol), tetrakis(triphenylphosphine)palladium(0) (107 mg, 0.0928 mmol) in 1M K3PO4 (2.5 mL) and 1,4-dioxane (12.5 mL) was heated at 90° C. for 135 min. The mixture was diluted with EtOAc (120 mL) and washed with saturated aqueous NaHCO3 (20 mL), and brine (20 mL). The solution was diluted with n-hex (50 mL) and loaded on a pad of silica gel which was eluted with EtOAc/n-hex (2:1 v/v) to give 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (653.7 mg) as a light brown solid. The partially purified methyl ester was dissolved in THF (90 mL) and treated with lithium hydroxide monohydrate (220 mg, 5.238 mmol) in water (30 mL). After 4.5 hours, the solvent was removed under reduced pressure, diluted with 10% NaOH (20 mL) and washed with Et2O (100 mL). The aqueous phase was acidified with 6N HCl, extracted with EtOAc (2×100 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (520 mg, 84%) a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 7.01 (dd, 1H, J=0.8, 1.7 Hz), 7.83 (t, 1H, J=1.7 Hz), 8.11 (brs, 1H), 8.44 (brs, 1H), 8.51 (s, 1H), 9.11 (s, 1H), 13.00 (brs, 1H); MS (ESI) m/z=297 (MH+).
Under standard HATU coupling conditions, 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(4-fluorophenyl)pyrrolidine gave [3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.40 (m, 2H), 3.40-4.37 (m, 4.5H), 4.53 (dd, 0.5H, J=7, 10.5 Hz), 7.01 (dd, 0.5H, J=0.9, 2 Hz), 7.02 (dd, 0.5H, J=0.9, 2 Hz), 7.16 (room temperature, 2H, J=9 Hz), 7.32-7.42 (m, 2H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.07 (s, 0.5H), 8.09 (s, 0.5H), 8.41-8.45 (m, 2H), 9.12 (s, 0.5H), 9.14 (s, 0.5H); MS (ESI) m/z=444 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazine-2-carboxylic acid and 3-(4-fluorophenyl)pyrrolidine gave (3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-b]pyridazin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 2.00-2.36 (m, 2H), 3.40-4.10 (m, 4.5H), 4.17 (dd, 0.5H, J=7.3, 10.8 Hz), 7.20-7.20 (m, 2H), 7.32-7.44 (m, 2H), 7.58-7.64 (m, 3H), 8.17-8.25 (m, 2H), 8.34 (d, 0.5H, J=0.9 Hz), 8.37 (d, 0.5H, J=0.9 Hz); MS (ESI) m/z=535 (MH+).
Using similar procedure as for the preparation of 3-chloro-6-nitro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (Example 146, Step 3) 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester reacted with N-bromosuccinimide to give 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester. 1H NMR (d6-DMSO, 300 MHz) δ 3.89 (s, 3H), 8.12 (m, 1H), 8.92 (m, 1H); MS (ESI) m/z=400.9, 402.9 (MH+).
3,6-Dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester was saponified using a similar method as for the preparation of 6-amino-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (Example 146, step 5) to give 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. MS (ESI) m/z=388.9 (MH+).
Under standard HATU coupling conditions, 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(4-fluorophenyl)pyrrolidine gave (3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.34 (m, 2H), 3.40-4.08 (m, 4.5H), 4.12 (dd, 0.5H, J=6.7, 11.1 Hz), 7.09-7.20 (m, 2H), 7.30-7.42 (m, 2H), 8.05 (s, 0.5H), 8.08 (s, 0.5H), 8.88 (s, 0.5H), 8.90 (s, 0.5H); MS (ESI) m/z=537.9 (MH+).
A mixture of (3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (100 mg, 0.1869 mmol), furan-3-boronic acid (31.4 mg, 0.2803 mmol), tetrakis(triphenylphosphine)palladium(0) (10.8 mg, 0.0093 mmol) in 1M K3PO4 (0.3 mL) and 1,4-dioxane (1.2 mL) was heated at 80° C. for 10 min under microwave conditions. The mixture was diluted with EtOAc (40 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (3:2 v/v)] and [CH2Cl2/ACN (12:1 v/v)] of the crude material gave (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (28.7 mg, 29%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.36 (m, 2H), 3.40-4.10 (m, 4.5H), 4.18 (dd, 0.5H, J=7.3, 10.8 Hz), 7.10-7.20 (m, 2H), 7.27-7.43 (m, 3H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.72 (s, 0.5H), 8.73 (s, 0.5H); MS (ESI) m/z=522 (MH+).
A mixture of (3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (50 mg, 0.0934 mmol), furan-3-boronic acid (52.3 mg, 0.4672 mmol), tetrakis(triphenylphosphine)palladium(0) (5.4 mg, 0.0047 mmol) in 1M K3PO4 (0.3 mL) and 1,4-dioxane (0.9 mL) was heated at 120° C. for 10 min under microwave conditions. The mixture was diluted with EtOAc (40 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [CH2Cl2/ACN (10:1 v/v)] of the crude material gave (3,6-di-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (34.6 mg, 73%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.94-2.32 (m, 2H), 3.36-4.04 (m, 5H), 6.96 (dd, 0.5H, J=0.9, 1.8 Hz), 6.97 (dd, 0.5H, J=0.9, 1.8 Hz), 7.06-7.18 (m, 3H), 7.24-7.39 (m, 2H), 7.79 (t, 0.5H, J=1.8 Hz), 7.80 (t, 0.5H, J=1.8 Hz), 7.91 (t, 0.5H, J=1.5 Hz), 7.79 (t, 0.5H, J=1.5 Hz), 8.09 (s, 0.5H), 8.11 (s, 0.5H), 8.32 (dd, 0.5H, J=0.9, 1.5 Hz), 8.33 (dd, 0.5H, J=0.9, 1.5 Hz), 8.45 (brs, 0.5H), 8.47 (brs, 0.5H), 8.61 (s, 0.5H), 8.62 (s, 0.5H); MS (ESI) m/z=510.1 (MH+).
Using similar method as for the preparation of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (Example 133, Step 1), 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester was treated with hydrochloric acid to give 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. 1H NMR (d6-DMSO, 300 MHz) δ 7.97 (m, 1H), 8.53 (s, 1H), 9.17 (m, 1H), 13.11 (brs, 1H); MS (ESI) m/z=310.9 (MH+).
Under standard HATU coupling conditions, 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(4-fluorophenyl)pyrrolidine gave (6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.40 (m, 2H), 3.40-4.36 (m, 4.5H), 4.50 (dd, 0.5H, J=7.6, 11.1 Hz), 7.15 (dt, 2H, J=0.8, 8.8 Hz), 7.32-7.41 (m, 2H), 7.93 (m, 0.5H), 7.96 (m, 0.5H), 8.45 (s, 0.5H), 8.46 (s, 0.5H), 9.17 (m, 0.5H), 9.19 (m, 0.5H); MS (ESI) m/z=458 (MH+).
A mixture of (6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (50 mg, 0.1096 mmol), 4-pyrazoleboronic acid pinacol ester (74.4 mg, 0.3836 mmol), tetrakis(triphenylphosphine)palladium(0) (6.3 mg, 0.0055 mmol) in 1M K3PO4 (0.4 mL) and 1,4-dioxane (1.2 mL) was heated at 140° C. for 25 min under microwave conditions. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude product gave [3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-[6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-methanone (12.3 mg, 25%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.92-2.40 (m, 2H), 3.40-4.40 (m, 4.5H), 4.54 (dd, 0.5H, J=7.6, 11.7 Hz), 7.15 (brt, 2H, J=9.1 Hz), 7.34-7.42 (m, 2H), 8.02 (brs, 1H), 8.04 (s, 0.5H), 8.07 (s, 0.5H), 8.38 (brs, 1H), 8.40 (s, 0.5H), 8.41 (s, 0.5H), 9.10 (s, 0.5H), 9.12 (s, 0.5H), 13.10 (brs, 1H); MS (ESI) m/z=444.1 (MH+).
Similar to the preparation of (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 253), (3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone and 4-pyrazoleboronic acid pinacol ester reacted under microwave conditions to give [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.96-2.36 (m, 2H), 3.40-4.08 (m, 4.5H), 4.18 (dd, 0.5H, J=7.6, 11.4 Hz), 7.10-7.20 (m, 2H), 7.30-7.43 (m, 2H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.22 (brs, 1H), 8.54 (brs, 1H), 8.73 (s, 0.5H), 8.75 (s, 0.5H), 13.14 (s, 1H); MS (ESI) m/z=523.1 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (371.5 mg, 1 mmol), 4-pyrazoleboronic acid pinacol ester (582.1 mg, 3 mmol), tetrakis(triphenylphosphine)palladium(0) (57.8 mg, 0.05 mmol) in 1M K3PO4 (3 mL) and 1,4-dioxane (12 mL) was heated at 140° C. for 15 min under microwave conditions. Additional 1M K3PO4 (5 mL) was added to the reaction mixture and heated again at 120° C. for min under microwave conditions. The solvent was removed under reduced pressure, 10% citric acid (20 mL) was added followed by extraction with EtOAc (2×100 mL, 50 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [CH2Cl2/MeOH/AcOH (8:1:0.1 v/v) to (4:1:0.1 v/v)] of the crude material gave 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (70.1 mg, 21%) as a grey powder.
Under standard HATU coupling conditions, 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-(2-fluorophenyl)pyrrolidine gave [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(2-fluoro-phenyl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 2.03-2.36 (m, 2H), 3.48-4.14 (m, 4.5H), 4.29 (dd, 0.5H, J=6.7, 10.5 Hz), 7.12-7.46 (m, 4H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.23 (brs, 1H), 8.54 (brs, 1H), 8.81 (s, 0.5H), 8.82 (s, 0.5H), 13.13 (brs, 1H); MS (ESI) m/z=478.1 (MH+).
[3-Chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone was prepared following similar method as for the synthesis of [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(2-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (Compound 257). 1H NMR (d6-DMSO, 300 MHz) δ 2.00-2.31 (m, 2H), 3.44-4.12 (m, 4.5H), 4.27 (dd, 0.5H, J=7.6, 11.4 Hz), 7.02-7.43 (m, 4H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.23 (brs, 1H), 8.53 (brs, 1H), 8.81 (s, 0.5H), 8.82 (s, 0.5H), 13.13 (brs, 1H); MS (ESI) m/z=478.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-phenyl-2,5-dihydro-1H-pyrrole (prepared from dehydration of 3-phenyl-pyrrolidin-3-ol) gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 4.53 (m, 1H), 4.73 (m, 1H), 4.85 (m, 1H), 5.04 (m, 1H), 6.49 (m, 1H), 7.26-7.56 (m, 6H), 7.83 (q, 1H, J=1.4 Hz), 8.21 (dd, 1H, J=1.4, 2.3 Hz), 8.55 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=458.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-phenyl-pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.98-2.36 (m, 2H), 3.40-4.12 (m, 4.5H), 4.26 (dd, 0.5H, J=7, 10.8 Hz), 7.20-7.36 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (brs, 0.5H), 8.19 (brs, 0.5H), 8.53 (brs, 0.5H), 8.55 (brs, 0.5H), 8.79 (brs, 0.5H), 8.81 (brs, 0.5H); MS (ESI) m/z=460.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3R-phenyl-pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-((R)-3-phenyl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.98-2.36 (m, 2H), 3.40-4.12 (m, 4.5H), 4.26 (dd, 0.5H, J=7, 10.8 Hz), 7.20-7.36 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H), J=1.8 Hz), 8.16 (brs, 0.5H), 8.19 (brs, 0.5H), 8.53 (brs, 0.5H), 8.55 (brs, 0.5H), 8.79 (brs, 0.5H), 8.81 (brs, 0.5H); MS (ESI) m/z=460.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3S-phenyl-pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-((S)-3-phenyl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 1.98-2.36 (m, 2H), 3.40-4.12 (m, 4.5H), 4.26 (dd, 0.5H, J=7, 10.8 Hz), 7.20-7.36 (m, 6H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H), J=1.8 Hz), 8.16 (brs, 0.5H), 8.19 (brs, 0.5H), 8.53 (brs, 0.5H), 8.55 (brs, 0.5H), 8.79 (brs, 0.5H), 8.81 (brs, 0.5H); MS (ESI) m/z=460.1 (MH+).
A stirred solution of 8-bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (75 mg, 0.168 mmol), 3-furanboronic acid (28.2 mg, 0.252 mmol), Pd(PPh3)4 (19.4 mg, 0.017 mmol) was heated in aqueous K3PO4 (560 μL, 1.68 mmol) and 1,4-dioxane (2 mL) at 80° C. for 12 h. The mixture was diluted with EtOAc (20 mL), washed with saturated aqueous NaHCO3 (10 mL), brine (10 mL), dried (Na2SO4), filtered and concentrated. The product was precipitated from ACN, filtered, washed with ether, and dried under high vacuum to afford 3-chloro-8-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 263) (35 mg, 48%) as a brown solid. 1HNMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.00 Hz), 6.96 (m, 1H), 7.03 (d, 1H, J=1.80 Hz), 7.38 (dd, 1H, J=3.50, 4.70 Hz), 7.55 (m, 4H), 7.85 (m, 3H), 8.10 (s, 1H), 8.44 (s, 1H), 9.33 (s, 1H), 9.47 (t, 1H, J=7.50 Hz); MS (ESI) m/z=434 (MH+).
3-Chloro-8-(1-methyl-1H-pyrazol-4-yl)-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 264) was prepared using a similar procedure as for the preparation of 3-chloro-8-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 263). MS (ESI) m/z=448.1 (MH+).
3-Chloro-6-phenyl-8-pyridin-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 265) was prepared using a similar procedure as for the preparation of 3-chloro-8-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 263). MS (ESI) m/z=446.1 (MH+).
A stirred solution of 8-bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (500 mg, 1.12 mmol), tert-butyl acrylate (492 μL, 3.36 mmol), NaOAc (27.5 mg, 3.36 mmol), DIPEA (585 μL, 3.36 mmol), Pd(OAc)2 (25 mg, 0.112 mmol), and P-(o-tolyl)3 (34 mg, 0.112 mmol) in DMF (10 mL) was heated at 130° C. under argon for 12 h. The mixture was taken up in water (30 mL) and extracted with EtOAc (3×40 mL), washed with brine (30 mL), dried (Na2SO4), filtered and concentrated. Flash chromatography [n-hex/EtOAc (2:1 v/v)] of the crude product gave (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid tert-butyl ester (376 mg, 68%) as a brown solid. MS (ESI) m/z=495.1 (MH+).
A stirred solution of (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid tert-butyl ester (100 mg, 0.202 mmol) in MeOH (2 mL) and 4M HCl in dioxanes (2 mL) was heated 80° C. for 1 hour. Upon cooling, the mixture was co-evaporated with toluene (5 mL) to afford (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid methyl ester (66.8 mg, 73%) as a pale yellow solid. MS (ESI) m/z=452.0 (MH+).
A solution of (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid tert-butyl ester (110 mg, 0.223 mmol) in TFA (2 mL) and DCM (2 mL) was stirred at 70° C. for 1 hour. Upon cooling, the mixture was co-evaporated with toluene (2×5 mL) to afford (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid (compound 267) (93 mg, 95.4%) as a yellow solid. MS (ESI) m/z=438.0 (MH+).
A solution of (E/Z)-3-{3-chloro-6-phenyl-2-[(thiophen-2-ylmethyl)-2-carbamoyl]-imidazo[1,2-a]pyridine-8-yl}-acrylic acid (compound 267) (100 mg, 0.228 mmol), diethylamine (60 μL, 0.571 mmol), HATU (130 mg, 0.343 mmol), DIPEA (120 μL, 0.685 mmol) in DMF (1 mL) was stirred at 50° C. for 3 hours. The mixture was diluted with saturated aqueous NaHCO3 (3 mL) and water (3 mL) followed by extraction with EtOAc (2×10 mL). The organic layer was washed with brine (4 mL), dried (MgSO4), filtered, and concentrated. The product was purified by preparative HPLC (30-100% gradient ACN/water with 0.1% TFA), and converted to the HCl salt to afford 3-chloro-8-((E/Z)-2-diethylcarbamoyl-vinyl)-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 268) (66 mg, 59%) as a dark brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.05 (m, 6H), 3.35 (m, 2H), 3.52 (m, 2H), 4.59 (d, 2H, J=7.80 Hz), 6.90 (m, 1H), 6.97 (dd, 1H, J=1.20, 3.60 Hz), 7.46 (m, 4H), 7.78 (m, 3H), 8.07 (d, 1H, J=15.30 Hz), 8.14 (d, 1H, J=1.50 Hz), 8.47 (d, 1H, J=1.80 Hz), 8.89 (t, 1H, J=6.60 Hz); MS (ESI) m/z=493.1 (MH+).
Ethyl-4-piperidine carboxylate (93 μL, 0.605 mmol) was added to a stirred solution of 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (100 mg, 0.302 mmol), HATU (173 mg, 0.454 mmol) and DIPEA (158 μL, 0.907 mmol) in DMF (2 mL). The mixture was stirred at 50° C. for 1.5 hours. Saturated aqueous NaHCO3 (1 mL) was added to the mixture followed by extraction with EtOAc (2×4 mL). The combined organic layer was washed with brine (2 mL), dried (MgSO4), filtered, and concentrated in vacuo. The product was purified using preparative TLC [n-hex/EtOAc (2:1 v/v)] to afford 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid ethyl ester (compound 269) (125 mg, 88%) as white solid. MS (ESI) m/z=470.1 (MH+).
A mixture of 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid ethyl ester (300 mg, 0.639 mmol) and 3M LiOH (1.28 mL, 3.830 mmol) in THF (5 mL) was stirred at room temperature for 12 hours. The precipitate was filtered and the cake was washed with THF (2×5 mL). The filtrate was acidified with 10% aqueous HCl, then extracted with EtOAc (2×20 mL). The organic layer was washed with brine, dried (MgSO4), filtered, and concentrated. The product was purified using preparative TLC [MeOH/CH2Cl2 (5:95 v/v)] to afford 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid (compound 270) (200 mg, 71%) as pale yellow solid. MS (ESI) m/z=442.1 (MH+).
Aniline (31 μL, 0.340 mmol) was added to a stirring solution of 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid (75 mg, 0.170 mmol), HATU (97 mg, 0.255 mmol) and DIPEA (89 μL, 0.509 mmol) in DMF (1 mL). The mixture was stirred at 50° C. for 1.5 h. Saturated aqueous NaHCO3 (1 mL) was added to the mixture followed by extraction with EtOAc (2×4 mL). The combined organic layer was washed with brine (2 mL), dried (MgSO4), filtered, and concentrated. The product was purified using preparative TLC [MeOH/CH2Cl2 (5:95 v/v)] to afford 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid phenylamide (compound 271) (26.3 mg, 30%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.64 (m, 2H), 1.79 (m, 1H), 1.95 (m, 1H), 2.68 (m, 1H), 2.94 (m, 1H), 3.18 (m, 1H), 4.14 (d, 1H, J=8.70 Hz), 4.57 (d, 1H, J=4.50 Hz), 7.03 (m, 1H), 7.32 (m, 4H), 7.58 (dd, 1H, J=1.20, 9.00 Hz), 7.83 (m, 1H), 8.18 (m, 1H), 8.55 (s, 1H), 8.81 (s, 1H), 9.97 (s, 1H); MS (ESI) m/z=517.1 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid benzylamide (compound 272) was prepared in a similar method as 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid phenylamide (compound 271). MS (ESI) m/z=531.2 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid ethylamide (compound 273) was prepared in a similar method as 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid phenylamide (compound 271). MS (ESI) m/z=469.1 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid diethylamide (compound 274) was prepared in a similar method as 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid phenylamide (compound 271). MS (ESI) m/z=497.2 (MH+).
4-(2-Fluorophenyl)piperidine hydrochloride (130 mg, 0.605 mmol) was added to a stirring solution of 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (100 mg, 0.302 mmol), HATU (138 mg, 0.363 mmol) and DIPEA (158 μL, 0.907 mmol) in DMF (2 mL). The mixture was stirred at 50° C. for 1.5 h. Saturated aqueous NaHCO3 (1 mL) was added followed by extraction with EtOAc (2×4 mL). The combined organic layer was washed with brine (2 mL), dried (MgSO4), filtered, and concentrated. The product was purified using preparative TLC [MeOH/CH2Cl2 (5:95 v/v)] to afford (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-[4-(2-fluoro-phenyl)-piperidin-1-yl]-methanone (compound 275) (45 mg, 30%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.69 (m, 3H), 1.90 (d, 1H, J=12.6 Hz), 2.95 (m, 1H), 3.20 (m, 2H), 4.19 (d, 1H, J=12.9 Hz), 4.68 (d, 1H, J=13.2 Hz), 7.14 (m, 2H), 7.24 (m, 1H), 7.31 (m, 2H), 7.82 (t, 1H, J=1.5 Hz), 8.18 (s, 1H), 8.54 (s, 1H), 8.80 (s, 1H); MS (ESI) m/z=492.1 (MH+).
(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-[4-(3-fluoro-phenyl)-piperidin-1-yl]-methanone (compound 276) was prepared using a similar method as (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-[4-(2-fluoro-phenyl)-piperidin-1-yl]-methanone (compound 275). 1NMR (d6-DMSO, 300 MHz) δ 1.63 (m, 2H), 1.80 (d, 1H, J=12.3 Hz), 1.93 (d, 1H, J=11.4 Hz), 2.90 (m, 2H), 3.22 (m, 1H), 4.19 (d, 1H, J=12.9 Hz), 4.67 (d, 1H, J=13.2 Hz), 7.01 (m, 1H), 7.05 (s, 1H), 7.12 (d, 1H, J=1.5 Hz), 7.31 (m, 2H), 7.82 (t, 1H, J=1.8 Hz), 8.18 (d, 1H, J=1.5 Hz), 8.54 (d, 1H, J=1.2 Hz), 8.80 (s, 1H); MS (ESI) m/z=492.1 (MH+).
(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-[4-(4-fluoro-phenyl)-piperidin-1-yl]-methanone (compound 277) was prepared using a similar method as (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-[4-(2-fluoro-phenyl)-piperidin-1-yl]-methanone (compound 275). 1H NMR (d6-DMSO, 300 MHz) δ 1.60 (m, 2H), 1.76 (d, 1H, J=10.60 Hz), 1.90 (d, 1H, J=10.50 Hz), 2.87 (m, 2H), 3.22 (m, 1H), 4.18 (d, 1H, J=13.20 Hz), 4.67 (d, 1H, J=13.20 Hz), 7.11 (m, 2H), 7.30 (m, 3H), 7.82 (t, 1H, J=1.80 Hz), 8.17 (s, 1H), 8.53 (d, 1H, J=1.20 Hz), 8.80 (s, 1H); MS (ESI) m/z=492.1 (MH+).
A stirred mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide 12 (50 mg, 0.114 mmol), 3-(N,N-dimethylaminomethyl)phenylboronic acid pinacol ester (68 mg, 0.228 mmol), and Pd(PPh3)4 (13 mg, 0.011 mmol) in aqueous K3PO4 (380 μL, 1.140 mmol) and 1,4-dioxanes (1 mL) was heated at 80° C. for 12 hours. The mixture was diluted with EtOAc (20 mL), washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The extracts were dried (Na2SO4), filtered, and concentrated. The product was purified using preparative TLC [MeOH/CH2Cl2 (13:87 v/v)] to afford 3-chloro-6-(3-dimethylaminomethyl-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 278) (25 mg, 45%) as an off-white solid. 1H NMR (d6-DMSO, 300 MHz) δ 2.21 (s, 6H), 3.53 (s, 2H), 4.65 (d, 2H, J=5.70 Hz), 6.95 (dd, 1H, J=3.30, 5.10 Hz), 7.03 (m, 1H), 7.44 (m, 4H), 7.76 (m, 1H), 8.17 (s, 1H), 8.77 (d, 1H, J=3.00 Hz), 8.88 (t, 1H, J=6.00 Hz); MS (ESI) m/z=493.1 (MH+).
3-Chloro-8-trifluoromethyl-6-(1-triisopropylsilanyl-1H-pyrrol-3-yl)-imidazo[1,2a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide was prepared via Suzuki coupling of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide with 1-(triisopropylsilyl)pyrrole-3-boronic acid. Deprotection was accomplished by stirring a solution of the above (0.28 g, 0.48 mmol) with K2CO3 (0.27 g, 2 mmol) in MeOH (10 mL) for 3 hours. The crude reaction mixture was filtered and the filtrate concentrated under reduced pressure. The crude material was diluted with water and EtOAc. The organic layer was separated and washed successively with saturated aqueous NaHCO3, water, and brine. The extracts were dried (Na2SO4), filtered and concentrated. The product was purified by preparative HPLC to afford 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279) (0.016 g, 8%). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.70 (br s, 1H), 6.88 (m, 1H), 6.96 (m, 1H), 7.03 (m, 1H), 7.37 (d, 1H, J=5.1 Hz), 7.59 (s, 1H), 8.14 (s, 1H), 8.58 (s, 1H), 8.81 (t, 1H, J=6.0 Hz), 11.19 (s, 1H); MS 424.9 (MH+).
3-Chloro-6-(1-methyl-1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 280) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 3.88 (s, 3H), 4.63 (d, 2H, J=6.3 Hz), 6.94 (dd, 1H, J=3.3, 5.1 Hz), 7.02 (d, 1H, J=3.3 Hz), 7.36 (brd, 1H, J=4.8 Hz), 8.14 (s, 1H), 8.16 (s, 1H), 8.47 (s, 1H), 8.77 (s, 1H), 8.81 (t, 1H, J=6.3 Hz); MS (ESI) m/z=440 (MH+).
2-{3-Chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-6-yl}-pyrrole-1-carboxylic acid tert-butyl ester (compound 281) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 1.3 (s, 9H), 4.64 (d, 2H, J=6.0 Hz), 6.35 (t, 1H, J=3.3 Hz), 6.53 (m, 1H), 6.95 (dd, 1H, J=3.6, 5.1 Hz), 7.00 (m, 1H), 7.36 (d, 1H, J=5.1 Hz), 7.48 (m, 1H), 8.09 (s, 1H), 8.62 (s, 1H), 8.80 (t, 1H, J=5.7 Hz); MS (ESI) m/z=525 (MH+).
3-Chloro-6-cyclohex-1-enyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 282) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 1.55-1.80 (m, 4H), 2.22 (m, 2H), 2.44 (m, 2H), 4.62 (d, 2H, J=6.6 Hz), 6.48 (t, 1H, J=3.9 Hz), 6.94 (dd, 1H, J=3.6, 5.1 Hz), 7.01 (d, 1H, J=2.7 Hz), 7.36 (dd, 1H, J=1.2, 5.1 Hz), 8.02 (s, 1H), 8.31 (s, 1H), 8.83 (t, 1H, J=6.6 Hz); MS (ESI) m/z=440 (MH+).
3-Chloro-6-(2H-pyrazol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 283) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.02 (m, 1H), 7.09 (d, 1H, J=2.1 Hz), 7.36 (d, 1H, J=4.5 Hz), 7.86 (s, 1H), 8.32 (s, 1H), 8.86 (t, 1H, J=6.0 Hz), 8.90 (s, 1H); MS 425.9 (MH+), 447.9 (MNa+).
3-Chloro-6-(5,6-dihydro-4H-pyran-2-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 284) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 1.94 (m, 2H), 2.28 (m, 2H), 4.26 (t, 2H, J=4.5 Hz), 4.69 (d, 2H, J=6 Hz), 5.95 (t, 1H, J=4.2 Hz), 7.00 (dd, 1H, J=3.6, 5.1 Hz), 7.08 (dd, 1H, J=1.2, 3.3 Hz), 7.43 (dd, 1H, J=1.2, 5.1 Hz), 8.12 (s, 1H), 8.46 (s, 1H), 8.91 (t, 1H, J=6 Hz); MS (ESI) m/z=442 (MH+).
6-(1-Benzyl-1H-pyrazol-4-yl)-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 285) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.3 Hz), 5.36 (s, 2H), 6.94 (dd, 1H, J=3.6, 5.4 Hz), 7.02 (m, 1H), 7.33 (m, 6H), 8.18 (s, 1H), 8.24 (s, 1H), 8.64 (s, 2H), 8.83 (m, 1H); MS (ESI) m/z=516 (MH+).
3-Chloro-6-(3-dimethylamino-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 286) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 3.12 (s, 6H), 4.71 (d, 2H, J=6 Hz), 7.01 (dd, 1H, J=3.6, 5.4 Hz), 7.10 (dd, 1H, J=0.6, 3.6 Hz), 7.16 (brs, 1H), 7.44 (dd, 1H, J=1.5, 5.4 Hz), 7.32-7.54 (m, 3H), 8.24 (s, 1H), 8.31 (s, 1H), 8.96 (t, 1H, J=6 Hz); MS (ESI) m/z=479.1 (MH+).
3-Chloro-6-styryl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 287) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.6 Hz), 6.94 (m, 1H), 7.02 (m, 1H), 7.46-7.30 (m, 4H), 7.52 (s, 1H), 7.55 (s, 1H), 7.61 (d, 2H, J=7.2 Hz), 8.34 (s, 1H), 8.79 (s, 1H), 8.86 (t, 1H, J=6.6 Hz); MS (ESI) m/z=462.0 (MH+), 484.0 (MNa+).
3-Chloro-6-isoxazol-4-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 288) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.03 (m, 1H), 7.36 (m, 1H), 8.29 (s, 1H), 8.88 (t, 1H, J=5.7 Hz), 9.04 (s, 1H), 9.46 (s, 1H), 9.73 (s, 1H); MS (ESI) m/z=427 (MH+).
3-Chloro-6-(2,4-dimethyl-thiazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 289) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). MS (ESI) m/z=471.0.0 (MH+).
3-Chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 290) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). 1H NMR (d6-DMSO): δ 4.63 (d, 2H, J=6 Hz), 6.94 (m, 1H), 7.02 (brs, 1H), 7.35 (d, 1H, J=4.8 Hz), 8.20 (s, 1H), 8.39 (s, 2H), 8.80 (m, 2H); MS (ESI) m/z=426.0 (MH+).
3-{3-Chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-6-yl}-benzoic acid methyl ester (compound 291) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). MS (ESI) m/z=494.0 (MH+).
3-Chloro-6-[1-(2-morpholin-4-yl-ethyl)-1H-pyrazol-4-yl]-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 292) was prepared using a similar method as for the preparation of 3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 279). MS (ESI) m/z=539.1 (MH+).
A mixture of 2-{3-chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-6-yl}-pyrrole-1-carboxylic acid tert-butyl ester (0.034 μm, 0.06 mmol) and HCl (4M solution in 1,4-dioxane, 2 mL) was stirred for 72 hours. Concentration of the solvent followed by drying under high vacuum gave 3-chloro-6-(1H-pyrrol-2-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 293) (0.01 g, 39%). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.30 Hz), 6.17 (s, 1H), 6.95 (m, 1H), 7.00 (m, 1H), 7.36 (d, 1H, J=5.1 Hz), 8.18 (s, 1H), 8.82 (m, 2H), 11.71 (s, 1H); MS (ESI) m/z=425 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.132 g, 0.3 mmol), phenyl acetylene (0.066 mL, 0.45 mmol), bis(triphenylphosphine)palladium(II) chloride (0.015 g, 0.021 mmol), copper(I) iodide (0.015 g, 0.078 mmol), triethylamine (0.3 mL, 2.11 mmol) in DMF (1.2 mL) was heated at 100° C. for 3 min under microwave conditions. The crude product was purified via silica gel chromatography to afford 3-chloro-6-phenylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 294) (0.0126 g, 9%). 1H NMR (ds-DMSO, 300 MHz) δ 4.64 (d, 2H, J=5.7 Hz), 6.90-7.10 (m, 2H), 7.30-7.70 (m, 6H), 8.04 (s, 1H), 8.90 (t, 1H, J=5.7 Hz), 8.97 (s, 1H); MS (ESI) m/z=460 (MH+).
3-Chloro-6-(4-hydroxy-but-1-ynyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 295) was prepared using Sonogashira protocol similar to the preparation of 3-chloro-6-phenylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 294). MS (ESI) m/z=428.0 (MH+).
3-Chloro-6-(3-hydroxy-prop-1-ynyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 296) was prepared using Sonogashira protocol similar to the preparation of 3-chloro-6-phenylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 294). MS (ESI) m/z=414.0 (MH+), 436.0 (MNa+).
3-Chloro-8-trifluoromethyl-6-trimethylsilanylethynyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide [prepared via Sonogashira coupling as in the preparation of 3-chloro-6-phenylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 294)](0.09 g, 0.2 mmol) was stirred in THF (10 mL) at 0° C. and Et3N.3HF solution (0.035 mL, 0.3 mmol) was added. The mixture was allowed to warm to room temperature and stirred for 3 hours. The crude reaction mixture was quenched with silica gel, filtered and the crude product obtained from a normal extractive workup was purified by silica gel chromatography to afford the title compound (0.015 g, 19%). 1H NMR (d6-DMSO, 300 MHz) δ 4.55 (s, 1H), 4.61 (d, 2H, J=6.6 Hz), 6.94 (m, 1H), 7.01 (m, 1H), 7.35 (dd, 1H, J=0.9, 4.8 Hz), 7.91 (s, 1H), 8.88 (m, 2H). MS (ESI) m/z=384.0 (MH+).
6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester was subjected to Suzuki coupling conditions with 3-fluorophenylboronic acid to afford 6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester. This compound was saponified with aqueous NaOH to afford 6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid (2.14 gm, 6.6 mmol) was iodinated with N-iodosuccinimide (1.9 g, 8.4 mmol) in DMF (30 mL) for 18 h. The mixture was poured into water to give a precipitate which was filtered, and dried under high vacuum to afford 6-(3-Fluoro-phenyl)-3-iodo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (compound 298) in quantitative yield. 1H NMR (d6-DMSO, 300 MHz) δ 7.31 (dt, 1H, J=2.7, 8.1 Hz), 7.58 (m, 1H), 7.68 (d, 1H, J=8.1 Hz), 7.77 (d, 1H, J=10.2 Hz), 8.19 (s, 1H), 8.73 (s, 1H); MS (ESI) m/z=450.9 (MH+), 472.9 (MNa+).
Under standard HATU coupling conditions, 6-(3-fluoro-phenyl)-3-iodo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (compound 298) and thiophene-2-methylamine gave 6-(3-fluoro-phenyl)-3-iodo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 299). 1H NMR (d6-DMSO, 300 MHz): δ 4.65 (d, 2H, J=6.0 Hz), 6.95 (dd, 1H, J=3.6, 4.8 Hz), 7.04 (m, 1H), 7.31 (m, 1H), 7.38 (dt, 1H, J=1.2, 5.1 Hz), 7.58 (m, 1H), 7.68 (d, 1H, J=7.8 Hz), 7.77 (d, 1H, J=10.2 Hz), 8.21 (s, 1H), 8.75 (s, 1H), 8.84 (t, 1H, J=6.3 Hz); MS (ESI) m/z=546 (MH+).
3-Bromo-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide underwent Suzuki coupling with cis-1-propene-1-boronic acid to give 6-(3-fluoro-phenyl)-3-propenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 300). 1H NMR (d6-DMSO, 300 MHz) δ 1.56 (d, 3H, J=7.2 Hz), 4.64 (d, 2H, J=6 Hz), 6.21 (dq, 1H, J=7.2, 11 Hz), 6.70 (brd, 1H, J=11 Hz), 6.94 (dt, 1H, J=0.9, 4.2 Hz), 7.02 (d, 1H, J=3 Hz), 7.27 (dt, 1H, J=2.7, 8.7 Hz), 7.36 (dt, 1H, J=1.2, 5.1 Hz), 7.54 (q, 1H, J=7.2 Hz), 7.66 (brd, 1H, J=7.5 Hz), 7.74 (brd, 1H, J=10.2 Hz), 8.14 (s, 1H), 8.55 (s, 1H), 8.74 (t, 1H, J=6 Hz); MS (ESI) m/z=460 (MH+).
6-(3-Fluoro-phenyl)-3-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 301) was prepared using Suzuki coupling as in the preparation of 6-(3-fluoro-phenyl)-3-propenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 300). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.0 Hz), 6.93 (dd, 1H, J=3.6, 4.8 Hz), 6.99 (m, 1H), 7.25 (m, 1H), 7.34 (dd, 1H, J=1.2, 4.8 Hz), 7.53 (m, 1H), 7.63 (m, 1H), 7.72 (m, 1H), 8.13 (s, 1H), 8.20 (s, 2H), 8.62 (s, 1H), 8.73 (t, 1H, J=6.0 Hz); MS (ESI) m/z=486 (MH+).
6-(3-Fluoro-phenyl)-3-isopropenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 302) was prepared using Suzuki coupling as in the preparation of 6-(3-fluoro-phenyl)-3-propenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 300). 1H NMR (d6-DMSO, 300 MHz) δ 1.56 (d, 3H, J=7.2 Hz), 4.62 (d, 2H, J=6.3 Hz), 5.36 (s, 1H), 5.68 (s, 1H), 7.01 (m, 1H), 7.26 (m, 1H), 7.35 (d, 1H, J=5.4 Hz), 7.54 (m, 2H), 7.71 (d, 1H, J=10.2 Hz), 8.09 (s, 1H), 8.66 (s, 1H), 8.73 (t, 1H, J=6.3 Hz); MS (ESI) m/z=460 (MH+).
3-Cyclohex-1-enyl-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 303) was prepared using Suzuki coupling as in the preparation of 6-(3-fluoro-phenyl)-3-propenyl-8-trifluoromethyl-imidazo[1, 2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 300). 1H NMR (d6-DMSO, 300 MHz) δ 1.74 (m, 4H), 2.25 (m, 2H), 2.38 (m, 2H), 4.63 (d, 2H, J=6 Hz), 6.03 (brs, 1H), 6.94 (dd, 1H, J=3.3, 5.1 Hz), 7.01 (d, 1H, J=2.7 Hz), 7.28 (brt, 1H, J=8.4 Hz), 7.36 (dd, 1H, J=1.2, 4.8 Hz), 7.51-7.62 (m, 2H), 7.70 (brd, 1H, J=10 Hz), 8.06 (s, 1H), 8.61 (s, 1H), 8.66 (t, 1H, J=6 Hz); MS (ESI) m/z=500.1 (MH+).
3-(2-Cyclopropyl-vinyl)-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 304) was prepared using Suzuki coupling as in the preparation of 6-(3-fluoro-phenyl)-3-propenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 300). MS (ESI) m/z=486.1 (MH+).
3-Bromo-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide underwent Sonogashira coupling with 3-ethynyl-pyridine to give 6-(3-fluoro-phenyl)-3-pyridin-3-ylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 305). 1H NMR (d6-DMSO, 300 MHz) δ 4.67 (d, 2H, J=5.7 Hz), 6.95 (dd, 1H, J=3.6, 5.1 Hz), 7.04 (m, 1H), 7.30 (dt, 1H, J=2.4, 8.4 Hz), 7.38 (d, 1H, J=5.1 Hz), 7.58 (m, 2H), 7.74 (d, 1H, J=7.5 Hz), 7.83 (d, 1H, J=10.2 Hz), 8.20 (d, 1H, J=7.8 Hz), 8.27 (s, 1H), 8.67 (br s, 1H), 8.95 (m, 2H), 9.08 (s, 1H); MS (ESI) m/z=521 (MH+).
6-(3-Fluoro-phenyl)-3-(4-hydroxy-but-1-ynyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 306) was prepared using Sonogashira coupling as in the preparation of 6-(3-fluoro-phenyl)-3-pyridin-3-ylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 305). 1H NMR (d6-DMSO, 300 MHz) δ 2.80 (t, 2H, J=6.6 Hz), 3.68-3.74 (m, 2H), 4.63 (d, 2H, J=6 Hz), 5.08 (t, 1H, J=6 Hz), 6.95 (dd, 1H, J=3.3, 5.1 Hz), 7.03 (dd, 1H, J=1.2, 3.6 Hz), 7.30 (dt, 1H, J=2.4, 7.8 Hz), 7.37 (dd, 1H, J=1.2, 5.1 Hz), 7.56 (dt, 1H, J=6.3, 8.1 Hz), 7.68 (brd, 1H, J=8.4 Hz), 7.76 (dt, 1H, J=2.1, 10.2 Hz), 8.22 (brs, 1H), 8.80 (t, 1H, J=6 Hz), 8.90 (brs, 1H); MS (ESI) m/z=488 (MH+).
3-(3,3-Dimethyl-but-1-ynyl)-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide(compound 307) was prepared using Sonogashira coupling as in the preparation of 6-(3-fluoro-phenyl)-3-pyridin-3-ylethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide(compound 305). 1HNMR (d6-DMSO, 300 MHz) δ 1.40 (s, 9H), 4.654 (d, 2H, J=6.3 Hz), 6.95 (dd, 1H, J=3.6, 5.1 Hz), 7.03 (dd, 1H, J=0.6, 2.1 Hz), 7.27-7.38 (m, 2H), 7.54-7.67 (m, 2H), 7.74 (brd, 1H, J=10.2 Hz), 8.21 (s, 1H), 8.66 (s, 1H), 8.76 (t, 1H, J=6 Hz); MS (ESI) m/z=500.1 (MH+).
A mixture of 3-chloro-6-ethynyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide(compound 297) (0.129 g, 0.34 mmol), trimethylsilyl azide (0.066 mL, 0.51 mmol), copper(I) iodide (0.015 g, 0.08 mmol) in DMF (1.4 mL) and MeOH (0.15 mL) was heated at 150° C. for 18 min under microwave conditions. The product was purified by reverse phase HPLC to give 3-chloro-6-(2H-[1,2,3]triazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide(compound 308) (0.015 g, 10%). 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.0 Hz), 6.95 (m, 1H), 7.03 (br d, 1H), 7.37 (d, 1H, J=5.1 Hz), 8.36 (s, 1H), 8.63 (br s, 1H), 8.92 (t, 1H, J=6.0 Hz), 9.04 (s, 1H); MS (ESI) m/z=427.0 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.77 g, 1.76 mmol), zinc cyanide (0.3 g, 2.55 mmol), tetrakis(triphenylphosphine)palladium(0) in DMF (12 mL) was heated at 170° C. for 2 min under microwave conditions. The reaction mixture was filtered, partitioned between ethyl acetate and water. The organic layer was washed successively with saturated aqueous NaHCO3, water, and brine. The extracts were dried (Na2SO4), filtered and concentrated. The product was purified by reverse phase HPLC to give 3-chloro-6-cyano-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide(compound 309) (0.1 gm, 15%). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.3 Hz), 6.93 (dd, 1H, J=3.6, 5.1 Hz), 7.01 (m, 1H), 7.35 (dd, 1H, J=1.2, 4.8 Hz), 8.30 (t, 1H, J=1.2 Hz), 8.98 (t, 1H, J=6.3 Hz), 9.58 (s, 1H); MS (ESI) m/z=385 (MH+).
3-Chloro-6-(N-hydroxycarbamimidoyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide was prepared by treating 3-chloro-6-cyano-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 309) with hydroxylamine in EtOH followed by reverse phase HPLC purification. MS (ESI) m/z=418.0 (MH+).
A mixture of 3-chloro-6-(N-hydroxycarbamimidoyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (Example 210, step 1) (0.12 g, 0.29 mmol), carbonyldiimidazole (0.056 g, 0.34 mmol) and 1,4-dioxane (10 mL) was heated at 70° C. for 2 h followed by heating at 100° C. for 3 h. After aqueous workup, the crude material was purified by reverse phase HPLC to afford 3-chloro-6-(5-oxo-4,5-dihydro-[1,2,4]oxadiazol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 310) (0.02 g, 16%). MS (ESI) m/z=443.9 (MH+).
To a solution of 3-chloro-6-(N-hydroxycarbamimidoyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (Example 210, Step 1) (0.1 g, 0.2 mmol) in trimethylorthoformate (15 mL) was added 2 drops of boron trifluoride etherate. The mixture was then heated at 110° C. for 30 min. After aqueous workup, the product was purified by reverse phase HPLC to afford 3-chloro-6-[1,2,4]oxadiazol-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 311) (0.015 g, 18%). 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.0 Hz), 6.95 (m, 1H), 7.03 (m, 1H), 7.37 (d, 1H, J=5.1 Hz), 8.25 (s, 1H), 8.99 (t, 1H, J=6.0 Hz), 9.04 (s, 1H), 9.89 (s, 1H); MS (ESI) m/z=428.0 (MH+), 450 (MNa+).
Hydrogen chloride gas was bubbled to a solution of 3-chloro-6-cyano-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 309) (0.38 g, 0.99 mmol) in MeOH (100 mL) at 0° C. for 15 minutes. The flask was sealed and allowed to warm to room temperature. After 18 hours, water was added to the mixture followed by the removel of MeOH. After aqueous workup, 3-chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester (compound 312) (0.2 gm, 48%) was obtained. 1H NMR (d6-DMSO, 300 MHz) δ 3.95 (s, 3H), 4.63 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.02 (m, 1H), 7.36 (dd, 1H, J=1.2, 4.8 Hz), 8.10 (s, 1H), 8.98 (br m, 2H); MS (ESI) m/z=417.9 (MH+), 439.9 (MNa+).
To a solution of 3-chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester (compound 312) (0.14 g, 0.33 mmol) in THF (4.5 mL) and water (1.5 mL), LiOH (0.042 g, 1 mmol) was added. The mixture was stirred for 1 hour followed by the removal of solvent under reduced pressure. The crude material was purified by reverse phase HPLC to afford 3-chloro-2-[(thiophen-2-ylmethyl)-carbamoyl]-8-trifluoromethyl-imidazo[1,2-a]pyridine-6-carboxylic acid (compound 313) (0.015 g, 11%). MS (ESI) m/z=404.0 (MH+).
6-(3-Fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 314) was obtained as a major side product from a palladium reaction (using Pd2 (dba3)4 as a catalyst) of 6-(3-fluoro-phenyl)-3-iodo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 299). 1H NMR (d6-DMSO, 300 MHz) δ 4.65 (d, 2H, J=6.6 Hz), 6.96 (m, 1H), 7.03 (m, 1H), 7.29 (br t, 1H), 7.37 (dd, 1H, J=5.1, 1.2 Hz), 7.61 (m, 3H), 8.14 (s, 1H), 8.51 (s, 1H), 8.85 (t, 1H, J=6.6 Hz), 9.28 (s, 1H); MS (ESI) m/z=420.0 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.1 g, 0.23 mmol), zinc cyanide (0.032 g, 0.27 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.014 g, 0.01 mmol) were heated in DMF at 170° C. for 4 minutes under microwave conditions. Sodium azide (0.21 g, 3.24 mmol) and ammonium chloride (0.17 g, 3.24 mmol) were then added and the mixture heated again at 170° C. for 5 minutes under microwave conditions. After aqueous workup, the product was purified by reverse phase HPLC to afford 3-chloro-6-(2H-tetrazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 315) (0.015 g, 15%). MS (ESI) m/z=428.0 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(4-fluorophenyl)pyrrolidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 316). 1H NMR (d6-DMSO): δ 2.05 (m, 1H), 2.28 (m, 1H), 3.57-3.81 (m, 3.5H), 4.03 (m, 1H), 4.24 (0.5H), 6.68 (m, 1H), 7.13 (q, 2H, J=8.4 Hz), 7.36 (m, 3H), 7.86 (m, 1H), 8.20 (s, 0.5H), 8.22 (s, 0.5H), 8.68 (s, 0.5H), 8.70 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-phenyl-pyrrolidin-3-ol gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-hydroxy-3-phenyl-pyrrolidin-1-yl)-methanone (compound 317). 1H NMR (d6-DMSO): δ 2.14 (m, 1H), 2.34 (m, 1H), 3.48 (brs, 1H), 3.65-4.11 (m, 4H), 6.68 (m, 1H), 7.30 (m, 4H), 7.55 (m, 2H), 7.86 (m, 1H), 8.19 (s, 0.5H), 8.22 (s, 0.5H), 8.67 (s, 0.5H), 8.70 (s, 0.5H); MS (ESI) m/z=476.1 (MH+);
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 1-methyl-2-phenyl-piperazine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(4-methyl-3-phenyl-piperazin-1-yl)-methanone (compound 318). 1H NMR (d6-DMSO): δ 2.49 (m, 1H), 2.60 (brs, 3H), 3.37 (m, 2H), 3.72 (m, 2H), 4.57 (m, 2H), 4.78 (d, 2H, J=12 Hz), 6.66 (brs, 1H), 7.33-7.59 (m, 6H), 7.63 (s, 0.5H), 7.86 (s, 0.5H), 8.18 (s, 0.5H), 8.26 (s, 0.5H), 8.65 (s, 0.5H), 8.71 (s, 0.5H); MS (ESI) m/z=489.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and N,N-dimethyl-N′-thiophen-2-ylmethyl-ethane-1,2-diamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2-dimethylamino-ethyl)-thiophen-2-ylmethyl-amide (compound 319). 1H NMR (d6-DMSO): δ 2.75 (s, 3H), 2.86 (s, 3H), 3.33 (m, 1H), 3.54 (m, 1H), 3.74 (m, 1H), 3.81 (m, 1H), 4.84 (s, 1H), 5.23 (s, 1H), 6.68 (dd, 1H, J=1.8, 3.6 Hz), 6.97 (ddd, 1H, J=3.2, 4.8, 9.9 Hz), 7.13 (dd, 1H, J=2.4, 19.2 Hz), 7.38 (d, 1H, J=3.6 Hz), 7.47 (dd, 1H, J=5.4, 7.5 Hz), 7.86 (d, 1H, J=1.5 Hz), 8.25 (s, 1H), 8.71 (s, 1H); MS (ESI) m/z=497.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 1-methyl-3-phenyl-piperazine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(4-methyl-2-phenyl-piperazin-1-yl)-methanone (compound 320). 1H NMR (d6-DMSO): δ 2.87 (s, 3H), 3.36 (m, 4H), 4.34 (d, 1H, J=14 Hz), 4.67 (m, 1H), 6.15 (brs, 1H), 6.69 (brs, 1H), 7.44 (m, 6H), 7.86 (brs, 1H), 8.18 (s, 0.5H), 8.28 (s, 0.5H), 8.67 (s, 0.5H), 8.74 (s, 0.5H); MS (ESI) m/z=489.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and phenethylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid phenethyl-amide (compound 321). 1H NMR (d6-DMSO): δ 2.85 (m, 2H), 3.51 (m, 2H), 6.68 (m, 1H), 7.24 (m, 5H), 7.31 (d, 1H, J=3 Hz), 7.85 (d, 1H, J=10 Hz), 8.21 (d, 1H), 8.28 (t, 1H, J=6 Hz), 8.65 (s, 1H), MS (ESI) m/z=434.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-phenylpyrrolidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(2-phenyl-pyrrolidin-1-yl)-methanone (compound 322). 1H NMR (d6-DMSO): δ 1.85 (m, 3H), 2.39 (m, 1H), 3.85 (m, 1H), 4.11 (m, 1H), 5.23 (m, 0.5H), 5.66 (m, 0.5H), 6.67 (m, 1H), 6.95 (m, 3H), 7.29 (m, 3H), 7.82 (brs, 0.5H), 7.85 (brs, 0.5H), 8.13 (s, 0.5H), 8.22 (s, 0.5H), 8.44 (s, 0.5H), 8.68 (s, 0.5H); MS (ESI) m/z=460.1 (MH+);
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 1-phenyl piperazine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(4-phenyl-piperazin-1-yl)-methanone (compound 323). 1H NMR (d6-DMSO): δ 3.17 (m, 2H), 3.24 (m, 2H), 3.76 (m, 4H), 6.68 (m, 1H), 6.81 (t, 1H, J=7.8 Hz), 6.96 (m, 2H), 7.21 (m, 2H), 7.37 (d, 1H, J=3.6 Hz), 7.86 (d, 1H, J=3 Hz), 8.22 (s, 1H), 8.69 (s, 1H); MS (ESI) m/z=475.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 1-benzyl piperazine gave (4-benzyl-piperazin-1-yl)-(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (compound 324). 1H NMR (d6-DMSO): δ 3.55 (m, 8H), 4.60 (s, 2H), 6.67 (m, 1H), 7.25 (d, 1H, J=3 Hz), 7.47 (m, 3H), 7.63 (m, 2H), 7.77 (d, 1H, J=3 Hz), 8.19 (m, 1H), 8.74 (s, 1H); MS (ESI) m/z=489.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and C-(1-methyl-1H-imidazol-4-yl)-methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (1-methyl-1H-imidazol-4-ylmethyl)-amide (compound 325). 1H NMR (d6-DMSO): δ 3.80 (s, 3H), 4.50 (d, 2H, J=6.3 Hz), 6.69 (m, 1H), 7.39 (d, 1H, J=3.6 Hz), 7.52 (s, 1H), 7.87 (d, 1H, J=1.8 Hz), 8.26 (s, 1H), 8.69 (s, 1H), 8.82 (m, 2H); MS (ESI) m/z=424.0 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-benzyl-pyrrolidine gave (3-benzyl-pyrrolidin-1-yl)-(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (compound 326). 1H NMR (d6-DMSO): δ 1.61 (m, 1H), 1.95 (m, 1H), 2.65 (m, 2H), 3.50-3.87 (m, 4.5H), 8.66 (s, 0.5H), 6.66 (m, 1H), 7.22 (m, 6H), 7.84 (brs, 1H), 8.18 (brs, 1H), 8.64 (s, 0.5H); MS (ESI) m/z=474.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and C-(3-methyl-3H-imidazol-4-yl)-methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (3-methyl-3H-imidazol-4-ylmethyl)-amide (compound 327). 1H NMR (d6-DMSO): δ 3.89 (s, 3H), 4.56 (d, 2H, J=6 Hz), 6.67 (m, 1H), 7.37 (d, 1H, J=3.3 Hz), 7.54 (brs, 1H), 7.85 (s, 1H), 8.24 (s, 1H), 8.68 (s, 1H), 8.91 (t, 1H, J=6 Hz), 8.98 (s, 1H); MS (ESI) m/z=424.0 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-benzyl-azetidine gave (3-benzyl-azetidin-1-yl)-(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (compound 328). 1H NMR (d6-DMSO): δ 2.94 (m, 3.5H), 3.77 (m, 0.5H), 4.05-4.30 (m, 2H), 4.61 (t, 1H, J=8 Hz), 6.67 (m, 1H), 7.24 (m, 5H), 7.36 (d, 1H, J=3.3 Hz), 7.86 (d, 1H, J=1.8 Hz), 8.21 (s, 1H), 8.67 (s, 1H); MS (ESI) m/z=460.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-(4-fluorophenyl)pyrrolidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[2-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 329). 1H NMR (d6-DMSO): δ 1.78 (m, 1H), 1.90 (m, 1H), 2.38 (m, 1H), 3.81-4.11 (m, 3H), 8.67 (s, 0.5H), 5.21 (m, 0.5H), 5.65 (m, 0.5H), 6.66 (m, 1H), 6.91 (m, 2H), 7.14 (m, 1H), 7.28 (m, 1H), 7.36 (d, 1H, J=3 Hz), 7.82 (brs, 0.5H), 7.85 (brs, 0.5H), 8.13 (s, 0.5H), 8.22 (s, 0.5H), 8.49 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2,2,-dimethylpyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(2,2-dimethyl-pyrrolidin-1-yl)-methanone (compound 330). 1H NMR (d6-DMSO): δ 1.59 (s, 6H), 1.87 (m, 4H), 3.81 (t, 2H, J=7 Hz), 7.18 (m, 1H), 7.74 (t, 1H, J=1.8 Hz), 8.09 (brs, 1H), 8.37 (s, 1H), 8.73 (s, 1H); MS (ESI) m/z=412.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-pyrrolidin-2-yl-pyridine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(2-pyridin-2-yl-pyrrolidin-1-yl)-methanone (compound 331). 1H NMR (d6-DMSO): δ 1.90 (m, 1H), 2.06 (m, 1H), 2.13 (m, 1H), 2.57 (m, 1H), 3.93 (m, 1H), 4.27 (m, 0.5H), 4.41 (m, 0.5H), 5.55 (m, 0.5H), 6.16 (d, 0.5H, J=7.8 Hz), 7.13 (m, 0.5H), 7.19 (m, 0.5H), 7.73 (m, 2H), 7.81 (d, 1H, J=7.8 Hz), 8.01 (s, 0.5H), 8.15 (s, 0.5H), 8.24 (m, 1H), 8.33 (s, 0.5H), 8.39 (s, 0.5H), 8.67 (s, 0.5H), 8.76 (s, 0.5H), 8.82 (d, 1H, J=4.5 Hz); MS (ESI) m/z=461.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and methyl-thiophen-2-ylmethyl-amine gave 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl-thiophen-2-ylmethyl-amide (compound 332). 1H NMR (d6-DMSO): δ 3.05 (s, 1.5H), 3.26 (s, 1.5H), 4.93 (s, 1H), 5.21 (s, 1H), 6.97 (m, 1H), 7.14 (m, 2H), 7.37 (m, 1H), 7.75 (s, 1H), 8.12 (brs, 1H), 8.38 (s, 1H), 8.76 (brs, 1H); MS (ESI) m/z=440.0 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(2-fluorophenyl)pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(2-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 333). 1H NMR (d6-DMSO): δ 2.11 (m, 1H), 2.29 (m, 1H), 3.49 (m, 1H), 3.63 (m, 1H), 3.80 (m, 2H), 4.04 (m, 0.5H), 4.27 (m, 0.5H), 7.21 (m, 2H), 7.30 (m, 2H), 7.41 (m, 1H), 7.82 (m, 1H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.54 (s, 0.5H), 8.79 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(3-fluorophenyl)pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 334). 1H NMR (d6-DMSO): δ 2.06 (m, 1H), 2.29 (m, 1H), 3.51 (m, 2H), 3.76 (m, 1H), 3.85 (m, 0.5H), 4.05 (m, 1H), 4.24 (m, 0.5H), 7.05 (m, 1H), 7.16 (m, 2H), 7.33 (m, 2H), 7.81 (m, 1H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.54 (s, 0.5H), 8.80 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=478.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(4-methoxyphenyl)pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-methoxy-phenyl)-pyrrolidin-1-yl]-methanone (compound 335). 1H NMR (d6-DMSO): δ 2.01 (m, 1H), 2.24 (m, 1H), 3.38 (m, 2H), 3.59 (m, 1H), 3.70 (brs, 1.5H), 3.72 (brs, 1.5H), 3.82 (m, 0.5H), 4.02 (m, 1H), 4.20 (m, 0.5H), 6.87 (t, 2H, J=8.4 Hz), 7.28 (m, 3H), 7.82 (m, 1H), 8.16 (brs, 1H), 8.54 (brs, 0.5H), 8.79 (s, 0.5H), 8.80 (s, 0.5H); MS (ESI) m/z=490.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(4-trifluoromethyl-phenyl)pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-trifluoromethyl-phenyl)-pyrrolidin-1-yl]-methanone (compound 336). 1H NMR (d6-DMSO): δ 2.09 (m, 1H), 2.34 (m, 1H), 3.54 (m, 2H), 3.76 (m, 1H), 3.89 (m, 0.5H), 4.08 (m, 1H), 4.28 (m, 0.5H), 7.31 (m, 1H), 7.56 (m, 2H), 7.68 (m, 2H), 7.81 (m, 1H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.79 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=528.1 (MH+).
Using standard HATU coupling conditions, 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(2-fluorophenyl)pyrrolidine gave [3-(2-fluoro-phenyl)-pyrrolidin-1-yl]-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (compound 337). 1H NMR (d6-DMSO): δ 2.12 (m, 1H), 2.29 (m, 1H), 3.55 (m, 1H), 3.77 (m, 1H), 3.92 (m, 1H), 4.03 (m, 1H), 4.32 (m, 0.5H), 4.55 (q, 0.5H, J=4 Hz), 7.00 (m, 1H), 7.19 (m, 2H), 7.28 (m, 1H), 7.40 (t, 1H, J=9 Hz), 7.81 (m, 1H), 8.05 (s, 0.5H), 8.08 (s, 0.5H), 8.41 (d, 2H, J=2.4 Hz), 9.11 (s, 0.5H), 9.13 (s, 0.5H); MS (ESI) m/z=444.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-pyrrolidin-3-yl-benzoic acid methyl ester gave 2-[1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin−3-yl]-benzoic acid methyl ester (compound 338). 1H NMR (d6-DMSO): δ 2.21 (m, 2H), 3.48 (m, 1H), 3.59 (m, 1H), 3.80 (d, 1.5H, J=1.8 Hz), 3.85 (d, 1.5H, J=1.8 Hz), 4.02 (m, 2H), 4.24 (m, 1H), 7.37-7.29 (m, 2H), 7.57 (m, 2H), 7.71 (m, 1H), 7.81 (m, 1H), 8.14 (s, 0.5H), 8.18 (s, 0.5H), 8.51 (s, 0.5H), 8.54 (s, 0.5H), 8.78 (s, 0.5H), 8.80 (s, 0.5H); MS (ESI) m/z=518.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(3,4-dimethoxy-phenyl)-pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3,4-dimethoxy-phenyl)-pyrrolidin-1-yl]-methanone (compound 339). 1H NMR (d6-DMSO): δ 2.03 (m, 1H), 2.25 (m, 1H), 3.37 (m, 2H), 3.56 (m, 0.5H), 3.71 (m, 6H), 4.01 (m, 2H), 4.23 (m, 0.5H), 6.87 (m, 3H), 7.29 (m, 1H), 7.81 (m, 1H), 8.16 (d, 0.5H, 0.9 Hz), 8.18 (d, 0.5H, J=0.9 Hz), 8.52 (d, 0.5H, J=0.9 Hz), 8.57 (d, 0.5H, J=0.9 Hz), 8.78 (s, 0.5H), 8.80 (s, 0.5H); MS (ESI) m/z=520.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 1-pyrrolidin-3-yl-piperidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-piperidin-1-yl-pyrrolidin-1-yl)-methanone (compound 340). 1H NMR (d6-DMSO): δ 1.68 (m, 2H), 1.83 (m, 2H), 2.16 (m, 1H), 2.39 (m, 1H), 2.98 (m, 2H), 3.73 (m, 2H), 3.82 (m, 2H), 3.96 (m, 2H), 4.12 (m, 2H), 7.30 (m, 1H), 7.82 (m, 1H), 8.20 (brs, 1H), 8.54 (s, 1H), 8.80 (s, 0.5H), 8.82 (s, 0.5H), 9.68 (brs, 1H); MS (ESI) m/z=467.0 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(2-chlorophenyl)pyrrolidine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone (compound 341). 1H NMR (d6-DMSO): δ 2.12 (m, 1H), 2.27 (m, 1H), 3.51 (m, 0.5H), 3.63 (m, 0.5H), 3.77 (m, 2H), 3.90 (m, 0.5H), 4.03 (m, 1H), 4.32 (m, 0.5H), 7.29 (m, 3H), 7.43 (m, 2H), 7.81 (m, 1H), 8.15 (s, 0.5H), 8.18 (s, 0.5H), 8.52 (s, 0.5H), 8.54 (s, 0.5H), 8.78 (s, 0.5H), 8.80 (s, 0.5H); MS (ESI) m/z=493.9 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and C-(tetrahydro-pyran-2-yl)-methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (tetrahydro-pyran-2-ylmethyl)-amide (compound 342). MS (ESI) m/z=428 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and C-(tetrahydro-pyran-4-yl)-methylamine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid tetrahydro-pyran-4-ylmethyl)-amide (compound 343). MS (ESI) m/z=428.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and (3-aminomethyl-tetrahydro-thiophen-3-yl)-dimethyl-amine gave 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (3-dimethylamino-tetrahydro-thiophen-3-ylmethyl)-amide (compound 344). MS (ESI) m/z=473.1 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and pyrrolidine gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-pyrrolidin-1-yl-methanone (compound 345). MS (ESI) m/z=384 (MH+).
Using standard HATU coupling conditions, 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and piperidine-4-carboxylic acid ethyl ester gave 1-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-piperidine-4-carboxylic acid ethyl ester (compound 346). MS (ESI) m/z=436.1 (MH+).
A mixture of 5-bromo-7-chloro-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (50 mg, 0.13 mmol), 3-pyrazole boronic acid (30 mg, 0.26 mmol), and tetrakis(triphenylphosphine)palladium(0) (5 mol %) was heated in 3M K3PO4 (0.45 mL) and 1,4-dioxane (3 mL) at 130° C. for 20 min under microwave conditions. The precipitate was filtered, diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (15 mL), then brine (15 mL). The organic extracts were filtered through a small pad of silica gel and the solvent was removed under reduced pressure. The product was purified by preparative TLC [MeOH/CH2Cl2 (6:94 v/v)] followed by reverse phase HPLC (30-80% CH3CN in water (0.1% TFA)) to provide 7-chloro-5-(1H-pyrazol-4-yl)-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 347) (5.0 mg, 20%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 4.68 (d, 1H, J=5.4 Hz), 6.96 (m, 1H), 7.06 (s, 1H), 7.15 (s, 1H), 7.41 (m, 1H), 7.57 (s, 1H), 7.8 (s, 1H), 8.06 (s, 1H), 9.15 (s, 1H), 11.65 (s, 1H); MS (ESI) m/z=357 (MH+).
7-Chloro-5-furan-3-yl-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 348) was prepared using Suzuki coupling as in the preparation of 7-chloro-5-(1H-pyrazol-4-yl)-1H-indole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 347). 1H NMR (d6-DMSO, 300 MHz) δ 4.61 (d, 2H, J=3.3 Hz), 6.91 (dd, 1H, J=3.6, 5.1 Hz), 7.0 (s, 1H), 7.12 (m, 1H), 7.33 (m, 1H), 7.53 (s, 1H), 7.64 (s, 1H), 7.77 (s, 1H), 8.12 (s, 1H), 9.12 (m, 1H), 11.64 (s, 1H); MS (ESI) m/z=357 (MH+).
To a solution of 4-bromo-2-trifluoromethyl-phenylamine (500 mg, 0.2 mmol) in THF (1 mL) was added triethylamine (0.56 mL, 4.0 mmol) in THF (1 mL). The mixture was stirred for 15 min and chloro-oxo-acetic acid ethyl ester (400 mg, 0.28 mmol) was added. After 2 hours, the mixture was partitioned between ethyl acetate and water. The organic layer was washed (water, brine), dried to afford the crude product which was purified by flash chromatography [EtOAc/n-hex (30:70 v/v)] to give N-(4-bromo-2-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (650 mg, 92%). MS (ESI) m/z=341 (MH+).
To a solution of N-(4-bromo-2-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (200 mg, 0.5 mmol) in conc. H2SO4 (1 mL) at 0° C. was added cone nitric acid (0.2 mol). The mixture was allowed to stir at 0-10° C. for 2 hours. The mixture was poured on to ice-water to give a precipitate which was filtered, washed with water (2×10 mL) to provide N-(4-bromo-2-nitro-6-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (180 mg, 80%) as a yellow solid. MS (ESI) m/z=386 (MH+).
To a stirred solution of the N-(4-bromo-2-nitro-6-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (2.0 g, 5 mmol) in THF (10 mL) was added a solution of Na2S2O4 (8.7 g, 50 mmol) in water (50 mL). After 1 hour, EtOAc was added and the layers were separated. The organic extracts were dried (MgSO4) and concentrated to provide crude N-(2-amino-4-bromo-6-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (90%) which was used for the next step without further purification. MS (ESI) m/z=355 (MH+).
A mixture of N-(2-amino-4-bromo-6-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (50.0 mg, 0.10 mmol), 3-furan boronic acid (31.0 mg, 0.2 mmol), and tetrakis(triphenylphosphine)palladium(0) (5 mol %) was heated in 3M K3PO4 (0.5 mL) and 1,4-dioxane (3 mL) under inert atm. at 95° C. for 12 hours. The crude reaction mixture was concentrated and the solid was washed with CH3CN (5 mL) and water (5 mL) and the crude acid was pure enough to proceed to next step. Sample of the crude material was purified by reverse phase HPLC [30-80% CH3CN in water (0.1% TFA)] to provide 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (compound 349) (30 mg, 70%). 1H NMR (d6-DMSO, 300 MHz) δ 6.85 (s, 1H), 7.39 (s, 1H), 7.5 (s, 1H), 7.75 (t, 1H, J=1.5 Hz), 8.14 (s, 1H); MS (ESI) m/z=297 (MH+).
A mixture of 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (100 mg, 0.33 mmol), thiophen-2-yl-methylamine (76 mg, 0.66 mmol), DIPEA (0.11 mL, 0.66 mmol), HATU (250 mg, 0.66 mmol) was stirred in DMF (1 mL) at 60° C. for 3 hours. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The organic phase was dried (MgSO4), and filtered through a small pad of silica gel. Concentration of the solvent gave the product which was further purified by preparative TLC using 10% MeOH/DCM as an eluent to provide 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 350) (66 mg, 50%); 1H NMR (d6-DMSO, 300 MHz) δ 4.68 (d, 1H, J=6.3 Hz), 6.48 (s, 1H), 6.85 (m, 2H), 7.01 (s, 1H), 7.26 (m, 1H), 7.43 (s, 1H), 7.61 (s, 1H), 7.70 (t, 1H, J=1.5 Hz), 8.16 (s, 1H), 8.49 (t, 1H, J=6.3 Hz); MS (ESI) m/z=392 (MH+).
[3-(4-Fluoro-phenyl)-pyrrolidin-1-yl]-(6-furan-3-yl-4-trifluoromethyl-1H-benzoimidazol-2-yl)-methanone (compound 351) was prepared using similar procedure as for 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 350). 1H NMR (d6-DMSO, 300 MHz) δ 2.00 (m, 1H), 2.20 (m, 1H), 3.38 (m, 1.5H), 3.59 (m, 0.5H), 3.83 (m, 1H), 4.00 (m, 1H), 4.40 (s, 0.5H), 4.65 (m, 0.5H), 6.81 (s, 1H), 7.09 (t, 2H, J=8.7 Hz), 7.31 (m, 3H), 7.54 (s, 1H), 7.70 (dd, 1H, J=1.5, 1.8 Hz), 8.13 (s, 1H), 12.09 (s, 1H); MS (ESI) m/z=444 (MH+).
To a solution of [3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-(6-furan-3-yl-4-trifluoromethyl-1H-benzoimidazol-2-yl)-methanone (compound 351) (350 mg, 0.78 mmol) in DMF (2 mL) under inert atm. was added NaH (95%, 38 mg, 1.5 mmol). After 10 min, ethyl iodide (0.2 mL, 2.3 mmol) was added to the mixture which was allowed to stir at room temperature for 12 hours. The brown solution was concentrated and redissolved in ethyl acetate and portioned with water. Evaporation of organic layer gave the crude product which was purified by preparative TLC [15% EtOAc/hexane as eluent] to give (1-ethyl-6-furan-3-yl-4-trifluoromethyl-1H-benzoimidazol-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 352) (40 mg, 10.5%) and (1-ethyl-5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazol-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 353) (18 mg, 5%) both as white powders.
Data for (1-ethyl-6-furan-3-yl-4-trifluoromethyl-1H-benzoimidazol-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 352) 1H NMR (d6-DMSO, 300 MHz) δ 1.24 (t, 3H, J=6.6), 2.08 (m, 1H), 2.3 (m, 1H), 3.45 (m, 1.5H), 3.66 (m, 0.5H), 3.91 (m, 1H), 4.08 (m, 1H), 4.34 (bq, 2H), 4.71 (m, 0.5H), 4.83 (m, 0.5H), 7.18 (m, 3H), 7.37 (m, 2H), 7.70 (t, 1H, J=1.5 Hz), 7.71 (bs, 2H), 8.40 (s, 1H); MS (ESI) m/z=472 (MH+)
Data for (1-ethyl-5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazol-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (compound 353) 1H NMR (d6-DMSO, 300 MHz) δ 1.42 (t, 3H, J=6.9), 2.08 (m, 1H), 2.31 (m, 1H), 3.48 (m, 1H), 3.70 (m, 1H), 3.90 (m, 1H), 4.10 (m, 1H), 4.30 (m, 1H), 4.50 (bq, 2H), 7.18 (m, 3H), 7.41 (m, 2H), 7.76 (s, 1H), 7.95 (s, 1H), 8.00 (s, 1H), 8.40 (s, 1H); MS (ESI) m/z=472 (MH+).
Prepared using similar procedure as for compound 253 (Example 153, Step 4).
1H NMR (d6-DMSO, 300 MHz) δ 2.08 (m, 1H), 2.3 (m, 1H), 2.49 (s, 6H), 3.45 (m, 1H), 3.49 (s, 2H), 3.68 (m, 1.5H), 3.85 (m, 1H), 4.05 (m, 1H), 4.26 (m, 0.5H), 7.13 (m, 2H), 7.37 (m, 3H), 7.47 (m, 1H), 7.73 (m, 2H, J=1.5 Hz), 8.13 (d, 1H, J=8.1); 8.75 (d, 1H, J=5.4 Hz); MS (ESI) m/z=546 (MH+).
To a stirred solution of N-(4-bromo-2-nitro-6-trifluoromethyl-phenyl)-oxalamic acid ethyl ester (500 mg, 1.2 mmol) and ethyl iodide (0.2 mL, 2.4 mmol) in CH3CN (2 mL) was added 18-Crown-6 (65 mg, 0.24 mmol) and K2CO3 (330 mg, 2.4 mmol). The solution was then stirred at 60° C. for 12 hours. The light brown solution was filtered, reduced in volume and redissolved in ethyl acetate. Flash chromatography [EtOAc/n-hex (15:85 v/v)] of the crude material yielded (4-bromo-2-nitro-6-trifluoromethyl-phenylimino)-ethoxy-acetic acid ethyl ester (29 mg, 5%) and N-(4-bromo-2-nitro-6-trifluoromethyl-phenyl)-N-ethyl-oxalamic acid ethyl ester (430 mg, 81%) as white powder. MS (ESI) m/z=414 (MH+).
To a stirred solution of N-(4-Bromo-2-nitro-6-trifluoromethyl-phenyl)-N-ethyl-oxalamic acid ethyl ester (100 mg, 0.25 mmol) in THF (1 mL) was added a solution of Na2S2O4 (420 mg, 2.5 mmol) in water (2 mL). After 1 h, ethyl acetate was added and the layers were separated. The extracts were dried (MgSO4) and evaporated to provide N-(2-amino-4-bromo-6-trifluoromethyl-phenyl)-N-ethyl-oxalamic acid ethyl ester (85 mg, 92%). MS (ESI) m/z=383 (MH+).
Ethyl-5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid was prepared using a similar procedure as for 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (compound 349). MS (ESI) m/z=297 (MH+).
Ethyl-5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 355) was prepared using similar method as for 5-furan-3-yl-7-trifluoromethyl-1H-benzoimidazole-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 350). 1H NMR (d6-DMSO, 300 MHz) δ 1.34 (t, 3H, J=6.9), 4.66 (d, 2H, J=6.3 Hz), 4.74 (q, 2H, J=7.2 Hz), 6.96 (dd, 1H, J=3.3, 5.1 Hz), 7.05 (m, 1H), 7.15 (m, 1H), 7.40 (m, 1H), 7.78 (t, 1H, J=1.8 Hz), 8.0 (s, 1H), 8.25 (s, 1H), 8.39 (s, 1H), 9.67 (t, 1H, J=6.3 Hz); MS (ESI) m/z=420 (MH+).
A solution of (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-carbamic acid tert-butyl ester (80 mg, 0.2 mmol) in THF (1 mL) was added to a suspension of sodium hydride (95%, 10 mg, 04 mmol) in THF (5 mL). After 15 min, thiophene carbonyl chloride (60 mg, 0.4 mmol) was added and the mixture was stirred at 60° C. for 12 hours. The mixture was partitioned between ethyl acetate and saturated aqueous NaHCO3. The organic extracts were dried (MgSO4) and evaporated to provide the crude product. To the crude product in dioxane was added 4M HCl in dioxane (10 eq) and stirred at room temperature for 48 hours. Concentration of the solvents followed by purification using preparative TLC [4% MeOH/DCM as an eluent] gave thiophene-2-carboxylic acid (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-amide (compound 356) (16 mg, 20%). 1H NMR (d6-DMSO, 300 MHz) δ 6.62 (dd, 1H, J=1.8, 3.3 Hz), 7.17 (t, 1H, J=4.2 Hz), 7.28 (d, 1H, J=3.3), 7.79 (s, 1H), 7.83 (d, 1H, J=4.5 Hz), 8.04 (d, 1H, J=3.6 Hz), 8.09 (s, 1H), 8.64 (s, 1H); MS (ESI) m/z=412 (MH+).
Using similar procedure as for the preparation of thiophene-2-carboxylic acid (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-amide (compound 356) by replacing thiophene carbonyl chloride with thiophene-2-sulfonyl chloride gave thiophene-2-sulfonic acid (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-amide (compound 357). 1H NMR (d6-DMSO, 300 MHz) δ 6.59 (dd, 1H, J=1.8, 3.3 Hz), 7.07 (dd, 1H, J=3.9, 4.8 Hz), 7.21 (d, 1H, J=3.3 Hz), 7.60 (dd, 1H, J=1.5, 3.9 Hz), 7.76 (m, 1H), 7.82 (d, 1H, J=3.9 Hz), 8.01 (s, 1H), 8.55 (s, 1H); MS (ESI) m/z=448 (MH+).
Prepared using similar procedure as for compound 349 (Example 249, Step 4).
1H NMR (d6-DMSO, 300 MHz) δ 2.49 (s, 3H), 4.64 (d, 2H, J=6.0 Hz), 5.58 (s, 1H), 6.71 (s, 1H), 6.95 (dd, 1H, J=3.3, 5.1 Hz), 7.02 (m, 1H), 7.36 (dd, 1H, J=1.2, 5.1 Hz), 7.45 (m, 4H), 7.68 (s, 1H), 7.81 (s, 1H), 7.83 (s, 1H), 8.46 (s, 1H), 9.01 (t, 1H, J=6.0 Hz); MS (ESI) m/z=408 (MH+).
Prepared using similar procedure as for compound 349 (Example 249, Step 4), (75%).
1H NMR (d6-DMSO, 300 MHz) δ 4.70 (d, 2H, J=6.3), 6.97 (dd, 1H, J=3.3, 4.8 Hz), 7.06 (s, 1H), 7.44 (m, 5H), 7.54 (m, 2H), 7.63 (d, 1H, J=16.5 Hz), 7.77 (d, 2H, J=7.8 Hz), 7.85 (d, 2H, J=7.5 Hz), 8.04 (s, 1H), 8.41 (d, 1H, J=16.5 Hz), 8.46 (s, 1H), 9.21 (t, 1H, J=6.0 Hz); MS (ESI) m/z=471 (MH+).
Prepared using similar procedure as for compound 157 (Example 57).
1H NMR (d6-DMSO, 300 MHz) δ 4.57 (d, 2H, J=5.7 Hz), 7.25 (s, 1H), 7.38 (s, 1H), 7.76 (s, 1H), 8.15 (s, 1H), 8.49 (s, 1H), 8.66 (t, 1H, J=6.3 Hz), 8.74 (s, 1H), 8.98 (s, 1H); MS (ESI) m/z=427 (MH+).
Bromination of 2-amino-nicotinonitrile with NBS followed by treatment with methyl bromopyruvate gave 6-bromo-8-cyano-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester. 8-Cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester was obtained from Suzuki reaction of the above bromide with phenylboronic acid. To a stirred solution of 8-cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (0.038 g, 0.13 mmol) in THF (1 mL) and ethanol (1 mL) was added NaOH (5% aq, 0.5 mL). After 4 hours, the organics were evaporated and the mixture was acidified to pH 4. The mixture was partitioned between EtOAc and water, followed by extraction and drying of the organic layer to afford 8-carbamoyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.015 g) as a solid. MS (ESI) m/z=282.1 (M+H+). A solution of the acid and NBS (0.009 g, 0.05 mmol) was stirred in DMF (0.5 mL) for 1 hour. Concentration of the solvent followed by aqueous workup afforded 3-bromo-8-carbamoyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.017 g, 95%). MS (ESI) m/z=360.0 (M++1). This acid was coupled to thioiphen-2-methylamine under standard HATU coupling conditions to give 3-bromo-6-phenyl-imidazo[1,2-a]pyridine-2,8-dicarboxylic acid 8-amide 2-[(thiophen-2-ylmethyl)-amide](compound 361). MS (ESI) m/z=455.0 (M+), 478 (MNa+).
To a stirred solution of 8-cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (0.1 g, 0.34 mmol) in EtOH (1 mL) and THF (2 mL) was added aqueous NaOH (5%, 0.05 mL) solution. After 30 min, additional THF (6 mL) and aqueous NaOH (5%, 0.05 mL) solution were added and the reaction was monitored until completion (1 hour). The organics were removed and the aqueous layer was acidified to pH 4 to give a solid. The solid was filtered and dried under vacuum to afford 8-cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.052 g, 58%). MS (ESI) m/z=264.1 (M+H+) Bromination of 8-cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid followed by amide bond coupling with thioiphen-2-methylamine (as described for compound 361) gave 3-bromo-8-cyano-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)amide (compound 362). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6 Hz), 6.96 (m, 1H), 7.02 (brs, 1H), 7.36 (d, 1H, J=3.9 Hz), 7.50 (m, 3H), 7.82 (d, 2H, J=8.4 Hz), 8.61 (s, 1H), 8.74 (s, 1H), 9.09 (t, 1H, J=5.4 Hz); MS (ESI) m/z=437.0 (M+).
(6-Furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-carbamic acid tert-butyl ester (0.13 g, 0.32 mmol) in THF (1 mL) was added to a suspension of NaH (60%, 0.089 g, 2.2 mmol) in THF (2 mL). After 30 min, phenyl-methanesulfonyl chloride (0.43 g, 2.2 mmol) was added dropwise and stirred for 2 hours. After aqueous workup, and silica gel chromatography, the compound obtained was treated with HCl (4M in dioxane, 3 mL) in anhydrous MeOH (3 mL). After 24 hours, the solvent was concentrated under vacuum. The product was precipitated upon addition of acetonitrile (1 mL) and HCl (1N, 2 mL). The precipitate was filtered and dried under high vacuum to give N-(3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-C-phenyl-methanesulfonamide (compound 363) as a solid (0.033 g, 23%). 1H NMR (d6-DMSO, 300 MHz) δ 4.79 (s, 2H), 6.68 (m, 1H), 7.35 (m, 3H), 7.47 (m, 2H), 7.85 (d, 1H, J=2.1 Hz), 8.18 (s, 1H), 8.65 (s, 1H), 10.42 (s, 1H); MS (ESI) m/z=456.0 (MH+).
A mixture of 6-(3-fluorophenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.1 g, 0.32 mmol), paraformaldehyde (0.03 g) and morpholine (0.08 g, 0.95 mmol) in acetic acid (2 mL) was heated at 120° C. for 15 min under microwave conditions. Trituation of the crude solid with water (100 mL) gave the desired product which upon filtration and drying gave 6-(3-fluoro-phenyl)-3-morpholin-4-ylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thioiphen-2-methylamine under standard HATU coupling conditions to give 6-(3-fluoro-phenyl)-3-morpholin-4-ylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 364). 1H NMR (d6-DMSO, 300 MHz) δ 3.45 (m under residual water peak), 3.86 (m, 4H), 4.68 (d, 2H, J=6.0 Hz), 5.19 (brs, 2H), 6.94 (m, 1H), 7.04 (d, 1H, J=2.4 Hz), 7.29 (dt, 1H, J=2.4, 8.7 Hz), 7.36 (m, 1H), 7.56 (m, 1H), 7.85 (d, 1H, J=7.8 Hz), 7.95 (brd, 1H), 8.26 (s, 1H), 9.10 (br t, 1H), 9.39 (s, 1H), 11.41 (brs, 1H); MS (ESI) m/z=519.1 (MH+).
3-Dimethylaminomethyl-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic Acid (thiophen-2-ylmethyl)-amide (compound 365) was prepared similar to compound (compound 364) with the use of dimethylamine instead of morpholine. 1H NMR (d6-DMSO, 300 MHz) δ 2.81 (s, 3H), 2.88 (s, 3H), 4.68 (d, 2H, J=6.3 Hz), 5.13 (d, 2H, J=5.1 Hz), 6.95 (m, 1H), 7.04 (m, 1H), 7.27-7.38 (m, 2H), 7.58 (m, 1H), 7.80 (d, 1H, J=8.7 Hz), 8.27 (s, 1H), 7.88 (m, 1H), 9.14 (t, 1H, J=6.0 Hz), 9.34 (s, 1H), 10.41 (brs, 1H); MS (ESI) m/z=477.1 (MH+).
6-(3-Fluoro-phenyl)-3-pyrrolidin-1-ylmethyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 366) was prepared similar to compound (compound 364) with the use of pyrrolidine instead of morpholine. 1H NMR (d6-DMSO, 300 MHz) δ 1.88 (m, 2H), 2.07 (m, 2H), 3.50-3.35 (m under residual water peak), 4.68 (d, 2H, J=6 Hz), 5.22 (d, 2H, J=5.4 Hz), 6.95 (m, 1H), 7.03 (m, 1H), 7.30 (dt, 1H, J=2.4, 8.4 Hz), 7.36 (dd, 1H, J=5.1, 1.5 Hz), 7.56 (m, 1H), 7.83 (d, 1H, J=8.7 Hz), 7.91 (m, 1H), 8.27 (s, 1H), 9.11 (t, 1H, J=6 Hz), 9.36 (s, 1H), 10.81 (brs, 1H); MS (ESI) m/z=503.1 (MH+).
A solution of 6-(3-fluorophenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.16 g, 0.5 mmol) and NBS (0.09 g, 0.5 mmol) was stirred in DMF (1.5 mL) for 3 hours. The mixture was added dropwise to give a precipitate which was filtered and dried under high vacuum to 3-bromo-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thioiphen-2-methylamine under standard HBTU coupling conditions to give 3-bromo-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 367). 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.3 Hz), 6.95 (m, 1H), 7.02 (brs, 1H), 7.31 (dt, 1H, J=3, 9 Hz), 7.36 (d, 1H, J=5.1 Hz), 7.56 (m, 1H), 7.69 (d, 1H, J=7.8 Hz), 7.78 (brd, 1H), 8.21 (s, 1H), 8.78 (s, 1H), 8.88 (t, 1H, J=6.3 Hz); MS (ESI) m/z=499.7 (MH+).
[3-Bromo-6-(3-fluoro-phenyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-phenyl-pyrrolidin-1-yl)-methanone (compound 368) was prepared similar to the preparation of compound (compound 367). 1H NMR (d6-DMSO, 300 MHz) δ 2.06 (m, 1H), 2.31 (m, 1H), 3.4-4.4 (br m under residual water peak), 7.29 (m, 6H), 7.56 (m, 1H), 7.69 (br t, 1H), 7.78 (m, 1H), 8.17 (s, 0.5H), 8.19 (s, 0.5H), 8.78 (s, 0.5H), 8.77 (s, 0.5H); MS (ESI) m/z=533.7 (MH+).
3-Chloro-5-phenyl-pyridin-2-ylamine was prepared from chlorination of 5-phenyl-pyridin-2-ylamine by N-chlorosuccinimide. Reaction of 3-chloro-5-phenyl-pyridin-2-ylamine with methyl bromopyruvate afforded 8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester which was brominated with N-bromosuccinimide followed by subsequent saponification gave 3-bromo-8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thioiphen-2-methylamine under standard HBTU coupling conditions to give 3-bromo-8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 369). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.3 Hz), 6.94 (m, 1H), 7.02 (m, 1H), 7.36-7.54 (m, 4H), 7.80 (d, 2H, J=7.8 Hz), 8.07 (s, 1H), 8.48 (s, 1H), 9.01 (t, 1H, J=6.3 Hz); MS (ESI) m/z=445.9 (M+).
Following a similar procedure as for the preparation of 3-bromo-8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 369), 8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester was chlorinated with N-chlorosuccinimide at the C-3 position which upon subsequent saponification to give 3-chloro-8-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thioiphen-2-methylamine under standard HBTU coupling conditions to give 3,8-dichloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 370). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.3 Hz), 6.95 (m, 1H), 7.02 (m, 1H), 7.36-7.54 (m, 4H), 7.83 (d, 2H, J=7.8 Hz), 8.07 (s, 1H), 8.55 (s, 1H), 9.02 (t, 1H, J=6.3 Hz); MS (ESI) m/z=402.0 (M+).
8-Bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 371) was prepared using similar procedure as for the synthesis of compound 369. 3-Bromo-5-phenyl-pyridin-2-ylamine was prepared from bromination of 5-phenyl-pyridin-2-ylamine by N-bromosuccinimide. Reaction of 3-bromo-5-phenyl-pyridin-2-ylamine with methyl bromopyruvate afforded 8-bromo-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester which was chlorinated with N-chlorosuccinimide followed by subsequent saponification gave 8-bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thioiphen-2-methylamine under standard HBTU coupling conditions to give 8-bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 371). 1H NMR (d6-DMSO, 300 MHz) δ 4.62 (d, 2H, J=6.6 Hz), 6.94 (m, 1H), 7.02 (d, 1H, J=3.3 Hz), 7.35-7.52 (m, 4H), 7.80 (d, 2H, J=6.9 Hz), 8.18 (s, 1H), 8.56 (s, 1H), 8.96 (t, 1H, J=6.6 Hz); MS (ESI) m/z=445.9 (M+).
8-Bromo-3-chloro-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 371) underwent Suzuki coupling with 4-pyrazoleboronic acid pinaacol ester to give 3-chloro-6-phenyl-8-(1H-pyrazol-4-yl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 372). 1H NMR (d6-DMSO, 300 MHz) δ 4.67 (d, 2H, J=6.0 Hz), 6.95 (m, 1H), 7.04 (m, 1H), 7.35-7.54 (m, 4H), 7.86 (brd, 2H), 8.12 (d, 1H, J=1.8 Hz), 8.37 (d, 1H, J=1.8 Hz), 8.89 (brs, 2H), 9.34 (t, 1H, J=6.3 Hz); MS (ESI) m/z=434.0 (MH+).
A solution of 6-bromo-8-cyano-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (11.07 g, 39.52 mmol) and NCS (5.3 g, 39.52 mmol) was stirred in DMF (200 mL) for 18 hours. Water (200 mL) and NaHSO3 (5% aq, 50 mL) were added to give a precipitate. The solids were filtered, washed (water) and dried to afford 6-bromo-3-chloro-8-cyano-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (11.2 g, 90%) as a tan solid. 6-Bromo-3-chloro-8-cyano-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester underwent Suzuki coupling with furan-3-boronic acid to give 3-chloro-8-cyano-6-furan-3-yl-iridazo[1,2-a]pyridine-2-carboxylic acid methyl ester. To a suspension of 3-chloro-8-cyano-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (3.73 g, 12.4 mmol) in THF (100 mL) was added a solution of potassium trimethylsilanolate (1.9 g, 14.9 mmol) in THF (15 mL). After 4 hours, water and EtOAc were added and the aqueous layer was acidified with citric acid (5% aq.). The mixture was filtered, the organic layer was washed and dried to afford 3-chloro-8-cyano-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.3 g, 66%). This acid was coupled to thioiphen-2-methylamine under standard HBTU coupling conditions to give 3-chloro-8-cyano-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 373). 1H NMR (d6-DMSO, 300 MHz) δ 4.61 (d, 2H, J=6.3 Hz), 6.94 (m, 1H), 7.01 (d, 1H, J=3.3 Hz), 7.28 (m, 1H), 7.36 (d, 1H, J=5.1 Hz), 7.82 (m, 1H), 8.46 (s, 1H), 8.59 (s, 1H), 8.84 (s, 1H), 9.08 (t, 1H, J=6.3 Hz); MS (ESI) m/z=383.0 (MH+).
To a suspension of 3-chloro-8-cyano-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 373, 0.39 g, 1.03 mmol) in EtOH (50 mL) was added hydroxylamine (50% soln., 4 mL), and the mixture was heated to reflux for 30 min. Upon cooling to room temperature, water was added (50 mL) to precipitate the product. The precipitate was filtered and dried under vacuum to afford 3-chloro-6-furan-3-yl-8-(N-hydroxycarbamimidoyl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (0.25 g, 58%) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.0 Hz), 6.55 (brs, 2H), 6.95 (m, 1H), 7.02 (m, 1H), 7.16 (m, 1H), 7.36 (d, 1H, J=5.1 Hz), 7.80 (m, 1H), 8.05 (s, 1H), 8.35 (s, 1H), 8.58 (s, 1H), 9.36 (t, 1H, J=6.3 Hz), 10.02 (s, 1H); MS (ESI) m/z=416.0 (MH+).
To a stirred solution of 3-chloro-6-furan-3-yl-8-(N-hydroxycarbamimidoyl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (Example 274 Step 1) (0.069 g, 0.17 mmol) in trimethylorthoformate (2 mL) was added boron trifluoride etherate (2 drops). The mixture was then heated at 70° C. for 16 hours. The crude product was purified by reverse phase HPLC to afford 3-chloro-6-furan-3-yl-8-[1,2,4]oxadiazol-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 374) (0.008 g, 11%). 1H NMR (d6-DMSO, 300 MHz) δ 4.64 (d, 2H, J=6.0 Hz), 6.94 (m, 1H), 7.02 (brs, 1H), 7.27 (s, 1H), 7.36 (d, 1H, J=5.1 Hz), 7.83 (brs, 1H), 8.35 (s, 1H), 8.50 (s, 1H), 8.76 (m, 2H), 9.86 (s, 1H); MS (ESI) m/z=426.0 (MH+).
3-Chloro-6-furan-3-yl-8-(N-hydroxycarbamimidoyl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (Example 274 Step 1) (0.06 g, 0.14 mmol) was dissolved in DMF (1.5 mL) and hexanoic acid (0.016 g, 0.14 mmol), HBTU (0.06 g, 0.15 mmol) and diisopropylethyl amine (0.04 g, 0.28 mmol) were added. The mixture was stirred at room temperature for 1 hour followed by heating at 70° C. over 3 days. The crude product crashed out from aqueous NaHCO3 was further purified by column chromatography to afford 3-chloro-6-furan-3-yl-8-(5-pentyl-[1,2,4]oxadiazol-3-yl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 375) (0.015 g, 22%). 1H NMR (d6-DMSO, 300 MHz) δ 0.88 (t, 3H, J=7.2 Hz), 1.27 (m, 4H), 1.82 (m, 2H), 3.06 (t, 2H, J=6.9 Hz), 4.65 (d, 2H, J=6.3 Hz), 6.94 (m, 1H), 7.02 (m, 1H), 7.26 (s, 1H), 7.36 (d, 1H, J=5.1 Hz), 7.82 (s, 1H), 8.28 (s, 1H), 8.48 (s, 1H), 8.73 (m, 2H); MS (ESI) m/z=496.1 (MH+).
6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester underwent Suzuki coupling wih 4-pyrazole boronic acid pinacol ester to give 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester. Saponification of 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester with aqueous NaOH gave 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. Bromination of 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid with N-bromosuccinimide gave 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. This acid was coupled to thiophen-2-methylamine under standard HBTU coupling conditions to give 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 376). 1H NMR (d6-DMSO, 300 MHz) δ 4.63 (d, 2H, J=6.3 Hz), 6.95 (m, 1H), 7.02 (brs, 1H), 7.36 (d, 1H, J=5.1 Hz), 8.20 (brs, 2H), 8.54 (s, 1H), 8.74 (s, 1H), 8.80 (t, 1H, J=6.0 Hz); MS (ESI) m/z=471.7 (MH+).
Under standard HBTU coupling conditions, 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(2-fluorophenyl)pyrrolidine gave [3-(2-fluoro-phenyl)-pyrrolidin-1-yl]-[6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-methanone (compound 377). 1H NMR (d6-DMSO, 300 MHz) δ 2.04 (m, 1H), 2.30 (m, 1H), 4.08-3.44 (m, under residual water peak), 4.34 (m, 0.5H), 4.48 (m, 0.5H), 7.18 (m, 2H), 7.29 (m, 1H), 7.40 (brt, 1H), 8.05 (s, 0.5H), 8.07 (s, 0.5H), 8.19 (s, 1H), 8.21 (s, 1H), 8.41 (d, 1H, J=3 Hz), 9.11 (s, 0.5H), 9.11 (s, 0.5H); MS (ESI) m/z=444.1 (MH+).
Under standard HBTU coupling conditions, 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(3-fluorophenyl)pyrrolidine gave [3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-[6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-methanone (compound 378). 1H NMR (d6-DMSO, 300 MHz) δ 2.02 (m, 1H), 2.31 (m, 1H), 3.42 (m, under residual water peak), 3.75-4.15 (m, 2H), 4.27 (m, 0.5H), 4.48 (m, 0.5H), 7.06 (t, 1H, J=8.4 Hz), 7.17 (m, 2H), 7.37 (m, 1H), 8.04 (s, 0.5H), 8.06 (s, 0.5H), 8.18 (brs, 2H), 8.40 (d, 1H, J=1.8 Hz), 9.09 (s, 0.5H), 9.11 (s, 0.5H); MS (ESI) m/z=444.7 (MH+).
3-Chloro-8-cyano-6-(1H-pyrazol-4-yl)-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 379) was prepared from 6-bromo-8-cyano-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester using similar procedures as to 3-chloro-8-cyano-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (thiophen-2-ylmethyl)-amide (compound 373). 1H NMR (d6-DMSO, 300 MHz) δ 4.61 (d, 2H, J=6.3 Hz), 6.94 (m, 1H), 7.01 (d, 1H, J=2.7 Hz), 7.35 (dd, 1H, J=0.9, 4.8 Hz), 8.34 (brs, 2H), 8.59 (s, 1H), 8.85 (s, 1H), 9.05 (t, 1H, J=6.3 Hz); MS (ESI) m/z=383.7 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2,3-dihydro-1H-indole gave (3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(2,3-dihydro-indol-1-yl)-methanone (compound 380). 1H NMR (d6-DMSO): δ 3.17 (t, 2H, J=8.4 Hz), 4.44 (t, 2H, J=8.4 Hz), 6.69 (dd, 1H, J=1.8, 3.3 Hz), 7.07 (t, 1H, J=7 Hz), 7.22 (m, 1H), 7.29 (d, 1H, J=7 Hz), 7.39 (d, 1H, J=3.3 Hz), 7.87 (d, 1H, J=1.2 Hz), 8.17 (d, 1H, J=8.1 Hz), 8.25 (s, 1H), 8.72 (s, 1H); MS (ESI) m/z=432 (MH+).
Using standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 4-pyrrolidin-3-yl-morpholine gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-morpholin-4-yl-pyrrolidin-1-yl)-methanone (compound 381). 1H NMR (d6-DMSO): δ 2.20-2.44 (m, 2H), 3.08-4.30 (m, 13H), 7.31 (s, 1H), 7.82 (t, 1H, J=1.5 Hz), 8.20 (s, 1H), 8.54 (s, 1H), 8.81 (brs, 1H); MS (ESI) m/z=469 (MH+).
The title compound was prepared from 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and ammonium chloride using standard HATU coupling conditions. MS (ESI) m/z=330.0 (MH+).
3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid amide (0.93 g, 2.8 mmol) was refluxed in POCl3 (10 mL) for 1 hour. POCl3 was removed under vacuum and the residue was suspended in EtOAc/water. The solids that remained undissolved were filtered and the filtrate subjected to a normal extractive workup. The organic layer was concentrated and the solids obtained were combined with the previously collected solids (above) to afford the crude product. Trituration of the crude solid with ether (15 mL) afforded the desired product (0.7 g, 79%) as a tan solid. MS (ESI) m/z=312.0 (MH+).
3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2a]pyridine-2-carbonitrile (0.11 g, 0.35 mmol), CuCl (0.038 g, 0.38 mmol) and thiophen-2-yl-methylamine (0.06 g, 0.53 mmol) were suspended in EtOH (2 mL) and the mixture heated at 120° C. for 10 min under microwave conditions. The reaction mixture was poured into 5% aqueous NaOH solution and the mixture sonicated and heated gently. The mixture was then acidified to pH 2 with 1N HCl and filtered. The crude product contained in the filtrate was purified by reverse phase HPLC to afford the title compound (0.026 g, 17%). 1H NMR (d6-DMSO, 300 MHz) δ 4.96 (d, 2H, J=5.7 Hz), 7.05 (t, 1H, J=4.8 Hz), 7.26 (m, 1H), 7.35 (s, 1H), 7.54 (d, 1H, J=5.1 Hz), 8.33 (s, 1H), 8.59 (s, 1H), 8.91 (s, 1H), 8.65 (s, 1H), 8.81 (s, 1H), 10.39 (br t, 1H); MS (ESI) m/z=425.0 (MH+).
5-Bromo-3-nitro-pyridin-2-ylamine was converted to 6-bromo-8-nitro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester which was then converted to 6-bromo-3-chloro-8-nitro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester [MS (ESI) m/z=301.9 (MH+)] using procedures as described previously for the synthesis of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester. MS (ESI) m/z=335.9 (MH+).
6-Bromo-3-chloro-8-nitro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (1.12 g, 3.3 mmol) was dissolved in THF (200 mL) and Na2S2O4 (6.8 g) in water (50 mL) was added and the mixture stirred for 2 hours. Aqueous NaOH solution (5%) was added until the mixture reached a pH of 8-9. The mixture was extracted with EtOAc (4×100 mL) to give crude 8-amino-6-bromo-3-chloro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.3 g) which was used for the next step without further purification. MS (ESI) m/z=306.0 (MH+).
8-Amino-6-bromo-3-chloro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.28 g, 0.92 mmol) was dissolved in DCM (2 mL) and methanesulfonyl chloride (0.11 g, 0.92 mol) and triethylamine (0.27 mL, 1.84 mmol) were added and the mixture stirred for 18 hours. Additional methanesulfonyl chloride (0.11 g, 0.92 mmol) and triethylamine (0.27 mL, 1.84 mmol) were added and the mixture stirred an additional 5 hours. The DCM was removed under vacuum and water (25 mL) and EtOAc (50 mL) were added. After an extractive work-up, the organic layer was concentrated and subsequently redissolved in THF (5 mL). Aqueous NaOH solution (0.5%, 1 mL) was added and the mixture stirred for 1 hour. The mixture was acidified to pH 4 with 1N HCl, and crude 6-bromo-3-chloro-8-methanesulfonylamino-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.215 g) was obtained by extracting with EtOAc and drying. MS (ESI) m/z=383.9 (MH+).
6-Bromo-3-chloro-8-methanesulfonylamino-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.215 g, 0.56 mmol) was subjected to standard Suzuki coupling conditions using 4-pyrazole boronic acid. Under these conditions, a 1:1 mixture (0.16 g) of 3-chloro-8-methanesulfonylamino-6-(1H-pyrazol-4-yl)-imidazo[1,2-a]pyridine-2-carboxylic acid and 6-bromo-3-chloro-8-methanesulfonylamino-imidazo[1,2-a]pyridine-2-carboxylic acid was obtained. This mixture was subjected to HBTU amide coupling conditions with 3-(3-fluoro-phenyl)-pyrrolidine. Purification of the crude reaction mixture afforded the desired product N-{3-chloro-2-[3-(3-fluoro-phenyl)-pyrrolidine-1-carbonyl]-6-furan-3-yl-imidazo[1,2-a]pyridin-8-yl}-methanesulfonamide (0.019 g). 1H NMR (d6-DMSO, 300 MHz) δ 10.08 (br s, 1H), 8.44 (s, 1H), 8.25 (s, 2H), 7.51-7.10 (m, 4H), 4.41 (br dd, 0.5H), 4.22-3.43 (m with water peak), 3.26 (s, 1.5H), 3.18 (s, 1.5H), 2.31 (br m, 1H), 2.03 (br m, 1H); MS (ESI) m/z=503.1 (MH+).
8-Amino-6-bromo-3-chloro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.29 g, 0.98 mmol) was dissolved in pyridine (5 mL), acetic anhydride (1.5 mL) was added and the mixture stirred over 72 hours. The mixture was concentrated, EtOAc/water added and after a normal extractive work up, 8-acetylamino-6-bromo-3-chloro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.26 g, 77%) was obtained. MS (ESI) m/z=348.0 (MH+).
8-Acetylamino-6-bromo-3-chloro-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.26 g, 0.75 mmol) was subjected to Suzuki coupling conditions with 3-furanboronic acid to afford 8-acetylamino-3-chloro-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.16 g, 64%); MS (ESI) m/z=334.0 (MH+), 356 (MNa+).
8-Acetylamino-3-chloro-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.16 g, 0.48 mmol) was dissolved in THF (20 mL) and an aqueous NaOH solution (5%, 2 mL) was added and the mixture stirred for 1 hour. The mixture was concentrated and the mixture acidified to pH 3 with 1N HCl. The crude product crashed out, was filtered, washed with water and dried to afford 8-acetylamino-3-chloro-6-furan-3-yl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.08 g, 52%); MS (ESI) m/z=320 (MH+).
Prepared using standard HBTU coupling (0.06 g, 51%). 1H NMR (d6-DMSO, 300 MHz) 10.05 (br s, 1H), 8.34-8.24 (m, 3H), 7.82 (br s, 1H) 7.41-7.03 (m, 5H), 4.32-3.20 (m under br water peak), 2.31 (m, 1H), 2.28 (s, 1.5H), 2.21 (s, 1.5H), 2.09 (m, 1H); MS (ESI) m/z=467.1 (MH+).
3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonitrile (1.95 g, 6.27 mmol) and di-tert-butyl dicarbonate (2.74 g, 12.54 mmol) were dissolved in MeOH (50 mL) and the mixture was cooled to 0° C. Nickel chloride hexahydrate (1.49 g, 6.27 mmol) was added, followed by portion-wise addition of NaBH4 (1.2 g, 31.35 mmol) over 2 hours. The mixture was allowed to warm to room temperature and MeOH was removed under vacuum. A saturated aqueous solution of NaHCO3 (20 mL) was added followed by extraction with EtOAc. Solids that remained were filtered off and concentration of the organic layer afforded the crude product (1 g). The solids collected above were suspended in citric acid (5% aq., 20 mL) and extracted with EtOAc to afford additional 0.8 g of crude product. The combined crude products were purified by silica gel chromatography to give (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester (0.26 g, 10%) (MS (ESI) m/z=382.1 (MH+)) and (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester (0.5 g, 19%). MS (ESI) m/z=416.1 (MH+).
A mixture of (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester and (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester (0.2 g) was dissolved in anhydrous MeOH (1 mL) and a solution of hydrogen chloride in 1,4-dioxane (4M, 1 mL) was added. The mixture was stirred for 1 hour, then concentrated and dried to afford the crude amino methyl intermediates which were used for the next step without further purification.
Prepared using standard HBTU coupling of the above mixture of amines with thiophen-2-yl-acetic acid.
Data for N-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2ylmethyl)-2-thiophen-2-yl-acetamide: 1H NMR (d6-DMSO, 300 MHz) 3.69 (s, 2H), 4.45 (d, 2H, J=5.7 Hz), 6.93 (m, 2H), 7.29 (m, 1H), 7.34 (m, 1H), 7.82 (m, 1H), 8.10 (s, 1H), 8.52 (s, 1H), 8.75 (m, 2H); MS (ESI) m/z=440.0 (MH+).
Data for N-(6-Furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-2-thiophen-2-yl-acetamide: 1H NMR (d6-DMSO, 300 MHz) 3.73 (s, 2H), 4.44 (d, 2H, J=5.4 Hz), 6.95 (m, 2H), 7.03 (m, 1H), 7.36 (m, 1H), 7.83 (m, 1H), 7.89 (s, 1H), 8.05 (s, 1H), 8.40 (s, 1H), 8.75 (t, 1H, J=5.7 Hz), 9.16 (s, 1H); MS (ESI) m/z=406.1 (MH+).
Prepared using similar procedures as in Examples 287 and 288 (compounds 387 and 388).
Data for N-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2ylmethyl)-2-phenyl-acetamide: 1H NMR (d6-DMSO, 300 MHz) 3.47 (s, 2H), 4.44 (d, 2H, J=6.0 Hz), 7.26 (m, 6H), 7.82 (m, 1H), 8.10 (s, 1H), 8.52 (s, 1H), 8.72 (t, 1H, J=5.4 Hz), 8.75 (s, 11-1); MS (ESI) m/z=434.1 (MH+).
Data for N-(6-Furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-2-phenyl-acetamide: 1H NMR (d6-DMSO, 300 MHz) 3.50 (s, 2H), 4.42 (d, 2H, J=5.7 Hz), 7.03 (m, 1H), 7.22-7.30 (m, 5H), 7.82 (m, 1H), 7.88 (s, 1H), 8.05 (s, 1H), 8.40 (s, 1H), 8.72 (t, 1H, J=5.7 Hz), 9.15 (s, 1H); MS (ESI) m/z=400.1 (MH+).
To a mixture of 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methylamine and (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methylamine) (0.044 g) in DMF (1 mL) was added benzyl isocyanate (0.017 mL) and N,N-diisopropylethyl amine (0.08 mL). After stirring for 1 hour, the mixture was concentrated andpurified by reverse phase HPLC to afford the title compound (0.032 g). 1H NMR (d6-DMSO, 300 MHz) 4.24 (s, 2H), 4.62 (s, 2H), 7.06 (m, 1H), 7.29 (m, 5H), 7.85 (m, 1H), 8.03 (s, 1H), 8.32 (s, 1H), 8.47 (s, 1H), 8.36 (s, 1H); MS (ESI) m/z=415.1 (MH+).
Prepared using similar procedure as in Example 291 (compound 391). 1H NMR (d6-DMSO, 300 MHz) 4.44 (s, 2H), 6.84 (m, 2H), 7.02 (s, 1H), 7.21 (t, 2H, J=7.5 Hz), 7.41 (d, 2H, J=7.8 Hz), 7.82 (s, 1H), 7.99 (s, 1H), 8.14 (s, 1H), 8.40 (s, 1H), 8.89 (s, 1H), 9.20 (s, 1H); MS (ESI) m/z=401.1 (MH+).
6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid was converted to (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester using methods as described for (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-carbamic acid tert-butyl ester as in Example 285 (compound 385)
C-(6-Furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-ylmethyl)-carbamic acid tert-butyl ester (103 mg 0.27 mmol) was dissolved in MeOH (2 mL) and a solution of hydrogen chloride in 1,4-dioxane (4N, 0.5 mL) was added. This solution was stirred at room temperature for 2 hours. Concentration of the solvent gave C-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-methylamine (82.3 mg, 96) as an HCl salt. MS (ESI) m/z 282 (MH+).
C-(6-Furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-methylamine (82.3 mg, 0.26 mmol) was suspended in dichloromethane (2.5 mL). To this suspension was added N,N-diisopropylethylamine (0.14 mL, 0.78 mmol) at 0° C. followed by benzyl chloroformate (0.05 mL, 0.39 mmol). The mixture was stirred at 0° C. for 15 minutes and then brought to room temperature and stirred for 15 minutes at room temperature. Reaction mixture was quenched using H2O and extracted with dichloromethane. The organic phase was separated, dried (MgSO4), filtered and concentrated to give the crude product. The crude was purified using reverse phase HPLC to give (6-furan-3-yl-8-trifluoromethyl-imidazol-pyridine-2-ylmethyl)-carbamic acid benzyl ester (61 mg, 57%). 1H NMR (d6-DMSO, 300 MHz) 9.13 (s, 1H), 8.38 (s, 1H), 8.02 (s, 1H), 7.93 (t, 1H, J=6 Hz), 7.87 (s, 1H), 7.80 (br s, 1H), 7.34 (m, 5H), 6.99 (br s, 1H), 5.05 (s, 2H), 4.35 (d, 2H, J=7 Hz); MS (ESI) m/z 416 (MH+).
Prepared using similar procedure as in Example 293 (compound 393). 1H NMR (d6-DMSO, 300 MHz) 8.81 (s, 1H), 8.55 (s, 1H), 8.50 (t, 1H), J=6 Hz), 8.23 (s, 1H), 7.85 (d, 1H, J=7 Hz), 7.83 (m, 2H), 7.58 (m, 2H), 7.31 (br s, 1H), 4.82 (d, 2H, J=2 Hz), 3.61 (brs, 1H); MS (ESI) m/z 402 (MH+).
Prepared following experimental procedure described as in Example 296 (compound 396). 1H NMR (d6-DMSO, 300 MHz) 9.06 (s, 1H), 8.36 (s, 1H), 8.26 (t, 1H, J=6 Hz), 7.96 (s, 1H), 7.81 (s, 1H), 7.78 (m, 3H), 7.50 (m, 3H), 7.00 (s, 1H), 4.14 (d, 2H, J=6 Hz); MS (ESI) m/z 422 (MH+).
C-(6-Furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-methylamine (50 mg, 0.18 mmol) was suspended in dichloromethane (2.5 mL). To this suspension, was added N,N-diisopropylethylamine (0.09 mL, 0.54 mmol) followed by phenylmethanesulfonyl chloride (44.6 mg, 0.23 mmol). Reaction mixture was stirred at room temperature overnight. It was then quenched using H2O and extracted with dichloromethane. The organic phase was separated, dried (MgSO4), filtered and concentrated. The crude product was purified using reverse phase HPLC. 1H NMR (d6-DMSO, 300 MHz) 9.12 (s, 1H), 8.37 (s, 1H), 7.98 (s, 1H), 7.92 (s, 1H), 7.79 (s, 1H), 7.74 (t, 1H, J=7 Hz), 7.33 (m, 5H), 7.00 (br s, 1H), 4.40 (s, 2H), 4.25 (d, 2H, J=6 Hz); MS (ESI) m/z 436 (MH+).
Prepared following experimental procedure described in Example 292 (compound 392). 1H NMR (d6-DMSO, 300 MHz) 9.11 (s, 1H), 8.37 (s, 1H), 7.98 (s, 1H), 7.83 (s, 1H), 7.80 (t, 1H, J=2 Hz), 7.26 (m, 2H), 7.10 (m, 2H), 6.99 (br s, 1H), 6.76 (br m, 1H) 4.35 (s, 2H), 4.18 (s, 2H); MS (ESI) m/z 433 (MH+).
Prepared following experimental procedure described in Example 292 (compound 392). 1H NMR (d6-DMSO, 300 MHz) 9.11 (s, 1H), 8.36 (s, 1H), 7.98 (s, 1H), 7.84 (s, 1H), 7.80 (t, 1H, J=2 Hz), 7.32 (m, 1H), 7.09-6.99 (m, 4H), 6.82 (br m, 1H), 4.36 (s, 2H), 4.23 (s, 2H); MS (ESI) m/z 433 (MH+).
Prepared following experimental procedure described in Example 292 (compound 392). 1H NMR (d6-DMSO, 300 MHz) 9.13 (s, 1H), 8.37 (s, 1H), 8.02 (s, 1H), 7.86 (s, 1H), 7.80 (t, 1H, J=2 Hz), 7.28 (m, 2H), 7.11 (m, 2H), 7.00 (br s, 1H), 6.58 (br s, 1H), 4.36 (s, 1H), 4.26 (s, 2H); MS (ESI) m/z 433 (MH+).
Prepared following experimental procedure described in Example 292 (compound 392). 1H NMR (d6-DMSO, 300 MHz) 9.11 (s, 1H), 8.71 (s, 1H), 8.36 (s, 1H), 7.99 (s, 1H), 7.90 (s, 1H), 7.79 (t, 1H, J=2 Hz), 7.39 (m, 2H), 7.02 (m, 3H), 4.42 (br d, 2H, J=3 Hz); MS (ESI) m/z 419 (MH+).
Prepared using exerimental procedures described in Example 293 (compound 393).
1H NMR (d6-DMSO, 300 MHz) 9.10 (s, 1H), 8.67 (t, 1H, J=6 Hz), 8.37 (s, 1H), 8.00 (s, 1H), 7.85 (s, 1H), 7.80 (m, 1H), 7.30 (m, 2H), 7.10 (m, 2H), 7.00 (s, 1H), 4.40 (d, 2H, J=6 Hz), 3.52 (s, 2H); MS (ESI) m/z 418 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.78 (m, 2H), 8.55 (s, 1H), 8.21 (s, 1H), 7.82 (t, 1H, J=2 Hz), 7.31 (m, 3H), 7.17 (m, 2H), 4.54 (d, J=6 Hz, 2H); MS (ESI) m/z=438 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.88 (t, 1H, J=6 Hz), 8.80 (s, 1H), 8.55 (s, 1H), 8.21 (s, 1H), 7.83 (t, 1H, J=2 Hz), 7.35 (m, 2H), 7.13 (m, 3H), 4.49 (d, 2H, J=6 Hz); MS (ESI) m/z=438 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.84 (t, 1H, J=6 Hz), 8.80 (s, 1H), 8.55 (s, 1H), 8.21 (s, 1H), 7.83 (s, 1H), 7.36 (m, 3H), 7.14 (m, 2H), 4.46 (d, 2H, J=6 Hz); MS (ESI) m/z=438 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.79 (s, 1H), 8.54 (s, 1H), 8.35 (t, 1H, J=6 Hz), 8.20 (s, 1H), 7.82 (t, 1H, 2 Hz), 7.28 (m, 3H), 7.15 (m, 2H), 3.52 (m, 2H), 2.90 (t, 2H, J=7 Hz); MS (ESI) m/z=452 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.79 (s, 1H), 8.54 (s, 1H), 8.28 (t, 1H, J=6 Hz), 8.20 (s, 1H), 7.82 (t, 1H, J=2 Hz), 7.30 (m, 2H), 7.05 (m, 3H), 3.52 (m, 2H), 2.89 (t, 2H, J=7 Hz); MS (ESI) m/z=452 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.79 (s, 1H), 8.54 (s, 1H), 8.27 (t, 1H, J=6 Hz), 8.20 (s, 1H), 7.82 (t, 1H, J=2 Hz), 7.27 (m, 3H), 7.11 (m, 2H), 3.49 (m, 2H), 2.85 (t, 2H, J=7 Hz); MS (ESI) m/z=452 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.56 (s, 1H), 8.48 (t, 1H, J=6 Hz), 8.24 (s, 1H), 8.04 (d, 2H, J=7 Hz), 7.83 (t, 1H, J=2 Hz), 7.68 (m, 1H), 7.56 (m, 2H), 7.31 (br s, 1H), 4.84 (d, 2H, J=6 Hz); MS (ESI) m/z 448 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.50 (t, 1H, J=6 Hz), 8.23 (s, 1H), 7.86 (m, 1H), 7.83 (m, 2H), 7.58 (m, 2H), 7.31 (br s, 1H), 4.82 (m, 2H); MS (ESI) m/z 466 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 6.18 (d, 1H, J=8 Hz), 8.80 (s, 1H), 8.66 (d, 1H, J=6 Hz), 8.55 (s, 1H), 8.23 (s, 1H), 7.93 (br m, 1H), 7.81 (m, 1H), 7.64 (d, 1H, J=8 Hz), 7.41 (m, 3H), 7.30 (m, 4H), 6.40 (d, 1H, J=5 Hz); MS (ESI) m/z 496.9 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.79 (s, 1H), 8.54 (s, 1H), 8.41 (d, 1H, J=8 Hz), 8.20 (s, 1H), 7.81 (t, 1H, J=2 Hz), 7.42 (m, 2H), 7.34-7.22 (m, 4H), 5.18 (m, 1H), 1.54 (d, 3H, J=7 Hz); MS (ESI) m/z 433.9 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.79 (s, 1H), 8.53 (s, 1H), 8.41 (d, 1H, J=8 Hz), 8.20 (s, 1H), 7.81 (t, 1H, J=2 Hz), 7.41 (m, 2H), 7.35-7.22 (m, 4H), 5.18 (m, 1H), 1.54 (d, 3H, J=7 Hz); MS (ESI) m/z 433.9 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.77 (s, 1H), 8.52 (s, 1H), 8.18 (s, 1H), 8.07 (t, 1H, J=6 Hz), 7.80 (s, 1H), 7.25 (m, 5H), 7.18 (m, 1H), 3.45 (m, 2H), 3.10 (m, 1H), 1.20 (d, 3H, J=7 Hz); MS (ESI) m/z 448 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.77 (s, 1H), 8.53 (s, 1H), 8.18 (s, 1H), 8.08 (t, 1H, J=6 Hz), 7.81 (t, 1H, 2 Hz), 7.28 (m, 5H), 7.21 (m, 1H), 3.44 (m, 1H), 3.10 (m, 1H), 1.20 (d, 3H, J=7 Hz); MS (ESI) m/z 448 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 9.11 (t, 1H, J=6 Hz), 8.80 (s, 1H), 8.54 (s, 1H), 8.21 (s, 1H), 7.82 (s, 1H), 7.71 (d, 1H, J=7 Hz), 7.60 (d, 1H, J=7 Hz), 7.30 (br s, 1H), 4.78 (d, 2H, 6 Hz); MS (ESI) m/z 427 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.81 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 8.72 (br s, 1H), 7.31 (s, 1H), 4.09 (m, 1H), 3.89 (m, 1H), 3.75-3.48 (m, 3H), 2.25 (m, 2H); MS (ESI) m/z=409 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidine-3-carbonitrile, (compound 416, 89 mg, 0.22 mmol) was suspended in anhydrous ethanol (4 mL). To this suspension was added NH2OH (50% in H2O, 0.1 mL) and the reaction mixture was heated at 80° C. for 1 hour. The resulting mixture was evaporated to dryness to give crude 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-N-hydroxy-pyrrolidine-3-carboxamidine (92 mg, 95.8%) which was used for the next step without further purification. MS (ESI) m/z=442 (MH+).
To a stirred suspension of 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-N-hydroxy-pyrrolidine-3-carboxamidine (92 mg, 0.21 mmol) in trimethyl orthoformate (4 mL) was added boron trifluoride diethyl etherate (4 drops). The mixture was heated at 100° C. for 30 minutes. Reaction mixture was evaporated under reduced pressure followed by purification using reverse phase HPLC to give (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-yl)-(3-[1,2,4]oxadiazol-3-yl-pyrrolidin-1-yl)-methanone (47 mg). 1H NMR (d6-DMSO, 300 MHz) 9.57 (s, 0.5H), 9.53 (s, 0.5H), 8.80 (s, 1H), 8.52 (s, 1H), 8.18 (s, 1H), 7.82 (s, 1H), 7.29 (s, 1H), 4.26 (m, 0.5H), 4.02 (m, 2H), 3.69 (m, 2.5H), 2.36 (m, 1H), 2.17 (m, 1H); MS (ESI) m/z=452 (MH+).
Prepared using a similar method as in Example 215 (compound 315) 1H NMR (d6-DMSO, 300 MHz) 8.80 (s, 1H), 8.54 (s, 1H), 8.19 (s, 1H), 7.82 (s, 1H), 7.30 (br s, 1H), 4.31 (m, 0.5H), 4.01 (m, 2H), 3.87 (m, 1H), 3.72 (m, 1.5H), 2.42 (m, 1H), 2.19 (m, 1H); MS (ESI) m/z=452 (MH+).
Prepared using a similar method as in Example Example 210 (compound 310). 1H NMR (d6-DMSO, 300 MHz) 8.80 (s, 1H), 8.54 (s, 1H), 8.19 (s, 1H), 7.82 (t, 1H, J=2 Hz), 7.30 (br s, 1H), 7.14 (m, 0.5H), 3.92 (m, 2H), 3.56 (m, 2.5H), 2.26 (m, 1H), 2.12 (m, 1H); MS (ESI) m/z 468 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.80 (d, 1H, J=5 Hz), 8.53 (d, 1H, J=4 Hz), 8.17 (d, 1H, J=4 Hz), 7.81 (br s, 1H), 7.34-7.19 (m, 5H), 4.26 (m, 0.5H), 4.04 (m, 1H), 3.86-3.40 (m, 3.5H), 2.29 (m, 1H), 2.09 (m, 1H); MS (ESI) m/z 496 (MHt).
3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, (750 mg, 2.3 mmol) and pyrrolidine-3-carboxylic aid methyl ester HCl salt, (376 mg, 2.3 mmol) reacted using standard HATU coupling conditions to give 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidine-3-carboxylic acid methyl ester (0.89 g, 88%). MS (ESI) m/z 442 (MH+).
1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidine-3-carboxylic acid methyl ester (0.89 g, 2.0 mmol) was dissolved in THF/MeOH/H2O (3:1:1 v/v, 20 mL). To this solution was added LiOH—H2O (0.26 g, 6.0 mmol). Reaction mixture was stirred at room temperature for 2 hours. The organic solvents were removed and the remaining aqueous solution was acidified using 1M HCl. The solids were filtered, washed using additional H2O, and dried to give 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidine-3-carboxylic acid (0.67 g, 79%). MS (ESI) m/z 423 (MH+).
Prepared using standard HATU coupling of the above acid and cyclopropylamine. 1H NMR (d6-DMSO, 300 MHz) 8.46 (s, 1H), 8.20 (s, 1H), 7.84 (s, 1H), 7.48 (t, 1H, J=2 Hz), 6.96 (s, 1H), 3.63-3.16 (m, 5H), 2.56 (m, 1H), 2.28 (m, 1H), 1.68 (m, 2H), 0.26 (m, 2H), 0.03 (m, 2H); MS (ESI) m/z 467 (MH+).
To a solution of lithium diisopropylamide (2M in heptane/THF/ethylbenzene, 6.5 mL, 12.96 mmol) in THF (30 mL) at −78° C. was added a solution of N-Boc-3-pyrrolidinone (2 g, 10.8 mmol) in THF (30 mL) over 10 min. After 40 min, a solution of N-phenylbis(trifluoromethanesulfinimide) (4.24 g, 11.88 mmol) in THF (30 mL) was added. After 3 hours, the mixture was quenched with saturated aqueous solution of NaHCO3 and diluted with ethyl ether (250 mL). The aqueous phase was discarded and the organic phase was washed with 5% citric acid (2×50 mL), 10% aq NaOH (2×50 mL), water (50 mL), and brine (50 mL). The organic phase was dried (Na2SO4), filtered and concentrated. The crude product was absorbed on silica gel followed by column chromatography [n-hex/EtOAc (15:1 v/v) followed by n-hex/EtOAc (9:1 v/v)] gave 3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (1.2 g, 35%) as an oil. 1H NMR (d6-DMSO, 300 MHz) 1.42 (s, 9H), 4.06-4.26 (m, 4H), 6.02-6.18 (m, 1H); MS (ESI) m/z=262 (MH+-tBu).
To a solution of 3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (184.5 mg, 0.582 mmol) in THF (3 mL) was added 2-thienylzinc bromide (0.5 M in THF, 1.16 mL, 0.582 mmol) and tetrakis(triphenylphosphine)palladium(0) (67.2 mg, 0.058 mmol). The mixture was heated at 50° C. for 105 min. Upon cooling, the mixture was filtered warm and diluted with EtOAc (50 mL) and washed with brine (20 mL). The organic layer was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (12:1 v/v)] of the crude gave 3-thiophen-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (49 mg, 33%) as an oil. 1H NMR (d6-DMSO, 300 MHz) 1.44 (s, 4.5H), 1.45 (s, 4.5H), 4.17 (m, 2H), 4.36 (m, 2H), 6.08 (brd, 1H, J=12.3 Hz), 7.05 (t, 1H, J=3.2 hz), 7.11 (d, 1H, J=3.2 Hz), 7.51 (d, 1H, J=5.3 Hz); MS (ESI) m/z=274 (MNa+).
A solution of 3-thiophen-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (45.5 mg, 0.181 mmol) was stirred in 30% TFA/DCM solution (10 mL). After 50 min, the solvents were removed and evaporated with toluene (2×3 mL) to give 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (49 mg) as a brown solid which was used for the next step without further purification. 1H NMR (d6-DMSO, 300 MHz) 4.12 (brs 2H), 4.31 (brs, 2H), 6.13 (m, 1H), 7.10 (dd, 1H, J=3.5, 5 Hz), 7.21 (dd, 1H, J=0.6, 5 Hz), 7.60 (dd, 1H, J=0.9, 5 Hz), 9.33 (brs, 2H); MS (ESI) m/z=152.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.51 (m, 1H), 4.70 (m, 1H), 4.82 (m, 1H), 6.22 (m, 1H), 5.04 (m, 1H), 7.01 (dd, 0.5H, J=0.9, 2.6 Hz), 7.08 (dd, 0.5H, J=2.6, 3.5 Hz), 7.10 (dd, 0.5H, J=2.5, 3.8 Hz), 7.21 (brd, 0.5H, J=2.5 Hz), 7.32-7.35 (m, 1H), 7.53 (dd, 0.5H, J=1.2, 3.3 Hz), 7.55 (dd, 0.5H, J=0.9, 2.3 Hz), 7.83-7.86 (m, 1H), 8.24-8.26 (brs, 1H), 8.57 (brs, 1H), 8.85 (s, 1H); MS (ESI) m/z=464 (MH+).
A suspension of 3-thiophen-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (Example 322, Step 2, (147 mg, 0.585 mmol) and 10% Pd/C (100 mg) was stirred under H2 in MeOH. After 24 hours, the catalyst was filtered and the solvent concentrated under reduced pressure. Column chromatography [n-hex/EtOAc (9:1 v/v)] of the crude gave 3-thiophen-2-yl-pyrrolidine-1-carboxylic acid tert-butyl ester (138 mg, 93%) as oil. A solution of the above compound (136 mg, 0.537 mmol) was stirred in 30% TFA/DCM (10 mL). After 30 min, the solvents were removed and evaporated with toluene (2×2 mL) to give 3-thiophen-2-yl-pyrrolidine (187 mg) which was used for the next step without further purification. 1H NMR (d6-DMSO, 300 MHz) 2.34-2.46 (m, 1H), 1.89-2.08 (m, 1H), 3.00-3.80 (m, 5H), 7.01 (dd, 1H, J=3.5, 5 Hz), 7.04 (dt, 1H, J=1.2, 3.5 Hz), 7.45 (dd, 1H, J=1.5, 5 Hz), 8.93 (brs, 2H); MS (ESI) m/z=154.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 2.32-2.44 (m, 1H), 1.96-2.13 (m, 1H), 3.43-4.34 (m, 5H), 6.94-7.04 (m, 2H), 7.32 (m, 1H), 7.38 (dd, 0.5H, J=1.8, 3.5 Hz), 7.41 (dd, 0.5H, J=3.5, 5 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 7.84 (t, 0.5H, J=1.8 Hz), 8.19 (brs, 0.5H), 8.21 (brs, 0.5H), 8.55 (m, 1H), 8.12 (s, 0.5H), 8.22 (s, 0.5H); MS (ESI) m/z=466 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 2-fluorophenylboronic acid, Pd(PPh3)4 under standard Suzuki conditions gave 3-(2-fluoro-phenyl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with 30% TFA/DCM to give 3-(2-fluoro-phenyl)-2,5-dihydro-1H-pyrrole. 1H NMR (d6-DMSO, 300 MHz) 4.17 (brs, 2H), 4.38 (brs, 2H), 6.44 (m, 1H), 7.23-7.47 (m, 3H), 7.52 (dt, 1H, J=1.8, 8 Hz), 9.38 (brs, 2H); MS (ESI) m/z=164 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.49 (m, 1H), 4.71 (m, 1H), 4.83 (m, 1H), 5.05 (m, 1H), 6.46 (brs, 1H), 7.14-7.37 (m, 4H), 7.45-7.52 (m, 1H), 7.78 (t, 1H, J=1.8 Hz), 8.16 (d, 1H, J=1.2 Hz), 8.51 (s, 1H), 8.78 (s, 1H); MS (ESI) m/z=476 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 3-thienylboronic acid, Pd(PPh3)4 under standard Suzuki conditions gave 3-thiophen-3-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with 30% TFA/DCM to give 3-thiophen-3-yl-2,5-dihydro-1H-pyrrole. 1H NMR (d6-DMSO, 300 MHz) 4.12 (m, 2H), 4.27 (m, 2H), 6.25 (m, 1H), 7.46 (dd, 1H, J=2.6, 3.8 Hz), 7.62-7.65 (m, 2H), 9.30 (brs, 2H); MS (ESI) m/z=152 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.50 (m, 1H), 4.68 (m, 1H), 4.81 (m, 1H), 4.95 (m, 1H), 6.28-6.34 (m, 1H), 7.27-7.47 (m, 2H), 7.57-7.62 (m, 2H), 7.84-7.86 (m, 1H), 8.20-8.26 (m, 1H), 8.57 (m, 1H), 8.85 (brs, 1H); MS (ESI) m/z=463.9 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 3-fluorophenylboronic acid, Pd(PPh3)4 under standard Suzuki conditions gave 3-(3-fluoro-phenyl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with 30% TFA/DCM to give 3-(3-fluoro-phenyl)-2,5-dihydro-1H-pyrrole. 1H NMR (d6-DMSO, 300 MHz) 4.16 (m, 2H), 4.35 (m, 2H), 6.55 (m, 1H), 7.16-7.50 (m, 4H), 9.36 (brs, 2H); MS (ESI) m/z=164.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.56 (m, 1H), 4.74 (m, 1H), 4.87 (m, 1H), 5.04 (m, 1H), 6.58-6.65 (m, 1H), 7.12-7.64 (m, 5H), 7.84-7.78 (m, 1H), 8.22-8.26 (m, 1H), 8.58 (s, 1H), 8.85 (s, 1H); MS (ESI) m/z=476 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 4-fluorophenylboronic acid, Pd(PPh3)4 under standard Suzuki conditions gave 3-(4-fluoro-phenyl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with 30% TFA/DCM to give 3-(4-fluoro-phenyl)-2,5-dihydro-1H-pyrrole. 1H NMR (d6-DMSO, 300 MHz) 4.15 (m, 2H), 4.34 (m, 2H), 6.41 (m, 1H), 7.22-7.30 (m, 2H), 7.56-7.64 (m, 2H), 9.38 (brs, 2H); MS (ESI) m/z=164 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.53 (m, 1H), 4.73 (m, 1H), 4.85 (m, 1H), 5.02 (m, 1H), 6.48 (m, 1H), 7.20-7.64 (m, 5H), 7.84-7.87 (m, 1H), 8.22-8.26 (m, 1H), 8.57 (s, 1H), 8.85 (s, 1H); MS (ESI) m/z=475.9 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 2-thiazolylzinc bromide, Pd(PPh3)4 under similar Negishi conditions gave 3-thiazol-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with PGP PORTFA/DCM to give 2-(2,5-dihydro-1H-pyrrol-3-yl)-thiazole. 1H NMR (d6-DMSO, 300 MHz) 4.20 (m, 2H), 4.40 (m, 2H), 6.65 (m, 1H), 7.84 (d, 1H, J=3.2 Hz), 7.90 (d, 1H, J=3.2 Hz), 9.47 (brs, 2H); MS (ESI) m/z=153 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.58 (m, 1H), 4.78 (m, 1H), 4.93 (m, 1H), 5.11 (m, 1H), 6.68-6.75 (m, 1H), 7.34 (m, 1H), 7.77 (d, 0.5H, J=3.2 Hz), 7.80 (d, 0.5H, J=3.2 Hz), 7.84-7.87 (m, 1.5H), 7.90 (d, 0.5H, J=3.2 Hz), 8.24 (s, 1H), 8.50 (s, 1H), 8.85 (s, 1H); MS (ESI) m/z=464.9 (MH+).
Similar to the preparation of 3-thiophen-2-yl-2,5-dihydro-1H-pyrrole (Example 322, Step 2 and 3,3-trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester reacted with 3-furanboronic acid, Pd(PPh3)4 under standard Suzuki conditions gave 3-furan-3-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester which was hydrolyzed with 30% TFA/DCM to give 3-furan-3-yl-2,5-dihydro-1H-pyrrole. 1H NMR (d6-DMSO, 300 MHz) 4.08 (m, 2H), 4.15 (m, 2H), 6.13 (brs, 1H), 6.85 (t, 1H, J=1 Hz), 7.73 (t, 1H, J=1.7 Hz), 7.90 (s, 1H), 9.28 (brs, 2H); MS (ESI) m/z=136.3 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 4.47 (m, 1H), 4.57 (m, 1H), 4.77 (m, 1H), 4.82 (m, 1H), 6.18 (t, 0.5H, J=1.8 Hz), 6.20 (t, 0.5H, J=1.8 Hz), 6.79 (dd, 0.5H, J=0.9, 1.8 Hz), 6.82 (dd, 0.5H, J=0.9, 1.8 Hz), 7.34 (m, 1H), 7.58 (s, 0.5H), 7.70-7.73 (m, 1H), 7.85 (m, 1H), 7.92 (s, 0.5H), 8.20-8.25 (m, 1H), 8.57 (d, 1H, J=1.2 Hz), 8.84 (s, 1H); MS (ESI) m/z=447.9 (MH+).
Using similar method as for the preparation of 3-thiophen-2-yl-pyrrolidine (Example 323, Step 1,3-thiazol-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester was reduced followed by acid hydrolysis to give 2-pyrrolidin-3-yl-thiazole. 1H NMR (d6-DMSO, 300 MHz) 8.06-2.18 (m, 1H), 2.37-2.50 (m, 1H), 3.20-4.06 (m, 5H), 7.71 (d, 1H, J=3.2 Hz), 7.78 (d, 1H, J=3.2 Hz), 8.97 (brs, 2H); MS (ESI) m/z=155.3 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 2.12-2.28 (m, 1H), 2.36-2.50 (m, 1H), 3.60-4.10 (m, 4.5H), 4.31 (dd, 0.5H, J=7, 11.4 Hz), 7.33 (m, 1H), 7.64 (d, 0.5H, J=3.2 Hz), 7.68 (d, 0.5H, J=3.2 Hz), 7.74 (d, 0.5H, J=3.2 Hz), 7.77 (d, 0.5H, J=3.2 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 7.84 (t, 0.5H, J=1.4 Hz), 8.18-8.22 (m, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=466.9 (MH+).
Using similar method as for the preparation of 3-thiophen-2-yl-pyrrolidine (Example 323, Step 1,3-furan-3-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester was reduced for 2 days followed by acid hydrolysis to give 3-(tetrahydro-furan-3-yl)-pyrrolidine. 1H NMR (d6-DMSO, 300 MHz) 1.40-2.20 (m, 6H), 3.50-3.80 (m, 4H), 2.60-3.20 (m, 4H), 8.64 (brs, 2H); MS (ESI) m/z=141.9 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) 1.40-2.20 (m, 6H), 3.06-4.06 (m, 8H), 7.32 (dd, 1H, J=0.9, 1.8 Hz), 7.84 (t, 1H, J=1.8 Hz), 8.19 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=454.1 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-pyrrolidin-3-yl-thiazole (Example 330, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiazol-2-yl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 2.15-2.25 (m, 1H), 2.37-2.49 (m, 1H), 3.59-4.10 (m, 4.5H), 4.26 (dd, 0.5H, J=6.5, 10.8 Hz), 7.64 (d, 0.5H, J=3.2 Hz), 7.68 (d, 0.5H, J=3.2 Hz), 7.73 (d, 0.5H, J=3.2 Hz), 7.77 (d, 0.5H, J=3.2 Hz), 8.19 (brs, 1H), 8.39 (s, 2H), 8.75 (s, 1H), 13.15 (s, 1H); MS (ESI) m/z=511.1 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-(2,5-dihydro-1H-pyrrol-3-yl)-thiazole (Example 328, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiazol-2-yl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.58 (m, 1H), 4.77 (m, 1H), 4.88 (m, 1H), 5.07 (m, 1H), 6.69-6.72 (m, 1H), 7.76 (d, 0.5H, J=3.2 Hz), 7.79 (d, 0.5H, J=3.5 Hz), 7.84 (d, 0.5H, J=3.2 Hz), 7.90 (d, 0.5H, J=3.2 Hz), 8.23 (s, 1H), 8.40 (s, 2H), 8.79 (s, 1H); MS (ESI) m/z=509.1 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-thiophen-2-yl-pyrrolidine (Example 323, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiophen-2-yl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 1.96-2.12 (m, 1H), 2.32-2.46 (m, 1H), 3.45-4.26 (m, 5H), 6.94-7.05 (m, 2H), 7.38 (dd, 0.5H, J=1.8, 4.4 Hz), 7.41 (dd, 0.5H, J=1.5, 5 Hz), 8.18 (s, 0.5H), 8.20 (s, 0.5H), 8.39 (brs, 2H), 8.75 (s, 0.5H), 8.76 (s, 0.5H); MS (ESI) m/z=510 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-thiophen-3-yl-2,5-dihydro-1H-pyrrole (Example 325, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiophen-3-yl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.50 (m, 1H), 4.68 (m, 1H), 4.76 (m, 1H), 4.90 (m, 1H), 6.27-6.34 (m, 1H), 7.29 (dd, 0.5H, J=1.5, 2.5 Hz), 7.40 (dd, 0.5H, J=1.5, 5.2 Hz), 7.45 (dd, 0.5H, J=2.5, 4 Hz), 7.56-7.64 (m, 1.5H), 8.20-8.24 (m, 1H), 8.41 (brs, 2H), 8.79 (s, 1H); MS (ESI) m/z=507.9 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-furan-3-yl-2,5-dihydro-1H-pyrrole (Example 329, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-furan-3-yl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.47 (m, 1H), 4.56 (m, 1H), 4.72 (m, 1H), 4.76 (m, 1H), 6.16 (t, 0.5H, J=1.8 Hz), 6.20 (t, 0.5H, J=1.8 Hz), 6.79 (dd, 0.5H, J=0.9, 1.8 Hz), 6.82 (dd, 0.5H, J=0.9, 1.8 Hz), 7.59 (s, 0.5H), 7.70 (t, 0.5H, J=1.7 Hz), 7.71 (t, 0.5H, J=1.7 Hz), 7.92 (s, 0.5H), 8.20-8.24 (m, 1H), 8.40 (s, 2H), 8.78 (s, 1H); MS (ESI) m/z=492 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(3-fluoro-phenyl)-2,5-dihydro-1H-pyrrole (Example 326, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-2,5-dihydro-pyrrol-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.55 (m, 1H), 4.74 (m, 1H), 4.82 (m, 1H), 4.99 (m, 1H), 6.57-6.65 (m, 1H), 7.12-7.50 (m, 4H), 8.25 (m, 1H), 8.41 (brs, 2H), 8.79 (s, 1H); MS (ESI) m/z=520 (MH+).
Under standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-(4-fluoro-phenyl)-2,5-dihydro-1H-pyrrole (Example 327, Step 1) gave [3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-(4-fluoro-phenyl)-2,5-dihydro-pyrrol-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.53 (m, 1H), 4.73 (m, 1H), 4.81 (m, 1H), 4.98 (m, 1H), 6.44-6.50 (m, 1H), 7.20-7.64 (m, 4H), 8.20-8.25 (m, 1H), 8.41 (brs, 2H), 8.79 (s, 1H); MS (ESI) m/z=520 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-(2,5-dihydro-1H-pyrrol-3-yl)-thiazole (Example 328, Step 1,) gave [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiazol-2-yl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.58 (m, 1H), 4.77 (m, 1H), 4.93 (m, 1H), 5.12 (m, 1H), 6.68-6.74 (m, 1H), 7.76 (d, 0.5H, J=3.2 Hz), 7.79 (d, 0.5H, J=3.2 Hz), 7.85 (d, 0.5H, J=3.2 Hz), 7.90 (d, 0.5H, J=3.2 Hz), 8.23 (s, 1H), 8.26 (s, 1H), 8.57 (s, 1H), 8.86 (s, 1H), 13.16 (brs, 1H); MS (ESI) m/z=465 (MH+).
Under standard HATU coupling conditions, 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 2-(2,5-dihydro-1H-pyrrol-3-yl)-thiazole (Example 328, Step 1,) gave [6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiazol-2-yl-2,5-dihydro-pyrrol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 4.57 (m, 1H), 4.77 (m, 1H), 5.07 (m, 1H), 5.26 (m, 1H), 6.68-6.78 (m, 1H), 7.78 (d, 0.5H, J=3.2 Hz), 7.79 (d, 0.5H, J=3.2 Hz), 7.88 (d, 0.5H, J=3.2 Hz), 7.89 (d, 0.5H, J=3.2 Hz), 8.04 (s, 1H), 8.11 (s, 1H), 8.41 (s, 1H), 8.50 (s, 1H), 9.16 (s, 1H), 13.13 (brs, 1H); MS (ESI) m/z=431 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-thiophen-2-yl-pyrrolidine (Example 323, Step 1) gave [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-(3-thiophen-2-yl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 1.96 (m, 1H), 2.30-2.45 (m, 1H), 3.46-4.34 (m, 5H), 6.94-7.05 (m, 2H), 7.38 (dd, 0.5H, J=1.8, 4.4 Hz), 7.41 (dd, 0.5H, J=1.5, 5 Hz), 8.19 (s, 0.5H), 8.20 (s, 0.5H), 8.24 (s, 1H), 8.56 (s, 1H), 8.82 (s, 0.5H), 8.83 (s, 0.5H), 13.16 (s, 1H); MS (ESI) m/z=466 (MH+).
Prepared using experimental procedure described in Example 322 (compound 422). 1H NMR (d6-DMSO, 300 MHz) 8.76 (s, 1H), 8.39 (s, 1H), 8.20 (br s, 1H), 7.52 (t, 1H, J=3 Hz), 7.19 (d, 1H, J=6 Hz), 7.06 (m, 1H), 6.99 (d, 1H, J=7 Hz), 6.19 (d, 1H, J=8 Hz), 4.98 (br s, 1H), 4.75 (br s, 1H), 4.68 (br s, 1H), 4.48 (br s, 1H); MS (ESI) m/z 508 (MH+).
Prepared using experimental procedure described in Example 322 (compound 422). 1H NMR (d6-DMSO, 300 MHz) 8.84 s, 1H), 8.40 (d, 2H, J=2 Hz), 8.20 (m, 1H), 7.52 (m, 1H), 7.19 (d, 1H, J=3 Hz), 7.07 (m, 1H), 6.99 (m, 1H), 6.19 (m, 1H), 5.02 (br s, 1H), 4.81 (br s, 1H), 4.68 (br s, 1H), 4.48 (br s, 1H); MS (ESI) m/z 464 (MH+).
3-Trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester, (0.12 g 0.38 mmol) was combined with 2-(tributylstannyl) furan (0.36 mL, 1.1 mmol) in THF (3 mL). To this solution was added Pd(PPh3)4 (43.9 mg, 0.036 mmol) and reaction mixture was stirred at 60° C. for 45 minutes. All the solids were filtered out and the resulting filtrate was concentrated to yield crude product. The crude was purified using silica gel chromatography [n-hexane/EtOAc (10:1 v/v)] to give 3-furan-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (0.042 g, 47.2%). MS (ESI) m/z 236 (MH+).
3-Furan-2-yl-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (42 mg) was stirred in CH2Cl2/TFA (3:1 v/v, 4 mL) at room temperature. After 1 hour, the mixture was evaporated to dryness. The material was used without further purification in the next step as a TFA salt. MS (ESI) m/z 218 (MH+).
3-Chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (295 mg, 0.89 mmol) was combined with 3-furan-2-yl-2.5-dihydro-1H-pyrrole TFA salt, (252 mg, 0.89 mmol) in DMF (4 mL). To this suspension was added HATU (340 mg, 0.89 mmol) followed by N,N-diisopropylethylamine (0.8 mL, 4.5 mmol). Reaction mixture was stirred at room temperature for 30 minutes. It was diluted with EtOAc, and extracted using saturated aqueous NaHCO3. The organic phase was separated, washed with H2O, dried (MgSO4), filtered and concentrated. The crude was purified using reverse phase HPLC. 1H NMR (d6-DMSO, 300 MHz) 8.84s, 1H), 8.20 (br s, 1H), 7.71 (m, 1H), 6.60 (d, 0.5H, J=3 Hz), 6.53 (m, 1H), 6.33 (d, 0.5H, J=3 Hz), 6.18 (br s, 1H), 4.92 (br s, 1H), 4.83 (br s, 1H), 4.60 (br s, 1H), 4.50 (br s, 1H); MS (ESI) m/z 448 (MH+).
Prepared using experimental procedure described in Example 344 (compound 444). 1H NMR (d6-DMSO, 300 MHz) 9.15 (br s, 1H), 9.11 (br s, 0.5H), 8.84 (s, 1H), 8.40 (s, 2H), 8.21 (br s, 1H), 7.82 (d, 1H, J=1 Hz), 7.55 (d, 0.5H, J=2 Hz), 6.49 (br s, 1H), 4.98 (br s, 1H), 4.85 (br s, 1H), 4.71 (br s, 1H), 4.52 (br s, 1H); MS (ESI) m/z 465 (MH+).
Using similar method as for the preparation of (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (Example 153, compound 253), 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid was coupled to 3-(3-fluorophenyl)pyrrolidine followed by Suzuki reaction with furan-3-boronic acid to give (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-(3-fluoro-phenyl)-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 2.00-2.36 (m, 2H), 3.40-4.10 (m, 4.5H), 4.19 (dd, 0.5H, J=7.6, 11.1 Hz), 7.00-7.42 (m, 5H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H), J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (t, 0.5H, J=1.2 Hz), 8.54 (t, 0.5H, J=1.2 Hz), 8.72 (s, 0.5H), 8.74 (s, 0.5H); MS (ESI) m/z=522 (MH+).
Prepared similarly to ((3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-(3-fluoro-phenyl)-pyrrolidin-1-yl)-methanone (compound 446) with the use of 4-pyrazoleboronic acid pinacol ester for the Suzuki reaction. 1H NMR (d6-DMSO, 300 MHz) 2.00-2.40 (m, 2H), 3.40-4.10 (m, 4.5H), 4.20 (dd, 0.5H, J=7.3, 10.8 Hz), 7.00-7.42 (m, 5H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.22 (s, 1H), 8.53 (s, 1H), 8.73 (s, 0.5H), 8.75 (s, 0.5H), 13.14 (brs, 1H); MS (ESI) m/z=524.1 (MH+).
Using similar method as for the preparation of (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(4-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (Example 153, compound 253), 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid was coupled to 3-(2-fluorophenyl)pyrrolidine followed by Suzuki reaction with furan-3-boronic acid to give ((3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-2-fluoro-phenyl)-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 2.04-2.36 (m, 2H), 3.48-4.08 (m, 4.5H), 4.22 (dd, 0.5H, J=6.5, 10.3 Hz), 7.12-7.46 (m, 5H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H), J==1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.52 (s, 0.5H), 8.54 (s, 0.5H), 8.72 (s, 0.5H), 8.74 (s, 0.5H); MS (ESI) m/z=524 (MH+).
Prepared similar to (3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-(2-fluoro-phenyl)-pyrrolidin-1-yl)-methanone (compound 448) with the use of 4-pyrazoleboronic acid pinacol ester for the Suzuki reaction. 1H NMR (d6-DMSO, 300 MHz) 2.04-2.36 (m, 2H), 3.48-4.08 (m, 4.5H), 4.23 (dd, 0.5H, J=6.7, 11.4 Hz), 7.10-7.46 (m, 4H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.22 (brs, 1H), 8.53 (brs, 1H), 8.73 (s, 0.5H), 8.75 (s, 0.5H), 13.12 (brs, 1H); MS (ESI) m/z=524 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 2.23-2.40 (m, 2H), 3.42-4.13 (m, 4.5H), 4.27 (dd, 0.5H, J=7, 11.1 Hz), 7.30 (m, 1H), 7.54 (q, 1H, J=7.9 Hz), 7.65-7.87 (m, 4H), 8.17 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=485.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.98-2.36 (m, 2H), 3.40-4.12 (m, 4.5H), 3.73 (s, 1.5H), 3.75 (s, 1.5H), 4.26 (dd, 0.5H, J=7, 10.8 Hz), 6.76-6.94 (m, 3H), 7.24 (q, 1H, J=8.2 Hz), 7.30 (dd, 0.5H, J=0.9, 2.0 Hz), 7.31 (dd, 0.5H, J=0.9, 2.0 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.54 (s, 0.5H), 8.79 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=490.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 2.00-2.42 (m, 2H), 3.46-4.13 (m, 4.5H), 3.84 (s, 1.5H), 3.86 (s, 1.5H), 4.31 (dd, 0.5H, J=7, 11.1 Hz), 7.30 (dd, 0.5H, J=0.6, 1.8 Hz), 7.31 (dd, 0.5H, J=0.6, 1.8 Hz), 7.49 (q, 1H, J=8 Hz), 7.61 (brd, 0.5H, J=7.9 Hz), 7.67 (brd, 0.5H, J=7.9 Hz), 7.80-7.92 (m, 3H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=518.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 2.10-2.50 (m, 2H), 3.50-4.18 (m, 4.5H), 4.32 (dd, 0.5H, J=7, 10.8 Hz), 7.32 (m, 1H), 7.82-7.93 (m, 2H), 8.18 (s, 0.5H), 8.21 (s, 0.5H), 8.35 (brd, 0.5H, J=8.2 Hz), 8.45 (brd, 0.5H, J=8.2 Hz), 8.54 (s, 0.5H), 8.56 (s, 0.5H), 8.65-8.88 (m, 3H); MS (ESI) m/z=461.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 2.08-2.50 (m, 2H), 3.50-4.20 (m, 4.5H), 4.34 (dd, 0.5H, J=7, 10.8 Hz), 7.32 (m, 1H), 7.83 (q, 1H, J=1.7 Hz), 7.88 (s, 0.5H), 7.90 (s, 0.5H), 7.96 (s, 0.5H), 7.98 (s, 0.5H), 8.19 (s, 0.5H), 8.21 (s, 0.5H), 8.55 (s, 0.5H), 8.56 (s, 0.5H), 8.77-8.85 (m, 3H); MS (ESI) m/z=461.1 (MH+).
Saponification of 3-(1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl)-benzoic acid methyl ester (compound 452) using lithium hydroxide gave 3-(1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl)-benzoic acid (compound 455) 1H NMR (d6-DMSO, 300 MHz) 2.00-2.42 (m, 2H), 3.44-4.12 (m, 4.5H), 4.30 (dd, 0.5H, J=7.3, 11.1 Hz), 7.30 (dd, 0.5H, J=0.6, 1.8 Hz), 7.32 (dd, 0.5H, J=0.6, 1.8 Hz), 7.46 (q, 1H, J=7.9 Hz), 7.57 (brd, 0.5H, J=7.9 Hz), 7.63 (brd, 0.5H, J=7.9 Hz), 7.78-7.92 (m, 3H), 8.17 (s, 0.5H), 8.20 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=504.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.30 (s, 4.5H), 1.34 (s, 4.5H), 3.30-4.37 (m, 6H), 7.20-7.40 (m, 7H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=575.2 (MH+).
To a solution of (1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidin-3-yl)-carbamic acid tert-butyl ester (333 mg, 0.5791 mmol) in CH2Cl2 (10 mL) was added 2M HCl in Et2O (5 mL). After 2.5 hours, 2M HCl in Et2O (5 mL) was added and the mixture was stirred overnight. The white precipitate was filtered and dried under high vacuum to give 3-amino-4-phenyl-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (285 mg, 96%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 3.58-4.48 (m, 6H), 7.30-7.44 (m, 6H), 7.83 (t, 0.5H, J=1.8 Hz), 7.84 (t, 0.5H, J=1.8 Hz), 8.18 (s, 0.5H), 8.23 (s, 0.5H), 8.42 (brs, 3H), 8.54 (s, 0.5H), 8.57 (s, 0.5H), 8.81 (s, 0.5H), 8.85 (s, 0.5H); MS (ESI) m/z=475.1 (MH+).
To a solution of (3-amino-4-phenyl-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (50 mg, 0.09778 mmol) in DMF (1 mL) was added N,N-diisopropylethylamine (85 μL, 0.4889 mmol), and methanesulfonyl chloride (11.4 μL, 0.1467 mmol). After 1 hour, the mixture was diluted with EtOAc (20 mL), and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude material gave N-(-1-(3-cloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidin-3-yl)-methanesulfonamide (compound 458) (33.8 mg, 63%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 2.47 (s, 1.5H), 2.62 (s, 1.5H), 3.32 (m, 0.5H), 3.60 (t, 0.5H, J=11 Hz), 3.73 (dd, 0.5H, J=9.1, 11.4 Hz), 4.02-4.24 (m, 2H), 4.32 (dd, 0.5H, J=7.6, 11.4 Hz), 4.39 (dd, 0.5H, J=7.6, 11.4 Hz), 7.24-7.46 (m, 6H), 7.65 (d, 0.5H, J=8.2 Hz), 7.69 (d, 0.5H, J=8.5 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.17 (s, 0.5H), 8.21 (s, 0.5H), 8.53 (s, 0.5H), 8.56 (s, 0.5H), 8.80 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=553.1 (MH+).
To a solution of (3-amino-4-phenyl-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (50 mg, 0.09778 mmol) in DMF (1 mL) was added N,N-diisopropylethylamine (85 μL, 0.4889 mmol), and acetic anhydride (13.9 μL, 0.1467 mmol). After 1 hour, the mixture was diluted with EtOAc (20 mL), and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude material gave N-(-1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-4-phenyl-pyrrolidin-3-yl)-acetamide (compound 459) (40.8 mg, 90%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 1.74 (s, 1.5H), 1.80 (s, 1.5H), 3.30-4.60 (m, 6H), 7.20-7.40 (m, 6H), 7.82 (t, 0.5H, J=1.5 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.17-8.26 (m, 2H), 8.54 (s, 0.5H), 8.55 (s, 0.5H), 8.81 (s, 1H); MS (ESI) m/z=517.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.98-2.38 (m, 2H), 3.40-4.12 (m, 4.5H), 4.26 (dd, 0.5H, J=7.6, 11.4 Hz), 7.25-7.44 (m, 5H), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.17 (s, 0.5H), 8.19 (s, 0.5H), 8.54 (s, 0.5H), 8.55 (s, 0.5H), 8.80 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=494 (MH+).
Under standard HATU coupling conditions, 3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid and 3-phenylpyrrolidine gave (3,6-dibromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-pyrrolidin-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 2.00-2.36 (m, 2H), 3.40-4.06 (m, 4.5H), 4.13 (dd, 0.5H, J=7.6, 10.8 Hz), 7.18-7.36 (m, 5H), 8.04 (m, 0.5H), 8.08 (m, 0.5H), 8.88 (d, 0.5H, J=0.9 Hz), 8.90 (d, 0.5H, J=1 Hz); MS (ESI) m/z=517.9 (MH+).
(3-Bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-pyrrolidin-1-yl)-methanone was prepared similar to ((3-bromo-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-(2-fluoro-phenyl)-pyrrolidin-1-yl)-methanone (compound 448) with the use of 4-pyrazoleboronic acid pinacol ester for the Suzuki reaction. 1H NMR (d6-DMSO, 300 MHz) 1.98-2.36 (m, 2H), 3.40-4.08 (m, 4.5H), 4.20 (dd, 0.5H, J=7.3, 10.8 Hz), 7.18-7.36 (m, 5H), 8.18 (brd, 1H, J=9.4 Hz), 8.21 (brd, 1H, J=5.3 Hz), 8.54 (s, 0.5H), 8.55 (s, 0.5H), 8.73 (s, 0.5H), 8.76 (s, 0.5H), 13.15 (brs, 1H); MS (ESI) m/z=504 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.96-2.12 (m, 1H), 2.24-2.40 (m, 1H), 3.40-4.12 (m, 4.5H), 4.27 (dd, 0.5H, J=7.0, 11.4 Hz), 7.04-7.42 (m, 5H), 7.82-7.84 (m, 1H), 8.18 (s, 0.5H), 8.21 (s, 0.5H), 8.54 (s, 0.5H), 8.56 (s, 0.5H), 8.81 (s, 0.5H), 8.82 (s, 0.5H); MS (ESI) m/z=475.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 2.02-2.30 (m, 1H), 2.24-2.40 (m, 1H), 3.66-3.90 (m, 3.5H), 3.76 (s, 1.5H), 3.83 (s, 1.5H), 3.96-4.08 (m, 1H), 4.20-4.32 (0.5H), 6.80-7.25 (m, 2H), 7.18-7.27 (m, 2H), 7.30 (dd, 0.5H, J=0.8, 2 Hz), 7.32 (dd, 0.5H, J=0.8, 2 Hz), 7.82 (t, 0.5H, J=1.8 Hz), 7.83 (t, 0.5H, J=1.8 Hz), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.53 (s, 0.5H), 8.55 (s, 0.5H), 8.79 (s, 0.5H), 8.81 (s, 0.5H); MS (ESI) m/z=490.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.80-2.24 (m, 1H), 2.24-2.38 (m, 1H), 3.38-4.42 (m, 4.5H), 4.26 (dd, 0.5H, J=7, 11.4 Hz), 7.18-7.36 (m, 5H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.38 (s, 1H), 8.39 (s, 1H), 8.81 (brs, 0.5H), 8.82 (brs, 0.5H); MS (ESI) m/z=460 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.98-2.14 (m, 1H), 2.24-2.36 (m, 1H), 3.40-4.12 (m, 4.5H), 4.27 (dd, 0.5H, J=7.3, 11.1 Hz), 7.18-7.38 (m, 5H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.23 (brs, 1H), 8.54 (brs, 1H), 8.81 (brs, 0.5H), 8.83 (brs, 0.5H), 13.14 (s, 1H); MS (ESI) m/z=460 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.98-2.14 (m, 1H), 2.24-2.36 (m, 1H), 3.40-4.12 (m, 4.5H), 4.27 (dd, 0.5H, J=7.3, 11.1 Hz), 7.18-7.38 (m, 5H), 8.16 (s, 0.5H), 8.19 (s, 0.5H), 8.23 (brs, 1H), 8.54 (brs, 1H), 8.81 (brs, 0.5H), 8.83 (brs, 0.5H), 13.14 (s, 1H); MS (ESI) m/z=460 (MH+).
Prepared using standard HATU coupling and isolated as hydrochloride salt. 1H NMR (d6-DMSO, 300 MHz) 2.20-2.48 (m, 2H), 3.60-4.16 (m, 4.5H), 4.29 (dd, 0.5H, J=7.3, 11 Hz), 7.31 (dd, 0.5H, J=0.8, 1.8 Hz), 7.32 (dd, 0.5H, J=0.8, 1.8 Hz), 7.56-7.86 (m, 3H), 8.10-8.28 (m, 2H), 8.54 (s, 0.5H), 8.56 (s, 0.5H), 8.67 (brd, 0.5H, J=4 Hz), 8.73 (brd, 0.5H, J=4.4 Hz), 8.81 (brs, 0.5H), 8.82 (brs, 0.5H); MS (ESI) m/z=461.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 4-bromo-2-(5-furan-3-yl-3,4-dihydro
-2H-pyrazol-3-yl)-phenol gave [5-(5-bromo-2-hydroxy-phenyl)-3-furan-3-yl-4,5-dihydro-pyrazol-1-yl]-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 3.07 (dd, 1H, J=4.7, 17.5 Hz), 3.87 (dd, 1H, J=11.5, 17.5 Hz), 5.82 (dd, 1H, J=4.7, 11.5 Hz), 6.61 (dd, 1H, J=1.8, 3.5 Hz), 6.86 (d, 1H, J=8.5 Hz), 6.99 (d, 1H, J=3.2 Hz), 7.21 (d, 1H, J=2.3 Hz), 7.29 (dd, 1H, J=2.3, 8.5 Hz), 7.34 (d, 1H, J=1.5 Hz), 7.81 (d, 1H, J=1.2 Hz), 7.84 (t, 1H, J=1.5 Hz), 8.21 (s, 1H), 8.57 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H); MS (ESI) m/z=619 (MH+).
A mixture of (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (Compound 334, 210 mg, 0.302 mmol) and Lawesson's reagent (122 mg, 0.302 mmol) was heated in THF (2.5 mL) for 1.5 hr. The solvent was concentrated under vacuo and the crude material chromatographed [n-hex/EtOAc (5:1 v/v)] to give (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanethione (110 mg, 74%) as a yellow solid.
To a solution of the above intermediate (64 mg, 0.130 mmol) and nickel(II) chloride hexahydrate (77 mg, 0.324 mmol) in THF (7 mL) and MeOH (7 mL) at 0° C. was added sodium borohydride (36.8 mg, 0.972 mmol) in one portion. After 20 min, black precipitate was filtered and washed with MeOH. The filtrate was concentrated and the crude material was chromatographed [CHCl3/MeOH (95:5 v/v)] to give 2-[3-(3-fluoro-phenyl)-pyrrolidin-1-ylmethyl]-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine which was converted to the HCl salt (44.5 mg, 80%) isolated as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 1.93-2.48 (m, 2H), 3.30-3.86 (m, 5H), 4.64 (s, 2H), 7.04-7.42 (m, 5H), 7.82 (t, 1H, J=1.8 Hz), 8.08 (s, 1H), 8.31 (s, 0.5H), 8.33 (s, 0.5H), 8.43 (s, 1H), 9.27 (s, 1H), 11.45 (brs, 0.5H), 11.64 (brs, 0.5H); MS (ESI) m/z=430.1 (MH+).
To a solution of 1-Boc-pyrrolidine-3-carboxylic acid (215.3 mg, 1 mmol) in DMF (5 mL) was added N,N-diisopropylethylamine (0.61 mL, 3.5 mmol), HATU (380.2 mg, 1 mmol) and N-hydroxyacetamidine (81.5 mg, 1.1 mmol). After 3 hours, the mixture was diluted with DMF (15 mL) and the mixture was subjected to heating at 120° C. under microwave conditions for 30 min. The solvent was concentrated and diluted with EtOAc (50 mL) and washed with saturated aqueous NaHCO3 (25 mL), then brine (25 mL). The filtrate was diluted with n-hex (50 mL), passed through a short pad of silica gel, and washed with n-hex/EtOAc (1:1 v/v). The solvents was concentrated to give 3-(3-methyl-[1,2,4]oxadiazol-5-yl)-pyrrolidine-1-carboxylic acid tert-butyl ester as a yellow oil (192 mg). To a solution of the above compound in CH2Cl2 (4 mL) was added 4M HCl in dioxane (3 mL). After 1.5 hours, the solvent was concentrated under vacuo to give 3-methyl-5-pyrrolidin-3-yl-[1,2,4]oxadiazole hydrochloride (149 mg) as a beige solid. 1H NMR (d6-DMSO, 300 MHz) 2.10-2.25 (m, 1H), 2.34 (s, 3H), 2.32-2.50 (m, 1H), 3.20-3.35 (m, 2H), 3.43 (dd, 1H, J=7, 11.7 Hz), (dd, 1H, J=8.2, 11.7 Hz), 3.92 (p, 1H, J=7.9 Hz), 9.35 (brs, 2H).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-methyl-5-pyrrolidin-3-yl-[1,2,4]oxadiazole hydrochloride (prepared as shown in step 1) gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-methyl-[1,2,4]oxadiazol-5-yl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) 2.18-2.28 (m, 1H), 2.31 (s, 1.5H), 2.34 (s, 1.5H), 2.35-2.48 (m, 1H), 3.60-4.14 (m, 4.5H), 4.31 (dd, 0.5H, J=7.3, 11.4 Hz), 7.32 (d, 1H, J=1.8 Hz), 7.83 (t, 1H, J=1.8 Hz), 8.20 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=466.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-methyl-5-pyrrolidin-3-yl-[1,2,4]oxadiazole hydrochloride gave [3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-methyl-[1,2,4]oxadiazol-5-yl)-pyrrolidin-1-yl]-methanone. 1H NMR (d6-DMSO, 300 MHz) δ 2.18-2.30 (m, 1H), 2.31 (s, 1.5H), 2.34 (s, 1.5H), 2.37-2.47 (m, 1H), 3.64-4.14 (m, 4.5H), 4.31 (dd, 0.5H, J=7.3, 11.7 Hz), 8.19 (s, 1H), 8.24 (s, 1H), 8.55 (s, 1H), 8.82 (s, 1H), 13.15 (s, 1H); MS (ESI) m/z=466.1 (MH+).
To a solution of hydrazine monohydrate (1.24 mL, 25.6 mmol) in MeOH (45 mL) was added a solution of 3-chloropropiophenone (1.08 g, 6.4 mmol) in MeOH (20 mL) over 10 min. After 6 days, the solvent was concentrated and the crude material purified by RP-HPLC (0-60% ACN gradient) to give 3-phenyl-4,5-dihydro-1H-pyrazole (405 mg) as a yellow solid. 1H NMR (d6-DMSO, 300 MHz) 3.42-3.50 (m, 2H), 3.58-3.66 (m, 2H), 7.49-7.62 (m, 3H), 7.82-7.86 (m, 2H); MS (ESI) m/z=147.1 (MH+).
Under standard HATU coupling conditions, 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid, and 3-phenyl-4,5-dihydro-1H-pyrazole (prepared as shown in step 1) gave (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenyl-4,5-dihydro-pyrazol-1-yl)-methanone. 1H NMR (d6-DMSO, 300 MHz) 3.41 (t, 2H, J=9.5 Hz), 4.18 (t, 2H, J=9.5 Hz), 7.33 (d, 0.5H, J=0.8 Hz), 7.34 (d, 0.5H, J=0.6 Hz), 7.38-7.50 (m, 3H), 7.68-7.73 (m, 2H), 7.85 (t, 1H, J=1.7 Hz), 8.21 (s, 1H), 8.57 (s, 1H), 8.66 (s, 1H); MS (ESI) m/z=459 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 1.36 (s, 4.5H), 1.41 (s, 4.5H), 2.00-2.12 (m, 1H), 1.76-1.90 (m, 1H), 3.36-4.10 (m, 5H), 7.24 (m, 1H), 7.32 (m, 1H), 7.84 (t, 1H, J=1.7 Hz), 8.20 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=499.1 (MH+).
To a solution of [1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl]-carbamic acid tert-butyl ester (0.27 g, 0.541 mmol) in CH2Cl2 (15 mL) was added 4M HCl in dioxane (5 mL). After 4 hours, the precipitate was filtered and dried under high vacuum to give (3-amino-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (210 mg, 89%) as a light yellow powder. 1H NMR (d6-DMSO, 300 MHz) 2.18-2.32 (m, 1H), 1.94-2.12 (m, 1H), 3.60-4.21 (m, 5H), 7.33 (m, 1H), 7.85 (t, 1H, J=1.8 Hz), 8.22 (brs, 4H), 8.56 (d, 1H, J=0.9 Hz), 8.84 (s, 1H); MS (ESI) m/z=399 (MH+).
To a solution of (3-amino-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (compound 479, 50 mg, 0.115 mmol) in DMF (0.8 mL) was added N,N-diisopropylethylamine (80 μL, 0.459 mmol) and methanesulfonyl chloride (10.7 μL, 0.137 mmol). After 30 min, methanesulfonyl chloride (10 μL) was added. After 15 min, the mixture was diluted with EtOAc (20 mL) was washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [CH2Cl2/MeOH (97:3 v/v)] of the crude gave N-[1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl]-methanesulfonamide (40.6 mg, 74%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 1.82-2.00 (m, 1H), 2.11-2.24 (m, 1H), 2.93 (s, 1.5H), 2.99 (s, 1.5H), 3.42-4.10 (m, 5H), 7.32 (d, 1H, J=1.7 Hz), 7.45 (dd, 1H, J=4.1, 6.2 Hz), 7.84 (t, 1H, J=1.7 Hz), 8.20 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=477 (MH+).
To a solution of (3-amino-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (compound 479, 50 mg, 0.115 mmol) in DMF (0.8 mL) was added N,N-diisopropylethylamine (80 L, 0.459 mmol) and acetic anhydride (13 L, 0.138 mmol). After 30 min, the mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [CH2Cl2/MeOH (95:5 v/v)] of the crude gave N-[1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl]-acetamide (39.5 mg, 78%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 1.78 (s, 1.5H), 1.83 (s, 1.5H), 1.76-1.90 (m, 1H), 2.02-2.16 (m, 1H), 3.34-4.02 (m, 4H), 4.22-4.32 (m, 1H), 7.32 (m, 1H), 7.84 (t, 1H, J=1.8 Hz), 8.14 (d, 1H, J=6.7 Hz), 8.20 (s, 1H), 8.55 (d, 1H, J=0.6 Hz), 8.81 (brs, 1H); MS (ESI) m/z=441 (MH+).
Using similar method as for the preparation of compound 481, acylation of (3-amino-pyrrolidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride compound 479) with cyclopropanecarboxylic acid gave cyclopropanecarboxylic acid [1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl]-amide as a white powder. 1H NMR (d6-DMSO, 300 MHz) 0.60-0.73 (m, 4H), 1.48-1.62 (m, 1H), 1.76-1.92 (m, 1H), 2.04-2.16 (m, 1H), 3.36-4.02 (m, 4H), 4.24-4.36 (m, 1H), 7.31 (m, 1H), 7.84 (m, 1H), 8.20 (m, 1H), 8.36 (d, 0.5H, J=6.7 Hz), 8.41 (d, 0.5H, J=6.5 Hz), 8.55 (s, 1H), 8.81 (brs, 0.51H), 8.81 (brs, 0.5H); MS (ESI) m/z=467 (MH+).
To a solution of 2-amino-1-phenylethanol (1 g, 7.29 mmol) in CH2Cl2 (75 mL) was added imidazole (248 mg, 3.64 mmol) followed by N,N-carbonyldiimidazole (1.241 g, 7.65 mmol). After 3 days, the mixture was washed with aqueous hydrochloride (1N, 2×50 mL). The extracts was filtered through a pad of silica gel and washed with EtOAc (200 mL). Concentration of the solvent gave 5-phenyl-oxazolidin-2-one (1.026 g, 86%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 3.33 (ddd, 1H, J=0.8, 7, 8.8 Hz), 3.88 (dt, 1H, J=0.6, 8.8 Hz), 5.59 (dd, 1H, J=7.3, 8.5 Hz), 7.33-7.46 (m, 5H), 7.68 (s, 1H); MS (ESI) m/z=164.1 (MH+).
To a solution of 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (500 mg, 1.688 mmol) in THF (20 mL) at 0° C. was added a solution of borane tetrahydrofuran complex (1M in THF, 5.1 mL, 5.06 mmol). After 10 min, the ice-water bath was removed and the mixture was allowed to stir at room temperature for 9 hours. Water was added slowly to quench the reaction which was then diluted with EtOAc (100 mL). The organic layer was washed with saturated aqueous solution of NaHCO3 (20 mL), then brine (20 mL). The organic layer was filtered through a pad of silica gel and the solvent was concentrated under vacuo to give (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanol (272 mg, 57%) as a solid. 1H NMR (d6-DMSO, 300 MHz) 4.63 (d, 2H, J=5.3 Hz), 5.33 (t, 1H, J=5.3 Hz), 7.07 (dd, 1H, J=0.8, 2 Hz), 7.82 (t, 1H, J=1.8 Hz), 7.90 (s, 1H), 7.95 (s, 1H), 8.38 (s, 1H), 9.12 (s, 1H); MS (ESI) m/z=283.1 (MH+).
To a solution of (6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanol (270 mg, 0.957 mmol) in DMF (5 mL) at 0° C. was added N,N-diisopropylethylamine (0.5 mL, 2.87 mmol) followed by dropwise addition of methanesulfonyl chloride (81.8 μL, 1.05 mmol). After 1 hour, the mixture was diluted with EtOAc (50 mL) and washed with saturated aqueous solution of NH4Cl (25 mL), then brine (20 mL). The extracts were dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (5:4 v/v)] of the crude product gave methanesulfonic acid 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl ester (164 mg, 48%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 3.28 (s, 3H), 5.43 (s, 2H), 7.04 (dd, 1H, J=0.9, 1.7 Hz), 7.83 (t, 1H, J=1.7 Hz), 8.07 (s, 1H), 8.20 (s, 1H), 8.42 (s, 1H), 9.17 (s, 1H); MS (ESI) m/z=361 (MH+).
To a solution of 5-phenyl-oxazolidin-2-one (34 mg, 0.208 mmol) in DMF (1.5 mL) at 0° C. was added NaH (60%, 6 mg, 0.222 mmol). After 10 min, methanesulfonic acid 6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl ester (50 mg, 0.139 mmol) was added in one portion. After 80 min, water (10 mL) was added and the mixture was diluted with EtOAc (20 mL). The organic phase was separated, dried (Na2SO4), filtered and concentrated. The crude material was purified by RP-HPLC (20-99% ACN gradient) and further purified by silica gel chromatography [EtOAc/n-hex (3:2 v/v) followed by EtOAc/n-hex (2:1 v/v)] to give 3-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-ylmethyl)-5-phenyl-oxazolidin-2-one (15.1 mg, 25%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 3.55 (dd, 1H, J=7.3, 9.1 Hz), 4.02 (t, 1H, J=8.8 Hz), 4.57 (d, 1H, J=15.5 Hz), 4.63 (d, 1H, J=15.5 Hz), 5.59 (dd, 1H, J=7.3, 8.8 Hz), 7.03 (dd, 1H, J=0.9, 1.8 Hz), 7.34-7.46 (m, 5H), 7.82 (t, 1H, J=1.8 Hz), 8.00 (s, 1H), 8.02 (s, 1H), 8.39 (s, 1H), 9.11 (s, 1H); MS (ESI) m/z=428.2 (MH+).
DMF (155 mL) was added under argon to a mixture of 6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (5 g, 15.47 mmol), 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrazole-1-carboxylic acid tert-butyl ester (22.75 g, 77.40 mmol), tetrakis(triphenylphosphine)palladium(0) (1.79 g, 1.55 mmol), and cesium carbonate (50.4 g, 155 mmol) and reaction was heated to 80° C. for 20 min. After cooling in a water bath, the solvent was removed in-vacuo. To the resulting residue was added H2O and diethyl ether and sample was sonicated for 30 min. The precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 6-(1-tert-butoxycarbonyl-1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (5.61 g, 90%) as a beige solid. MS (ESI) m/z=410.9 (MH+).
To a solution of 6-(1-tert-butoxycarbonyl-1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (3.34 g, 8.14 mmol) in THF and DMF (5:1 v/v, 97 mL) at room temperature was added aqueous NaOH solution (1 M, 32 mL). After 4 hours, the pH was adjusted to 4 with aqueous citric acid (1 M). The residual THF was removed and the resulting precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.24 g, 93%) as a beige solid. MS (ESI) m/z=297.0 (MH+).
N-iodosuccinimide (5.11 g, 22.7 mmol) was added in 9 portions to a solution of 6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.242 g, 7.57 mmol) in DMF (76 mL) at room temperature. After 24 hours, the reaction was quenched with 5% aqueous NaHSO3. The precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 3-iodo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (2.312 g, 72%) as a beige solid. MS (ESI) m/z=423.1 (MH+).
DMF (14 mL) was added to a mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.50 g, 1.40 mmol), 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrazole-1-carboxylic acid tert-butyl ester (2.06 g, 7.0 mmol), tetrakis(triphenylphosphine)palladium(0) (0.162 g, 0.14 mmol), and saturated aqueous NaHCO3 (1.9 mL) and the reaction was heated at 120° C. for 20 min under microwave conditions. The solvent was removed in-vacuo, and to the resulting residue was added H2O and diethyl ether and sample was sonicated for 30 min. The precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 3,6-bis-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (819 mgs, 85%) as a brown solid. MS (ESI) m/z=377.0 (MH+).
An aqueous solution of NaOH (1M, 4.4 mL) was added slowly to a suspension of 3,6-bis-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (819 mg, 2.3 mmol) in THF (24 mL) at room temperature. After stirring over night, the pH was adjusted to 4 with aqueous citric acid (1M). The resulting precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 3,6-bis-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (622 mg, 72%) as a beige solid. MS (ESI) m/z=363.0 (MH+).
Prepared using standard HATU coupling conditions. 1H NMR (d6-DMSO, 300 MHz) 4.63 (d, 2H, J=6.2, Hz), 6.94-6.96 (m, 1H), 7.02-7.03 (m, 1H), 8.11 (s, 1H), 8.17 (broad s, 4H), 8.59 (s, 2H), 8.69 (t, 1H, J=6.7 Hz); MS (ESI) m/z=458.1 (MH+).
Prepared using standard HATU coupling conditions. 1H NMR (d6-DMSO, 300 MHz) 1.97-2.07 (m, 1H), 2.20-2.33 (m, 1H), 3.37-3.79 (m, 4H), 3.93-4.05 (m, 1H), 7.01-7.22 (m, 3H), 7.28-7.41 (m, 1H), 8.07 (d, 1H, J=7.0 Hz), 8.18 (s, 2H), 8.28 (s, 2H), 8.63 (d, 1H, J=4.4 Hz); MS (ESI) m/z=510.0 (MH+).
Prepared using standard HATU coupling conditions as a 2:1 mixture of rotomers. NMR (d6-DMSO, 300 MHz) 1.99-2.08 (m, 0.5H), 2.11-2.22 (m, 1H), 2.73-2.85 (m, 1H), 2.90-2.96 (m, 0.5H), 4.11-4.20 (m, 0.5H), 4.30-4.39 (m, 0.5H), 4.55-4.63 (m, 1H), 4.70-4.79 (m, 1H), 5.49 (dd, 1H, J=6.2, 8.8 Hz), 5.97 (dd, 0.5H, J=4.7, 8.8 Hz), 7.07-7.45 (m, 6H), 7.80 (t, 0.5H, J=1.8 Hz), 7.84 (t, 1H, J=1.5 Hz), 8.10 (s, 0.5H), 8.22 (s, 1H), 8.49 (s, 0.5H), 8.57 (s, 1H), 8.65 (s, 0.5H), 8.82 (s, 1H); MS (ESI) m/z=446.0 (MH+).
Prepared using standard HATU coupling conditions. 1H NMR (d6-DMSO, 300 MHz) 4.07-4.17 (m, 2H), 4.49-4.58 (m, 2H), 5.07 (dd, 1H, J=7.6, 10.3 Hz), 7.33 (dd, 1H, J=0.9, 2.1 Hz), 7.65-7.75 (m, 4H), 7.84 (t, 1H, J=1.5 Hz), 7.95 (s, 1H), 8.21 (s, 1H), 8.56 (s, 1H), 8.83 (s, 1H); MS (ESI) m/z=514.0 (MH+).
Prepared using standard HATU coupling conditions. 1H NMR (d6-DMSO, 300 MHz) 1.39 (s, 9H), 3.89-3.92 (m, 1H), 4.25-4.38 (m, 3H), 4.77 (t, 1H, J=8.2 Hz), 7.31-7.32 (m, 1H), 7.61-7.63 (m, 1H), 7.84 (t, 1H, J=1.8 Hz), 8.21 (s, 1H), 8.56 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=485.1 (MH+).
A solution of hydrogen chloride in dioxane (4M, 2 mL) was added to [1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (compound 489 in Example 389, 111 mg, 0.23 mmol) and reaction was sonicated. After 2 hours, the precipitate was filtered to give (3-amino-azetidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (60 mg, 68%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 4.04-4.09 (m, 2H), 4.29-4.36 (m, 1H), 4.59 (dd, 1H, J=6.7, 11.7 Hz), 4.83 (dd, 1H, J=4.4, 11.7 Hz), 7.33 (d, 1H, J=1.8 Hz), 7.85 (t, 1H, J=1.8 Hz), 8.24 (s, 1H), 8.41 (s, 3H), 8.57 (s, 1H), 8.84 (s, 1H); MS (ESI) m/z=384.9 (MH+).
Methanesulfonyl chloride (10 μL, 0.13 mmol) was added to a solution of N,N-diisopropylethylamine (184 μL) and (3-amino-azetidin-1-yl)-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (60 mg, 0.143 mmol) in DMF (715 μL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give N-[1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-methanesulfonamide (30 mg, 45%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.94 (s, 3H), 3.95 (dd, 1H, J=4.7, 9.7 Hz), 4.28-4.46 (m, 3H), 4.86 (dd, 1H, J=6.7, 10.5 Hz), 7.32 (d, 1H, J=1.2 Hz), 7.84 (t, 1H, J=1.2 Hz), 7.91 (d, 1H, J=8.2 Hz), 8.22 (s, 1H), 8.56 (s, 1H) 8.82 (s, 1H); MS (ESI) m/z=463.0 (MH+).
The compounds in Examples 392-403 were made by the same method as that used in Example 391 using the appropriate sulfonyl chloride or acid chloride.
White solid (14 mg, 19%). 1H NMR (d6-DMSO, 300 MHz) 3.64-3.70 (m, 1H), 4.05-4.21 (m, 3H), 4.52-4.57 (m, 1H), 7.31 (d, 1H, J=1.6 Hz), 7.59-7.72 (m, 3H), 7.81-7.84 (m, 3H), 8.19 (s, 1H), 8.43 (d, 1H, J=8.2 Hz), 8.55 (s, 1H), 8.78 (s, 1H); MS (ESI) m/z=525.0 (MH+).
White solid (27 mg, 35%). 1H NMR (d6-DMSO, 300 MHz) 3.85 (dd, 1H, J=5.0, 9.4 Hz), 4.16-4.39 (m, 5H), 4.72 (dd, 1H, J=7.6, 10.5 Hz), 7.32 (dd, 1H, J=0.9, 1.7 Hz), 7.38 (s, 5H), 7.84 (t, 1H, J=1.5 Hz), 8.01 (d, 1H, J=8.2 Hz), 8.22 (s, 1H), 8.56 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=539.0 (MH+).
White solid (35 mg, 68%). 1H NMR (d6-DMSO, 300 MHz) 3.71-3.75 (m, 1H), 3.99 (dd, 1H, J=5.0, 11.4 Hz), 4.21-4.26 (m, 2H), 4.49 (dd, 1H, J=7.3, 11.7 Hz), 7.30 (dd, 1H, J=0.9, 1.8 Hz), 7.43-7.49 (m, 2H), 7.83 (t, 1H, J=1.8 Hz), 7.87-7.91 (m, 2H), 8.19 (s, 1H), 8.46 (d, 1H, J=8.2 Hz), 8.55 (s, 1H), 8.78 (s, 1H); MS (ESI) m/z=543.0 (MH+).
White solid (35 mg, 68%). 1H NMR (d6-DMSO, 300 MHz) 3.71-3.76 (m, 1H), 4.07 (dd, 1H, J=4.1, 10.5 Hz), 4.19-4.24 (m, 2H), 4.55 (dd, 1H, J=6.1, 10.5 Hz), 7.30 (dd, 1H, J=0.9, 2.1 Hz), 7.54-7.74 (m, 4H), 7.83 (t, 1H, J=1.8 Hz), 8.19 (s, 1H), 8.55 (s, 1H), 8.58 (d, 1H, J=7.5 Hz), 8.78 (s, 1H); MS (ESI) m/z=543.0 (MH+).
White solid (33 mg, 64%). 1H NMR (d6-DMSO, 300 MHz) 3.82-3.85 (m, 1H), 4.18-4.26 (m, 3H), 4.58-4.64 (m, 1H), 7.31 (dd, 1H, J=0.9, 2.1 Hz), 7.40-7.51 (m, 2H), 7.72-7.86 (m, 3H), 8.19 (s, 1H), 8.55 (s, 1H), 8.77-8.79 (m, 2H); MS (ESI) m/z=543.0 (MH+).
White solid (15 mg, 13%). 1H NMR (d6-DMSO, 300 MHz) 1.23 (dd, 6H, J=1.8, 6.7 Hz), 3.15 (m, 1H), 3.94 (dd, 1H, J=4.7, 9.4 Hz), 4.26-4.47 (m, 3H), 4.83 (dd, 1H, J=7.6, 10.0 Hz), 7.31 (dd, 1H, J=0.9, 1.8 Hz), 7.83 (t, 1H, J=1.8 Hz), 7.92 (d, 1H, J=8.5 Hz), 8.21 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=491.0 (MH+).
White solid (35 mg, 75%). 1H NMR (d6-DMSO, 300 MHz) 0.92-0.98 (m, 4H), 3.98 (dd, 1H, J=5.0, 10.3 Hz), 4.24-4.50 (m, 3H), 4.86 (dd, 1H, J=7.9, 10.0 Hz), 7.32 (dd, 1H, J=0.9, 2.1 Hz), 7.84 (t, 1H, J=1.8 Hz), 7.97 (d, 1H, J=9.1 Hz), 8.22 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=489.0 (MH+).
White solid (37 mg, 73%). 1H NMR (d6-DMSO, 300 MHz) 2.53-2.58 (m, 1H), 3.69-3.77 (m, 1H), 4.15-4.23 (m, 3H), 4.63-4.68 (m, 1H), 7.22 (dd, 1H, J=3.8, 5.0 Hz), 7.31 (dd, 1H, J=0.9, 2.1 Hz), 7.65 (dd, 1H, J=1.5, 3.8 Hz), 7.83 (t, 1H, J=1.5 Hz), 8.00 (dd, 1H, J=1.5, 5.0 Hz), 8.20 (s, 1H), 8.55 (s, 1H), 8.64 (d, 1H, J=7.6 Hz), 8.79 (s, 1H); MS (ESI) m/z=531.0 (MH+).
White solid (24 mg, 53%). 1H NMR (d6-DMSO, 300 MHz) 1.20 (t, 3H, J=7.3 Hz), 4.57 (q, 2H, J=7.3 Hz), 3.94 (dd, 1H, J=5.3, 10.0 Hz), 4.23-4.46 (m, 3H), 4.85 (dd, 1H, J=8.2, 10.0 Hz), 7.32 (dd, 1H, J=0.6, 1.8 Hz), 7.84 (t, 1H, J=1.8 Hz), 7.94 (d, 1H, J=8.2 Hz), 8.21 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=477.0 (MH+).
White solid (36 mg, 60%). 1H NMR (d6-DMSO, 300 MHz) 1.84 (s, 3H), 3.87 (dd, 1H, J=5.0, 10.5 Hz), 4.29-4.41 (m, 2H), 4.49-4.55 (m, 1H), 4.79 (dd, 1H, J=8.2, 9.7 Hz), 7.32 (dd, 1H, J=0.9, 1.8 Hz), 7.84 (t, 1H, J=1.8 Hz), 8.21 (s, 1H), 8.56 (s, 1H), 8.58 (d, 1H, J=7.0 Hz), 8.81 (s, 1H); MS (ESI) m/z=427.0 (MH+).
White solid (44 mg, 63%). 1H NMR (d6-DMSO, 300 MHz), 3.44 (s, 3H), 3.88 (dd, 1H, J=5.6, 10.5 Hz), 4.30-4.43 (m, 2H), 4.50-4.56 (m, 1H), 4.80 (dd, 1H, J=10.3, 18.5 Hz), 7.20-7.33 (m, 5H), 7.84 (t, 1H, J=1.8 Hz), 8.21 (s, 1H), 8.56 (s, 1H), 8.82-8.83 (m, 2H); MS (ESI) m/z=503.1 (MH+).
White solid (32 mg, 47%). MS (ESI) m/z=489.0 (MH+).
The compounds in Examples 404-407 were made by the same method as that used in Example 391 using the appropriate carbamoyl chloride or isocyanate.
White solid (34 mg, 73%). 1H NMR (d6-DMSO, 300 MHz) 2.67 (s, 6H), 3.93 (dd, 1H, J=5.3, 10.0 Hz), 4.18-4.36 (m, 2H), 4.43 (dd, 1H, J=5.3, 10.8 Hz), 4.81 (dd, 1H, J=8.5, 10.3 Hz), 7.32 (dd, 1H, J=0.6, 1.8 Hz), 7.84 (t, 1H, J=1.5 Hz), 7.97 (d, 1H, J=8.5 Hz), 8.22 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=492.0 (MH+).
White solid (33 mg, 47%). MS (ESI) m/z=498.3 (MH+).
1-[1-(3-Chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-3-phenyl-urea (Compound 506)
White solid (33 mg, 47%). MS (ESI) m/z=504.3 (MH+).
White solid (23 mg, 32%). MS (ESI) m/z=518.3 (MH+).
Prepared using standard HATU coupling conditions. 1H NMR (d6-DMSO, 300 MHz) 1.40 (s, 9H), 3.99-4.10 (m, 4H), 4.70-4.77 (m, 1H), 7.32-7.33 (m, 1H), 7.84 (t, 1H, J=1.8 Hz), 8.23 (s, 1H), 8.57 (s, 1H), 8.82 (s, 1H), 8.93 (d, 1H, J=7.9 Hz); MS (ESI) m/z=485.2 (MH+).
A solution of hydrogen chloride in dioxane (4M, 18 mL) was added to 3-[(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-amino]-azetidine-1-carboxylic acid tert-butyl ester (compound 508 in Example 408, 950 mg, 1.96 mmol) and reaction was sonicated. After 2 hours the precipitate was filtered to give 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid azetidin-3-ylamide hydrochloride (878 mg, 100%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 4.10-4.27 (m, 4H), 4.81-4.88 (m, 1H), 7.33 (dd, 1H, J=0.6, 1.8 Hz), 7.85 (t, 1H, J=1.8 Hz), 8.25 (s, 1H), 8.57 (t, 1H, J=1.2 Hz), 8.65 (s, 2H), 8.83 (s, 1H), 9.00 (d, 1H, J=7.3 Hz); MS (ESI) m/z=385.0 (MH+).
Methanesulfonyl chloride (10 μL, 0.13 mmol) was added to a solution of N,N-diisopropylethylamine (184 μL) and 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid azetidin-3-ylamide hydrochloride (compound 509 in Example 409, 60 mg, 0.14 mmol) in DMF (0.72 mL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (1-methanesulfonyl-azetidin-3-yl)-amide (17 mg, 26%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.94 (s, 3H), 3.95 (dd, 1H, J=4.7, 9.7 Hz), 4.28-4.46 (m, 3H), 4.86 (dd, 1H, J=6.7, 10.5 Hz), 7.32 (d, 1H, J=1.2 Hz), 7.84 (t, 1H, J=1.2 Hz), 7.91 (d, 1H, J=8.2 Hz), 8.22 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=463.0 (MH+).
The compounds in Examples 411-415 were made by the same method as that used in Example 410 using the appropriate sulfonyl chloride or acid chloride.
White solid (42 mg, 56%). 1H NMR (d6-DMSO, 300 MHz) 3.87-4.04 (m, 4H), 4.39-4.51 (m, 1H), 7.31 (dd, 1H, J=0.9, 1.9 Hz), 7.67-7.88 (m, 6H), 8.21 (s, 1H), 8.55 (s, 1H), 8.77-8.79 (m, 2H); MS (ESI) m/z=525.0 (MH+).
White solid (19 mg, 25%). 1H NMR (d6-DMSO, 300 MHz) δ 3.84 (dd, 1H, J=2.3, 4.7 Hz), 4.01 (t, 1H, J=8.2 Hz), 4.14 (t, 1H, J=7.6 Hz), 4.30-4.37 (m, 2H), 4.57 (s, 1H), 4.70-4.77 (m, 1H), 7.32-7.49 (m, 6H), 7.84 (t, 1H, J=1.8 Hz), 8.24 (s, 1H), 8.57 (s, 1H), 8.83 (s, 1H), 8.92 (d, 1H, J=6.7 Hz); MS (ESI) m/z=539.0 (MH+).
White solid (24 mg, 40%). 1H NMR (d6-DMSO, 300 MHz) δ 1.77 (s, 3H), 3.96 (dd, 1H, J=5.9, 9.7 Hz), 4.09 (t, 1H, J=9.1 Hz), 4.22 (dd, 1H, J=5.9, 8.5 Hz), 4.37 (t, 1H, J=8.2 Hz), 4.70-4.80 (m, 1H), 7.32 (dd, 1H, J=0.9, 1.8 Hz), 7.84 (t, 1H, J=1.8 Hz), 8.23 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H), 8.94 (d, 1H, J=7.6 Hz); MS (ESI) m/z=427.0 (MH+).
White solid (34 mg, 48%). 1H NMR (d6-DMSO, 300 MHz) δ 3.45 (s, 3H), 3.99-4.15 (m, 2H), 4.29 (dd, 1H, J=5.9, 8.5 Hz), 4.47 (t, 1H, J=7.9 Hz), 4.76-4.82 (m, 1H), 7.21-7.34 (m, 5H), 7.84 (t, 1H, J=1.8 Hz), 8.23 (s, 1H), 8.57 (s, 1H), 8.82 (s, 1H), 8.98 (d, 1H, J=7.6 Hz); MS (ESI) m/z=503.1 (MH+).
White solid (35 mg, 51%). 1H NMR (d6-DMSO, 300 MHz) 4.15-4.21 (m, 1H), 4.33 (t, 1H, J=10.0 Hz), 4.43 (dd, 1H, J=5.2, 8.8 Hz), 4.59 (t, 1H, J=8.2 Hz), 4.83-4.89 (m, 1H), 7.32 (dd, 1H, J=0.9, 2.1 Hz), 7.44-7.55 (m, 3H), 7.64-7.68 (m, 2H), 7.84 (t, 1H, J=1.8 Hz), 8.23 (s, 1H), 8.56 (s, 1H), 8.82 (s, 1H), 9.00 (d, 1H, J=7.6 Hz); MS (ESI) m/z=489.1 (MH+).
The compounds in Examples 416-419 were made by the same method as that used in Example 410 using the appropriate carbamoyl chloride or isocyanate.
White solid (41 mg, 70%). MS (ESI) m/z=498.2 (MH+).
White solid (42 mg, 60%). MS (ESI) m/z=504.3 (MH+).
White solid (31 mg, 43%). MS (ESI) m/z=518.2 (MH+).
Prepared using standard HATU coupling, (396 mg, 88%) as a beige solid. MS (ESI) m/z=376.1 (MH+).
A solution of hydrogen chloride in dioxane (4M, 4 mL) was added to [1-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (396 mg, 0.88 mmol) and reaction was sonicated. After 2 hours the precipitate was filtered to give (3-amino-azetidin-1-yl)-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride, 379 mg, 100%) as a white solid. MS (ESI) m/z=351.0 (MH+).
Methanesulfonyl chloride (22 μL) was added to a solution of N,N-diisopropylethylamine (335 μL) and (3-amino-azetidin-1-yl)-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (100 mg, 0.26 mmol) in DMF (1.3 mL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give N-[1-(6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-methanesulfonamide, (compound 519, 35 mg, 31%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.95 (s, 3H), 3.94 (dd, 1H, J=4.7, 10.0 Hz), 4.27-4.50 (m, 3H), 4.93 (dd, 1H, J=7.9, 10.5 Hz), 7.02 (dd, 1H, J=0.9, 2.1 Hz), 7.84 (t, 1H, J=1.8 Hz), 7.91 (d, 1H, J=7.9 Hz), 8.11 (s, 1H), 8.42 (s, 1H), 8.44 (s, 1H), 9.13 (s, 1H); MS (ESI) m/z=429.0 (MH+).
Prepared using standard HATU coupling conditions. MS (ESI) m/z=451.0 (MH+).
A solution of hydrogen chloride in dioxane (4M, 3 mL) was added to [1-(6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (105 mg, 0.23 mmol) and reaction was sonicated. After 2 hours the precipitate was filtered to give (3-amino-azetidin-1-yl)-(6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (100 mg, 100%) as a white solid. MS (ESI) m/z=351.0 (MH+).
Methanesulfonyl chloride (10 μL) was added to a solution of N,N-diisopropylethylamine (80 μL) and (3-amino-azetidin-1-yl)-(6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (50 mg, 0.13 mmol) in DMF (300 μL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give N-[1-(6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-methanesulfonamide (compound 520, 21 mg, 38%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.95 (s, 3H), 3.94 (dd, 1H, J=4.7, 10.0 Hz), 4.27-4.50 (m, 3H), 4.93 (dd, 1H, J=8.2, 9.7 Hz), 7.91 (d, 1H, J=7.9 Hz), 8.03 (s, 1H), 8.09 (s, 1H), 8.40 (s, 1H), 8.41 (s, 1H), 9.12 (s, 1H), 13.14 (s, 1H); MS (ESI) m/z=429.0 (MH+).
N-chlorosuccinimide (1.78 g, 13.4 mmol) was added to a suspension of 6-(1-tert-butoxycarbonyl-1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (5 g, 12.2 mmol) in DMF (61 mL) at room temperature. The reaction was heated to 50° C. for 4 hours and then cooled to room temperature. After 18 hours, the reaction was quenched with 5% aqueous NaHSO3. The precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 6-(1-tert-butoxycarbonyl-1H-pyrazol-4-yl)-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (4.73 g, 87%) as a beige solid. MS (ESI) m/z=445.0 (MH+).
An aqueous solution of NaOH (1 M, 43 mL) was added slowly to a solution of 6-(1-tert-butoxycarbonyl-1H-pyrazol-4-yl)-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (4.732 g, 10.65 mmol) in THF and DMF (5:1 v/v, 146 mL) at room temperature. After 4 hours the pH was adjusted to 4 with aqueous citric acid (1 M). The residual THF was removed and the resulting precipitate was filtered and washed successively with H2O and diethyl ether, and then air dried to obtain 3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (3.04 g, 87%) as a beige solid. MS (ESI) m/z=331.0 (MH+).
Prepared using standard HATU coupling conditions with the above acid. MS (ESI) m/z=485.1 (MH+).
A solution of hydrogen chloride in dioxane (4M, 2 mL) was added to [1-(3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (101 mg, 0.208 mmol) and reaction was sonicated. After 2 hours the precipitate was filtered to give (3-amino-azetidin-1-yl)-(3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (90, 100%) as a white solid. MS (ESI) m/z=385.0 (MH+).
Methanesulfonyl chloride (9 μL) was added to a solution of N,N-diisopropylethylamine (80 L) and (3-amino-azetidin-1-yl)-(3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (50 mg, 0.119 mmol) in DMF (600 μL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give N-[1-(3-chloro-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-methanesulfonamide (20 mg, 36%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.94 (s, 3H), 3.95 (dd, 1H, J=5.0, 10.0 Hz), 4.28-4.46 (m, 3H), 4.86 (dd, 1H, J=7.3, 9.4 Hz), 7.91 (d, 1H, J=8.2 Hz), 8.21 (s, 1H), 8.25 (s, 1H), 8.56 (s, 1H), 8.83 (s, 1H), 13.16 (s, 1H); MS (ESI) m/z=463.0 (MH+).
Using standard HATU coupling conditions, 3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (300 mg, 0.8 mmol) and 3-N-Boc-amino-azetidine (167 mg, 0.8 mmol) gave [1-(3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (182 mg, 43%) as a beige solid. MS (ESI) m/z=529.0 (MH+).
A solution of hydrogen chloride in dioxane (4M, 3 mL) was added to [1-(3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-carbamic acid tert-butyl ester (182 mg, 0.344 mmol) and reaction was sonicated. After 2 hours, the precipitate was filtered to give (3-amino-azetidin-1-yl)-(3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone hydrochloride (230 mg, 100%) as a white solid. MS (ESI) m/z=429.0 (MH+).
Methanesulfonyl chloride (8.4 μL) was added to a solution of N,N-diisopropylethylamine (80 μL) and (3-amino-azetidin-1-yl)-(3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-methanone (50 mg, 0.108 mmol) in DMF (300 μL). After 2 hours, water was added and the precipitate was filtered and subjected to silica chromatography to give N-[1-(3-bromo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-azetidin-3-yl]-methanesulfonamide (16 mg, 29%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ2.94 (s, 3H), 3.94 (dd, 1H, J=5.0, 10.3 Hz), 4.26-4.45 (m, 3H), 4.85 (dd, 1H, J=7.3, 10.3 Hz), 7.90 (d, 1H, J=8.2 Hz), 8.22 (s, 2H), 8.56 (s, 1H), 8.76 (s, 1H), 13.17 (s, 1H); MS (ESI) m/z=507.9 (MH+).
A mixture of 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (5 g, 13.99 mmol) and aqueous NaOH solution (2M, 20.98 mL, 41.96 mmol) in THF/H2O (3:1 v/v, 100 mL) was stirred at room temperature for 2 hours. The mixture was concentrated and the residue was acidified with 10% HCl and extracted with DCM (2×80 mL). The organic layer was washed with brine (50 mL), dried (MgSO4), and the filtrate was concentrated to afford 5-bromo-3-chloro-7-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid as a light yellow powder (4.42 g, 92%). 1H NMR (d6-DMSO, 300 MHz) δ 13.5 (s, 1H), 8.98 (d, 1H, J=0.8 Hz), 8.09 (s, 1H). MS (ESI) m/z=345 (MH+).
A solution of 5-bromo-3-chloro-7-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (852 mg, 2.48 mmol), HATU (1.41 g, 3.72 mmol), N,N-diisopropylethylamine (1.30 mL, 7.44 mmol), and 3-(3-fluoro-phenyl)-pyrrolidine HCl salt (1.00 g, 4.96 mmol) in DMF (10 mL) was stirred at 55° C. for 1.5 hours. The mixture was taken up in EtOAc (50 mL) and washed with H2O (30 mL), saturated aqueous NaHCO3 (30 mL), brine (30 mL), dried (MgSO4), the filtrate was concentrated on silica and subjected to flash column chromatography [EtOAc/n-hexane (2:3 v/v)] to afford (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (1.05 g, 86%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 8.97 (m, 1H), 8.04 (m, 1H), 7.33 (m, 1H), 7.14 (m, 3H), 4.20 (m, 0.5H), 4.01 (m, 1H), 3.60 (m, 3.5H), 2.30 (m, 1H), 2.07 (m, 1H). MS (ESI) m/z=492.0 (MH+).
A mixture of (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (Compound 523 in Example 423, 100 mg, 0.20 mmol), 1-(triisopropylsilyl)pyrrole-3-boronic acid (81.4 mg, 0.31 mmol), and Pd(PPh3)4 (12 mg, 0.01 mmol) in 3M K3PO4 (0.68 mL, 2.04 mmol) and 1,4-dioxane (2 mL) was stirred at 90° C. overnight. A solution of K2CO3 (85 mg, 0.612 mmol) in H2O (2 mL) was added and the mixture stirred at 90° C. overnight. The mixture was diluted with EtOAc (20 mL), washed with saturated aqueous NaHCO3 (10 mL), brine (10 mL), dried (MgSO4), and the filtrate was concentrated. Preparative TLC (10% MeOH/DCM) afforded [3-chloro-6-(1H-pyrrol-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]methanone (53 mg, 55%) as light brown solid. 1H NMR (d6-DMSO, 300 MHz) 11.17 (s, 1H), 8.58 (d, J=0.90 Hz, 1H), 8.10 (d, J=7.80 Hz, 1H), 7.59 (m, 1H), 7.36 (m, 1H), 7.18 (m, 2H), 7.07 (m, 1H), 6.88 (m, 1H), 6.69 (m, 1H), 4.27 (m, 1H), 4.07 (m, 1H), 3.79 (m, 1.5H), 3.50 (m, 1.5H), 2.30 (m, 1H), 2.06 (m, 1H). MS (ESI) m/z=477.1 (MH+).
Prepared using similar procedure as in Example 424 (compound 524)
1H NMR (d6-DMSO, 300 MHz) 11.69 (s, 1H), 8.66 (d, J=4.80 Hz, 1H), 8.20 (d, J=7.80 Hz, 1H), 8.09 (m, 1H), 7.88 (m, 1H), 7.50 (m, 1H), 7.36 (m, 1H), 7.18 (m, 4H), 7.11 (m, 1H), 4.30 (m, 1H), 4.11 (m, 1H), 3.84 (m, 1.5H), 3.60 (m, 1.5H), 2.32 (m, 1H), 2.12 (m, 1H). MS (ESI) m/z=527.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.82 (m, 1H), 7.31 (m, 1H), 5.00 (dd, 1H, J=3.00, 9.00 Hz), 4.32 (m, 1H), 3.85 (m, 1.5H), 3.58 (m, 2.5H), 1.93 (m, 1H), 1.85 (m, 1H). MS (ESI) m/z=400.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.83 (m, 1H), 7.31 (m, 1H), 5.00 (dd, 1H, J=3.30, 8.40 Hz), 4.32 (m, 1H), 3.85 (m, 1.5H), 3.58 (m, 2.5H), 1.93 (m, 1H), 1.85 (m, 1H). MS (ESI) m/z=400.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (d, 2H, J=10.65 Hz), 8.57 (d, 1H, J=5.40 Hz), 8.20 (d, 1H, J=8.85 Hz), 7.86 (s, 1H), 7.39 (m, 6H), 5.94 (s, 0.5H), 5.49 (s, 0.5H), 4.49 (d, 0.5H, J=5.70 Hz), 3.97 (d, 0.5H, J=7.50 Hz), 2.99 (m, 1H), 2.66 (m, 1H), 1.96 (m, 1H), 1.58 (m, 4H). MS (ESI) m/z=474.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (m, 1H), 7.32 (m, 1H), 7.01 (m, 4H), 3.83 (m, 4H), 3.18 (m, 2H), 3.11 (m, 2H). MS (ESI) m/z=493.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (m, 1H), 7.32 (m, 1H), 7.01 (m, 4H), 3.84 (m, 4H), 3.11 (m, 2H), 3.03 (m, 2H). MS (ESI) m/z=493.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (m, 1H), 7.32 (m, 1H), 7.24 (dd, J=7.80, 15.60 Hz, 1H), 6.80 (m, 1H), 6.77 (m, 1H), 6.57 (m, 1H), 3.82 (m, 4H), 3.31 (m, 2H), 3.22 (m, 2H). MS (ESI) m/z=493.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 8.12 (m, 1H), 7.83 (m, 1H), 7.32 (m, 1H), 6.87 (d, J=8.70 Hz, 1H), 6.67 (dd, J=4.80, 6.60 Hz, 1H), 3.78 (m, 4H), 3.62 (m, 2H), 3.54 (m, 2H). MS (ESI) m/z=476.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 8.17 (d, J=1.50 Hz, 1H), 8.15 (d, J=1.50 Hz, 1H), 7.83 (t, J=1.50 Hz, 1H), 7.32 (m, 1H), 6.85 (d, J=1.80 Hz, 1H), 6.83 (d, J=1.80 Hz, 1H), 3.85 (m, 2H), 3.80 (m, 2H), 3.46 (m, 2H), 3.39 (m, 2H). MS (ESI) m/z=476.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (t, J=1.20 Hz, 1H), 7.32 (m, 1H), 7.22 (m, 2H), 6.97 (d, J=7.80 Hz, 2H), 6.80 (t, J=6.90 Hz, 1H), 3.83 (m, 4H), 3.24 (m, 2H), 3.16 (m, 2H). MS (ESI) m/z=475.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.17 (s, 1H), 7.82 (t, J=1.80 Hz, 1H), 7.26 (m, 6H), 4.67 (d, J=13.20 Hz, 1H), 4.18 (d, J=13.50 Hz, 1H), 3.23 (m, 1H), 2.88 (m, 2H), 1.92 (d, J=12.60 Hz, 1H), 1.78 (d, J=12.30 Hz, 1H), 1.63 (m, 2H). MS (ESI) m/z=474.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (t, J=1.50 Hz, 1H), 7.32 (m, 1H), 7.18 (d, J=3.60 Hz, 1H), 6.88 (d, J=3.60 Hz, 1H), 3.83 (m, 4H), 3.52 (m, 2H), 3.46 (m, 2H). MS (ESI) m/z=482.0 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.36 (d, J=1.50 Hz, 1H), 8.20 (s, 1H), 8.09 (m, 1H), 7.86 (d, J=2.70 Hz, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.32 (m, 1H), 3.82 (m, 4H), 3.73 (m, 2H), 3.64 (m, 2H). MS (ESI) m/z=477.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.54 (s, 1H), 8.19 (s, 1H), 7.82 (t, J=1.50 Hz, 1H), 7.32 (m, 1H), 7.27 (dd, J=9.00, 19.50 Hz, 1H), 7.03 (dq, J=3.00 Hz, 1H), 6.78 (m, 1H), 3.82 (m, 4H), 3.23 (m, 2H), 3.16 (m, 2H). MS (ESI) m/z=511.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.83 (t, J=1.50 Hz, 1H), 7.51 (d, J=9.00 Hz, 2H), 7.32 (m, 1H), 7.09 (d, J=8.40 Hz, 2H), 3.87 (m, 4H), 3.42 (m, 2H), 3.34 (m, 2H). MS (ESI) m/z=543.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.81 (m, 2H), 7.68 (m, 1H), 7.56 (d, J=8.10 Hz, 1H), 7.42 (t, J=7.20 Hz, 1H), 7.31 (m, 1H), 4.71 (d, J=12.90 Hz, 1H), 4.28 (d, J=12.90 Hz, 1H), 3.25 (m, 2H), 2.98 (t, J=11.40 Hz, 1H), 1.95 (d, J=11.10 Hz, 1H), 1.76 (m, 3H). MS (ESI) m/z=499.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.41 (dt, J=8.10, 15.90 Hz, 2H), 7.32 (m, 2H), 7.26 (m, 1H), 4.70 (d, J=13.20 Hz, 1H), 4.23 (d, J=13.20 Hz, 1H), 3.25 (m, 2H), 2.96 (t, J=12.60 Hz, 1H), 1.92 (d, J=12.60 Hz, 1H), 1.78 (d, J=12.90 Hz, 1H), 1.67 (m, 2H). MS (ESI) m/z=508.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.83 (t, J=1.50 Hz, 1H), 7.31 (m, 1H), 7.14 (m, 4H), 4.69 (d, J=13.50 Hz, 1H), 4.18 (d, J=12.90 Hz, 1H), 3.27 (m, 1H), 2.99 (m, 2H), 2.33 (s, 3H), 1.84 (d, J=12.30 Hz, 1H), 1.64 (m, 3H). MS (ESI) m/z=488.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.33 (d, J=2.40 Hz, 1H), 8.20 (s, 1H), 8.14 (d, J=3.90 Hz, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.38 (m, 1H), 8.32 (m, 1H), 7.22 (m, 1H), 3.84 (m, 4H), 3.28 (m, 2H), 3.24 (m, 2H). MS (ESI) m/z=476.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.79 (s, 1H), 8.53 (s, 1H), 8.17 (s, 1H), 7.82 (s, 1H), 7.30 (m, 5H), 5.88 (s, 1H), 4.52 (m, 0.5H), 4.10 (m, 0.5H), 3.0 (m, 0.5H), 2.16 (m, 1H), 2.00 (m, 1H), 1.65 (m, 3.5H), 1.54 (m, 1H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.72 (d, J=19.20 Hz, 1H), 8.46 (d, J=10.20 Hz, 1H), 8.10 (d, J=18.90 Hz, 1H), 7.76 (s, 1H), 7.37 (m, 1H), 7.23 (d, J=10.50 Hz, 1H), 7.10 (m, 3H), 5.80 (s, 0.5H), 5.38 (s, 0.5H), 4.38 (d, J=13.20 Hz, 0.5H), 3.90 (d, J=22.50 Hz, 0.5H), 2.89 (m, 0.5H), 2.54 (m, 0.5H), 2.36 (m, 0.5H), 1.84 (m, 1H), 1.48 (m, 4.5H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.79 (d, J=14.40 Hz, 1H), 8.53 (d, J=7.50 Hz, 1H), 8.16 (d, J=16.50 Hz, 1H), 7.83 (s, 1H), 7.28 (m, 5H), 5.87 (s, 0.5H), 5.42 (s, 0.5H), 4.43 (d, J=10.80 Hz, 0.5H), 3.93 (d, J=12.30 Hz, 0.5H), 2.92 (m, 0.5H), 2.59 (m, 0.5H), 1.91 (m, 1H), 1.55 (m, 4.5H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.78 (d, J=13.80 Hz, 1H), 8.53 (d, J=10.20 Hz, 1H), 8.16 (d, J=18.30 Hz, 1H), 7.81 (m, 1H), 7.45 (t, J=7.50 Hz, 1H), 7.32 (m, 2H), 7.20 (m, 2H), 7.07 (m, 1H), 4.57 (t, J=12.30 Hz, 1H), 4.13 (d, J=12.90 Hz, 1H), 3.00 (m, 3H), 1.80 (m, 4H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.78 (d, J=11.40 Hz, 1H), 8.53 (d, J=6.60 Hz, 1H), 8.17 (d, J=9.00 Hz, 1H), 7.82 (m, 1H), 7.39 (m, 1H), 7.30 (m, 2H), 7.16 (t, J=8.70 Hz, 1H), 7.07 (t, J=9.00 Hz, 1H), 4.57 (dd, J=13.50, 21.90 Hz, 1H), 4.20 (d, J=11.40 Hz, 0.5H), 4.10 (d, J=13.50 Hz, 0.5H), 3.13 (m, 1H), 2.88 (m, 2H), 1.95 (m, 1H), 1.74 (m, 3H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.78 (d, J=11.10 Hz, 1H), 8.53 (d, J=6.00 Hz, 1H), 8.17 (d, J=8.40 Hz, 1H), 7.81 (m, 1H), 7.28 (m, 2H), 7.20 (m, 1H), 7.07 (m, 2H), 4.56 (t, J=12.00 Hz, 1H), 4.25 (d, J=12.30 Hz, 0.5H), 4.09 (d, J=12.30 Hz, 0.5H), 3.14 (m, 1H), 2.86 (m, 3H), 1.97 (m, 1H), 1.74 (m, 2H). MS (ESI) m/z=492.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.31 (m, 1H), 7.18 (m, 2H), 6.95 (m, 2H), 4.66 (d, J=12.30 Hz, 1H), 4.16 (d, J=13.20 Hz, 1H), 3.79 (s, 3H), 3.18 (m, 2H), 2.90 (m, 1H), 1.85 (m, 1H), 1.62 (m, 3H). MS (ESI) m/z=504.1 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.82 (s, 1H), 8.54 (d, J=1.20 Hz, 1H), 8.20 (t, J=1.20 Hz, 1H), 8.03 (d, 8.10 Hz, 1H), 7.82 (t, J=1.80 Hz, 1H), 7.59 (dd, J=0.60, 4.20 Hz, 2H), 7.31 (m, 2H), 3.90 (m, 4H), 3.60 (m, 2H), 3.51 (m, 2H). MS (ESI) m/z=516.0 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 10.86 (s, 1H), 8.83 (s, 1H), 8.55 (s, 1H), 8.20 (s, 1H), 7.84 (t, J=1.50 Hz, 1H), 7.32 (d, J=1.20 Hz, 1H), 7.21 (d, J=4.20 Hz, 1H), 7.00 (m, 3H), 4.70 (d, J=11.40 Hz, 1H), 4.51 (t, J=13.80 Hz, 1H), 4.26 (d, J=12.30 Hz, 1H), 2.99 (t, J=10.50 Hz, 1H), 2.53 (m, 1H), 2.41 (m, 2H), 1.87 (d, J=9.00 Hz, 1H), 1.72 (d, J=9.30 Hz, 1H). MS (ESI) m/z=530.2 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 10.71 (s, 1H), 8.83 (s, 1H), 8.56 (s, 1H), 8.20 (s, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.37 (dd, J=1.20, 8.70 Hz, 2H), 7.32 (m, 4H), 7.17 (t, J=7.20 Hz, 1H), 4.68 (d, J=10.20 Hz, 1H), 4.26 (m, 2H), 3.01 (t, J=11.70 Hz, 1H), 2.54 (m, 1H), 1.91 (m, 4H). MS (ESI) m/z=556.2 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.78 (s, 1H), 8.56 (s, 1H), 8.51 (t, J=6.00 Hz, 1H), 8.37 (m, 1H), 8.23 (d, J=1.50 Hz, 1H), 7.84 (m, 3H), 7.32 (m, 1H), 3.75 (m, 2H), 3.28 (m, 2H). MS (ESI) m/z=435.0 (MH+).
A mixture of 3,6-dihydro-2H-pyridine-1-N-Boc-boronic acid pinacolato ester (209 mg, 0.68 mmol), 1-fluoro-2-iodobenzene (100 mg, 0.45 mmol), Pd(dppf)Cl2*CH2Cl2 (22 mg, 0.03 mmol) in aqueous Na2CO3 (0.4 M, 1 mL) and ACN (1 mL) was degassed twice and stirred at 90° C. for 2 hours. The mixture was concentrated on silica and subjected to flash column chromatography [EtOAc/n-hexane (1:1 v/v)] to afford 4-(2-fluoro-phenyl)-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (110 mg, 88%) as a pale yellow oil. 1H NMR (d6-DMSO, 300 MHz) δ 7.35 (m, 2H), 7.19 (m, 2H), 5.93 (s, 1H), 3.94 (m, 2H), 3.57 (t, J=6.00 Hz, 2H), 2.41 (m, 2H), 1.41 (s, 9H); MS (ESI) m/z=222.1 (MH+-tBu).
A solution of hydrogen chloride in 1,4-dioxane (4M, 1 mL) was added to a stirring solution of 4-(2-fluoro-phenyl)-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (100 mg, 0.36 mmol) in 1,4-dioxane (1 mL) and the reaction mixture was stirred at room temperature overnight. The mixture was concentrated, and dried under vacuum overnight to afford 4-(2-fluoro-phenyl)-1,2,3,6-tetrahydro-pyridine hydrochloride (74 mg, 96%) as a light brown solid. MS (ESI) m/z=178.0 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.81 (s, 1H), 8.54 (d, J=1.20 Hz, 1H), 8.19 (s, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.38 (m, 1H), 7.31 (m, 2H), 7.19 (m, 2H), 6.09 (s, 0.5H), 5.95 (s, 0.5H), 4.34 (d, J=15.60 Hz, 2H), 3.85 (m, 2H), 2.56 (m, 2H). MS (ESI) m/z=490.1 (MH+).
A mixture of 3,6-dihydro-2H-pyridine-1-N-Boc-boronic acid pinacolato ester (1.40 g, 4.53 mmol), 2-bromo-thiazole (619 mg, 3.77 mmol), Pd(dppf)Cl2*CH2Cl2 (185 mg, 0.23 mmol) in aqueous Na2CO3 (2M, 5.66 mL, 11.32 mmol) and 1,4-dioxane (14 mL) was degassed twice and stirred at 90° C. for 2 hours. The mixture was concentrated on silica and subjected to flash column chromatography [EtOAc/n-hexane (1:1 v/v)] to afford 4-thiazol-2-yl-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (655 mg, 65%) as pale yellow oil. 1H NMR (CDCl3, 300 MHz) 7.76 (d, J=3.60 Hz, 1H), 7.22 d J=3.60 Hz, 1H), 6.56 (m, 1H), 4.11 (m, 2H), 3.64 (tJ=5.40 Hz, 2H), 2.70 (m, 2H), 1.50 (s, 9H); MS (ESI) m/z=267.1 (MH+-t Bu).
A suspension of 4-thiazol-2-yl-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (450 mg, 1.69 mmol) and Raney nickel (90 mg) in EtOH (10 mL) was hydrogenated under H2 (g) at 65 psi. After 3 days, the mixture was filtered through Celite and the filtrate was concentrated to afford 4-Thiazol-2-yl-piperidine-1-carboxylic acid tert-butyl ester (400 mg, 93%) as pale yellow oil. 1H NMR (CDCl3, 300 MHz) δ7.71 (d, 1H, J=3.00 Hz), 7.22. d, 1H, J=3.30 Hz), 4.21 (m, 2H), 3.17 (m, 1H), 2.89 (m, 2H), 2.79 (m, 2H), 1.77 (m, 2H), 1.50 (s, 9H); MS (ESI) m/z=213 (MH+-tBu)
Prepared using similar procedure as in Example 455, Step 3. 1H NMR (d6-DMSO, 300 MHz) 7.76 (d, 1H, J=3.00 Hz), 7.66 (d, 1H, J=3.30 Hz), 3.36 (m, 3H), 3.04 (m, 3H), 2.20 (m, 2H), 1.93 (m, 2H). MS (ESI) m/z=169 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) 8.79 (s, 1H), 8.53 (s, 1H), 8.17 (s, 1H), 7.82 (m, 1H), 7.71 (d, 1H, J=3.60 Hz, 1H), 7.60 (d, 1H, J=3.00 Hz, 1H), 7.29 (m, 1H), 4.52 (m, 1H), 4.14 (m, 1H), 3.35 (m, 2H), 3.03 (m, 1H), 2.19 (m, 1H), 2.01 (m, 1H), 1.71 (m, 2H). MS (ESI) m/z=482 (MH+).
Prepared using similar procedure as in Example 456, Step 1. 1H NMR (d6-DMSO, 300 MHz) δ 9.08 (s, 1H), 7.58 (s, 1H), 6.61 (s, 1H), 4.02 (t, J=2.10 Hz, 2H), 3.55 (m, 2H), 2.47 (m, 2H), 1.40 (s, 9H); MS (ESI) m/z=211 (MH+-tBu).
Prepared using similar procedure as in Example 456, Step 3. 1H NMR (d6-DMSO, 300 MHz) δ 9.13 (s, 1H), 9.10 (s, 1H), 7.73 (s, 1H), 6.61 (m, 1H), 3.77 (m, 2H), 3.32 (m, 2H), 2.70 (m, 2H). MS (ESI) m/z=166.9 (MH+).
Prepared using similar procedure as in Example 456, Step 2. MS (ESI) m/z=169.0 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 9.09 (d, J=1.80 Hz, 1H), 8.81 (s, 1H), 8.55 (s, 1H), 8.19 (s, 1H), 7.84 (m, 1H), 7.44 (d, J=2.10 Hz, 1H), 7.31 (m, 1H), 4.60 (d, J=13.20 Hz, 1H), 4.14 (d, J=13.50 Hz, 1H), 3.10 (m, 3H), 2.00 (m, 2H), 1.69 (m, 2H). MS (ESI) m/z=481.0 (MH+).
N,N′-Dimethylsulfonamide chloride (550 μL, 5.16 mmol) was added to a stirring solution of 4-iodoimidazole (500 mg, 2.58 mmol) and triethylamine (0.90 mL, 6.44 mmol) in ACN (5 mL) at room temperature. After 2 hours, the mixture was concentrated on silica and subjected to flash column chromatography (10-40% EtOAc/n-hexane gradient) to afford 4-iodo-imidazole-1-sulfonic acid dimethylamide (620 mg, 80%) as a white solid. 1H NMR (CDCl3, 300 MHz) δ 6.23 (s, 1H), 5.78 (s, 1H), 1.34 (s, 6H). MS (ESI) m/z=301.9 (MH+).
Prepared using Suzuki coupling of the above iodide as in Example 455, Step 1. 1H NMR (CDCl3, 300 MHz) δ 7.85 (s, 1H), 7.09 (s, 1H), 6.48 (m, 1H), 4.85 (d, J=3.00 Hz, 2H), 3.62 (t, J=5.70 Hz, 2H), 2.40 (m, 2H), 1.55 (s, 6H), 1.46 (s, 9H); MS (ESI) m/z=357.1 (MH+-tBu)
Prepared using similar procedure as in Example 455, Step 2. MS (ESI) m/z=257.0 (MH+).
Prepared using standard HATU couopling. MS (ESI) m/z=569.1 (MH+).
Prepared using similar procedure as in Example 455, Step 2 with heating at 50° C. 1H NMR (d6-DMSO, 300 MHz) δ 9.15 (d, J=4.80 Hz, 1H), 8.83 (s, 1H), 8.57 (s, 1H), 8.22 (s, 1H), 7.85 (d, J=1.50 Hz, 1H), 7.77 (s, 1H), 7.33 (s, 1H), 6.57 (s, 0.5H), 6.45 (s, 0.5H), 4.41 (d, J=30.30 Hz, 2H), 3.89 (d, J=5.40 Hz, 2H), 2.55 (m, 2H). MS (ESI) m/z=462.0 (MH+).
4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,2,3,6-tetrahydro-pyridine hydrochloride. 1H NMR (d6-DMSO, 300 MHz) δ 8.90 (s, 1H), 6.36 (m, 1H), 3.60 (m, 2H), 3.10 (m, 2H), 2.27 (m, 2H), 1.22 (s, 12H). MS (ESI) m/z=209.8 (MH+).
Prepared using standard HATU coupling with amine prepared in Step 1. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.83 (t, J=1.80 Hz, 1H) 7.30 (m, 1H), 6.49 (s, 0.5H), 6.31 (s, 0.5H), 4.21 (d, J=8.10 Hz, 2H), 3.70 (m, 1H), 3.61 (m, 1H), 2.21 (s, 2H), 1.20 (s, 12H). MS (ESI) m/z=522.1 (MH+).
Prepared using Suzuki coupling as in Example 456, Step 1. 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.22 (s, 1H), 7.84 (s, 1H), 7.82 (d, J=3.30 Hz, 2H), 7.68 (m, 1H), 7.33 (m, 1H), 6.72 (s, 0.5H), 6.57 (s, 0.5H), 4.41 (d, J=19.50 Hz, 2H), 3.85 (m, 2H), 2.73 (m, 2H). MS (ESI) m/z=480 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.55 (s, 1H), 8.19 (s, 1H), 7.83 (t, J=1.80 Hz, 1H), 7.34 (m, 4H), 7.19 (m, 1H), 5.80 (s, 0.5H), 5.67 (s, 0.5H), 4.25 (d, J=26.10 Hz, 2H), 3.79 (m, 2H), 3.00 (m, 4H), 2.71 (m, 0.5H), 2.56 (m, 0.5H), 2.26 (m, 1H), 1.07 (m, 2H), 0.95 (m, 4H). MS (ESI) m/z=571.1 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.77 (s, 1H), 8.49 (s, 1H), 8.14 (s, 1H), 7.78 (t, J=1.80 Hz, 1H), 7.41 (d, J=7.20 Hz, 1H), 7.27 (s, 1H), 7.19 (m, 2H), 7.07 (d, J=7.20 Hz, 1H), 5.64 (s, 0.5H), 5.50 (s, 0.5H), 5.04 (m, 1H), 4.42 (t, J=7.50 Hz, 2H), 4.24 (d, J=6.30 Hz, 2H), 3.80 (m, 2H), 2.37 (m, 2H). MS (ESI) m/z=502.1 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.76 (s, 1H), 8.49 (s, 1H), 8.14 (s, 1H), 7.78 (t, J=1.50 Hz, 1H), 7.26 (s, 1H), 7.13 (m, 1H), 6.60 (d, J=3.00 Hz, 1H), 6.57 (d, J=3.00 Hz, 1H), 5.48 (s, 0.5H), 5.34 (s, 0.5H), 4.18 (m, 2H), 3.81 (m, 1H), 3.72 (m, 1H), 3.70 (s, 3H), 3.65 (s, 3H), 2.21 (m, 2H). MS (ESI) m/z=532.1 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.84 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.85 (m, 2H), 7.71 (t, J=8.10 Hz; 1H), 7.53 (m, 2H), 7.33 (m, 1H), 6.13 (s, 0.5H), 6.00 (s, 0.5H), 4.39 (d, J=20.40 Hz, 2H), 3.92 (m, 2H), 2.63 (m, 2H). MS (ESI) m/z=497.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.77 (s, 1H), 8.49 (s, 1H), 8.14 (s, 1H), 7.78 (t, J=1.80 Hz, 1H), 7.33 (m, 1H), 7.26 (m, 1H), 7.07 (m, 2H), 5.92 (s, 0.5H), 5.77 (s, 0.5H), 4.30 (d, J=17.70 Hz, 2H), 3.80 (m, 2H), 2.47 (m, 2H). MS (ESI) m/z=508.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.77 (s, 1H), 8.49 (s, 1H), 8.14 (s, 1H), 7.78 (t, J=1.50 Hz, 1H), 7.68 (m, 1H), 7.54 (m, 2H), 7.26 (m, 1H), 6.04 (s, 0.5H), 5.90 (s, 0.5H), 4.33 (d, J=18.90 Hz, 2H), 3.84 (m, 2H), 2.51 (m, 2H). MS (ESI) m/z=515.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.98 (d, 1H, J=5.10 Hz), 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 11H), 7.92 (m, 1H), 7.84 (m, 1H), 7.33 (s, 1H), 6.26 (s, 0.5H), 6.11 (s, 0.5H), 4.36 (d, J=21.60 Hz, 2H), 3.88 (m, 2H), 2.63 (m, 2H). MS (ESI) m/z=479.9 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (CDCl3, 300 MHz) δ 8.33 (s, 1H), 7.85 (s, 1H), 7.76 (s, 1H), 7.59 (t, J=1.50 Hz, 1H), 7.52 (m, 2H), 7.28 (m, 2H), 6.75 (m, 1H), 5.92 (s, 0.5H), 5.81 (s, 0.5H), 4.59 (d, J=2.40 Hz, 1H), 4.44 (d, J=2.70 Hz, 1H), 4.05 (m, 2H), 2.76 (m, 2H), 1.26 (m, 1H). MS (ESI) m/z=496.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.95 (d, 1H, J=5.10 Hz), 8.81 (s, 1H), 8.54 (s, 1H), 8.19 (s, 1H), 7.90 (d, 1H, J=6.00 Hz), 7.83 (s, 1H), 7.31 (s, 1H), 6.24 (s, 0.5H), 6.09 (s, 0.5H), 4.34 (d, J=21.60 Hz, 2H), 3.88 (m, 2H), 2.54 (m, 2H). MS (ESI) m/z=480 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.84 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.98 (m, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.48 (m, 1H), 7.38 (m, 2H), 6.21 (s, 0.5H), 6.08 (s, 0.5H), 4.40 (d, J=22.80 Hz, 2H), 3.92 (m, 2H), 2.63 (m, 2H). MS (ESI) m/z=515.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.84 (s, 1H), 8.84 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.88 (m, 1H), 7.84 (t, J=2.10 Hz, 1H), 7.60 (m, 2H), 7.33 (m, 1H), 6.12 (s, 0.5H), 5.99 (s, 0.5H), 4.39 (d, J=21.00 Hz, 2H), 3.90 (m, 2H), 2.61 (m, 2H). MS (ESI) m/z=515.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 10.26 (s, 1H), 8.83 (s, 1H), 8.56 (s, 1H), 8.44 (m, 1H), 8.21 (s, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.75 (m, 1H), 7.42 (m, 1H), 7.32 (m, 1H), 6.66 (s, 0.5H), 6.49 (s, 0.5H), 4.42 (d, J=20.70 Hz, 2H), 3.85 (m, 2H), 2.73 (m, 2H). MS (ESI) m/z=491.2 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.84 (s, 1H), 8.63 (s, 1H), 8.56 (s, 1H), 8.46 (d, J=4.50 Hz, 1H), 8.21 (s, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.54 (t, J=6.90 Hz, 1H), 7.33 (m, 1H), 6.46 (s, 0.5H), 6.33 (s, 0.5H), 4.43 (d, J=30.00 Hz, 2H), 3.90 (m, 2H), 2.62 (m, 2H). MS (ESI) m/z=491.0 (MH+).
Prepared using similar procedure as in Example 459 (compound 559). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.62 (s, 1H), 7.33 (t, J=1.20 Hz, 1H), 6.65 (s, 0.5H), 6.50 (s, 0.5H), 4.65 (d, J=3.60 Hz, 2H), 4.40 (d, J=18.60 Hz, 2.5H), 3.86 (m, 2.5H), 2.70 (m, 2H). MS (ESI) m/z=508.9 (MH+).
A solution of t-butoxycarbonyl-4-piperidone (3 g, 15.06 mmol) in THF (10 mL) was slowly added to a stirring 2M solution of LDA (9.03 mL, 18.07 mmol) in THF (10 mL) at −78° C. After 10 min, a solution of N-phenyl bis(trifluoromethanesulfonimide) (5.92 g, 16.56 mmol) in THF (10 mL) was slowly added. After 30 min, the cooling bath was removed and the mixture was allowed to warm to room temperature over the course of 1.5 hours. The mixture was cooled to 0° C., quenched with saturated aqueous NaHCO3 (30 mL), and extracted with ether (200 mL). The organic layer was washed with 5% citric acid (40 mL), aqueous NaOH (1M, 4×40 mL), H2O (2×40 mL), brine (40 mL), dried (MgSO4), the filtrate was concentrated on silica and subjected to flash column chromatography (15-50% EtOAc/hexane gradient) to afford 4-trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (3.40 g, 68.2%) as a brown oil. 1H NMR (CDCl3, 300 MHz) δ 6.10 (t, J=3.30 Hz, 1H), 4.07 (m, 2H), 3.63 (t, J=5.70 Hz, 2H), 2.48 (m, 2H), 1.48 (s, 9H); MS (ESI) m/z=276 (MH+-tBu).
4-Trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give trifluoro-methanesulfonic acid 1,2,3,6-tetrahydro-pyridin-4-yl-ester hydrochloride. 1H NMR (CDCl3, 300 MHz) δ 9.76 (s, 1H), 7.32 (m, 1H), 3.94 (m, 2H), 2.79 (m, 2H), 2.11 (m, 2H). MS (ESI) m/z=232.0 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.22 (s, 1H), 7.84 (t, J=2.10 Hz, 1H), 7.32 (m, 1H), 6.15 (s, 0.5H), 6.04 (s, 0.5H), 4.37 (d, J=31.20 Hz, 2H), 3.87 (m, 2H), 2.60 (m, 2H). MS (ESI) m/z=544 (MH+).
Prepared using Suzuki reaction conditions as described in Example 455, Step 1 with the above triflate and 3-furanboronic acid. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.18 (s, 1H), 7.82 (t, J=1.50 Hz, 1H), 7.74 (d, J=5.70 Hz, 1H), 7.62 (m, 1H), 7.30 (d, J=1.80 Hz, 1H), 6.72 (d, J=11.70 Hz, 1H), 6.10 (s, 0.5H), 5.95 (s, 0.5H), 4.30 (d, J=19.80 Hz, 2H), 3.82 (m, 2H), 2.42 (m, 2H). MS (ESI) m/z=461.9 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.81 (s, 1H), 8.54 (s, 1H), 8.19 (s, 1H), 7.82 (t, J=1.80 Hz, 1H), 7.38 (m, 1H), 7.34 (m, 3H), 7.11 (m, 1H), 6.35 (s, 0.5H), 6.22 (s, 0.5H), 4.35 (d, J=18.00 Hz, 2H), 3.85 (m, 2H), 2.58 (m, 2H). MS (ESI) m/z=489.9 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.20 (s, 1H), 7.84 (m, 2H), 7.66 (m, 1H), 7.56 (m, 1H), 7.37 (m, 2H), 5.67 (s, 0.5H), 5.52 (s, 0.5H), 4.31 (d, J=13.20 Hz, 2H). 3.90 (m, 2H), 2.73 (s, 3H), 2.67 (s, 3H), 2.45 (m, 2H). MS (ESI) m/z=578.9 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (s, 1H), 8.54 (s, 1H), 8.12 (s, 1H), 7.82 (m, 1H), 7.76 (d, J=7.20 Hz, 1H), 7.55 (m, 1H), 7.31 (s, 1H), 6.00 (s, 0.5H), 5.86 (s, 0.5H), 4.25 (d, J=14.10 Hz, 2H), 3.84 (m, 2H), 3.77 (s, 3H), 2.42 (m, 2H). MS (ESI) m/z=476.2 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.20 (s, 1H), 7.84 (m, 3H), 7.33 (s, 1H), 6.09 (s, 1H), 5.94 (s, 1H), 4.30 (d, J=17.10 Hz, 2H), 3.84 (m, 2H). MS (ESI) m/z=462.1 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.84 (s, 1H), 7.33 (s, 1H), 6.79 (d, J=9.30 Hz, 1H), 6.55 (s, 0.5H), 6.38 (s, 0.5H), 4.34 (d, J=15.90 Hz, 2H), 3.82 (m, 2H), 3.71 (m, 4H), 3.38 (m, 4H), 2.47 (m, 2H). MS (ESI) m/z=563.0 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (m, 1H), 8.21 (s, 1H), 8.15 (m, 1H), 7.96 (m, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.39 (m, 1H), 7.32 (m, 1H), 6.25 (s, 0.5H), 6.11 (s, 0.5H), 4.39 (d, J=20.40 Hz, 2H), 3.90 (m, 2H), 2.59 (m, 2H). MS (ESI) m/z=491.1 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.98 (s, 1H), 8.90 (d, J=12.00 Hz, 1H), 8.80 (s, 1H), 8.50 (s, 1H), 8.18 (s, 1H), 7.82 (t, J=1.50 Hz, 1H), 7.27 (d, J=1.20 Hz, 1H), 6.28 (s, 0.5H), 6.14 (s, 0.5H), 4.32 (d, J=19.80 Hz, 2H), 3.85 (m, 2H), 2.48 (m, 2H). MS (ESI) m/z=463.0 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.20 (s, 1H), 7.84 (s, 1H), 7.33 (s, 1H), 6.83 (d, J=6.30 Hz, 1H), 6.72 (d, J=2.10 Hz, 1H), 6.21 (d, J=12.30 Hz, 1H), 5.89 (s, 0.5H), 5.74 (s, 0.5H), 4.26 (d, J=2.40 Hz, 2H), 3.78 (m, 2H), 2.46 (m, 2H). MS (ESI) m/z=461.1 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.95 (s, 1H), 7.84 (t, J=1.50 Hz, 1H), 7.71 (m, 1H), 7.33 (d, J=1.20 Hz, 1H), 6.49 (m, 1H), 6.38 (s, 0.5H), 6.24 (s, 0.5H), 4.35 (d, J=17.70 Hz, 2H), 3.84 (m, 2H), 2.60 (m, 2H). MS (ESI) m/z=462.0 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.82 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.85 (m, 2H), 7.33 (d, J=2.70 Hz, 1H), 7.26 (d, J=3.90 Hz, 1H), 6.48 (s, 0.5H), 6.33 (s, 0.5H), 4.38 (d, J=23.10 Hz, 2H), 3.88 (m, 2H), 2.62 (m, 2H), 2.48 (s, 3H). MS (ESI) m/z=519.9 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.84 (t, J=1.80 Hz, 1H), 7.39 (d, J=1.50 Hz, 1H, 7.33 (d, J=1.50 Hz, 1H), 6.29 (d, 1.80 Hz, 1H), 6.10 (s, 0.5H), 5.96 (s, 0.5H), 4.38 (d, J=18.30 Hz, 2H), 3.86 (m, 5H), 2.51 (m, 2H). MS (ESI) m/z=476.0 (MH+).
Prepared using similar procedure as in Example 475 (compound 575). 1H NMR (d6-DMSO, 300 MHz) δ 8.83 (s, 1H), 8.56 (s, 1H), 8.22 (m, 2H), 7.84 (m, 1H), 7.46 (d, J=5.40 Hz, 1H), 7.33 (s, 1H), 7.24 (s, 1H), 6.71 (s, 0.5H), 6.58 (s, 0.5H), 4.44 (d, J=27.90 Hz, 2H), 3.90 (m, 2H), 2.62 (m, 2H). MS (ESI) m/z=491.0 (MH+).
Using similar procedure as in Example 474, Step 1,1-Boc-3-piperidone was treated with LDA and N-phenyl bis(trifluoromethanesulfonimide) to give a mixture of triflates (2:3 ratio).
Data for 5-trifluoromethanesulfonyloxy-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (JM-2549-82A): 1H NMR (CDCl3, 300 MHz) δ 7.14 (s, 1H), 3.45 (t, J=5.70 Hz, 2H), 2.41 (t, J=6.30 Hz, 2H), 1.86 (m, 2H), 1.43 (s, 9H); MS (ESI) m/z=276 (MH+-tBu)
Data for 5-trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester: 1H NMR (d6-DMSO, 300 MHz) δ 6.10 (m, 1H), 4.03 (s, 2H), 3.45 (t, J=5.40 Hz, 2H), 2.25 (m, 2H), 1.43 (s, 9H); MS (ESI) m/z=276 (MH+-tBu)
5-Trifluoromethanesulfonyloxy-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (700 mg, 2.11 mmol) was dissolved in 1,4-dioxane (15 mL) and added under N2 (g) to a degassed mixture of potassium acetate (622 mg, 6.34 mmol), Pd(dppf)Cl2*CH2Cl2 (52 mg, 0.06 mmol), dppf (35 mg, 0.06 mmol), bis-pinacolato diborane (590 mg, 2.32 mmol) and the reaction mixture heated at 80° C. overnight. The mixture was concentrated on silica and subjected to flash column chromatography (15-50% EtOAc/n-hexane gradient) to afford 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester (320 mg, 49%) as white semi-solid. MS (ESI) m/z=254.1 (MH+-tBu).
Prepared similar procedure as in Example 456, Step 1.
1H NMR (CDCl3, 300 MHz) δ 8.75 (s, 1H), 7.89 (s, 1H), 6.89 (s, 1H), 3.63 (m, 2H), 2.44 (t, J=6.60 Hz, 2H), 1.97 (m, 2H), 1.53 (s, 9H); MS (ESI) m/z=211.1 (MH+-tBu)
5-Thiazol-4-yl-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give 5-thiazol-4-yl-1,2,3,4-tetrahydro-pyridine hydrochloride. MS (ESI) m/z=167.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (CDCl3, 300 MHz) δ 9.31 (s, 1H), 8.81 (s, 1H), 8.37 (s, 1H), 7.85 (s, 1H), 7.80 (s, 1H), 7.58 (m, 1H), 7.25 (m, 1H), 6.74 (m, 1H), 3.96 (m, 2H), 2.66 (m, 2H), 2.18 (m, 2H). MS (ESI) m/z=479.0 (MH+).
Prepared using similar procedure as in Example 488, Step 2. MS (ESI) m/z=254.1 (MH+-tBu).
Prepared using similar procedure as in Example 488, Step 3. 1H NMR (CDCl3, 300 MHz) δ 8.75 (s, 1H), 7.06 (s, 1H), 6.81 (s, 1H), 4.28 (m, 2H), 3.54 (t, J=5.40 Hz, 2H), 2.33 (m, 2H), 1.47 (s, 9H); MS (ESI) m/z=211.1 (MH+-tBu)
Prepared using similar procedure as in Example 488, Step 4. 1H NMR (d6-DMSO, 300 MHz) δ 9.30 (s, 1H), 7.76 (s, 1H), 6.78 (m, 1H), 4.70 (m, 3H), 3.99 (m, 2H), 3.25 (m, 2H). MS (ESI) m/z=167.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) δ 9.14 (d, J=1.80 Hz, 1H), 8.83 (s, 1H), 8.56 (s, 1H), 8.21 (s, 1H), 7.84 (d, J=1.50 Hz, 1H), 7.76 (s, 1H), 7.33 (s, 1H), 6.79 (m, 1H), 4.63 (d, J=24.60 Hz, 2H), 3.83 (m, 2H), 2.42 (m, 2H). MS (ESI) m/z=479.0 (MH+).
5-Trifluoromethanesulfonyloxy-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent Suzuki reaction with 2-fluorophenylboronic acid using conditions as in Example 455, Step 1. 1H NMR (CDCl3, 300 MHz) δ 7.28 (m, 1H), 7.17 (m, 4H), 3.53 (m, 2H), 2.35 (t, J=6.30 Hz, 2H), 1.86 (m, 2H), 1.43 (s, 9H); MS (ESI) m/z=222.1 (MH+-tBu)
5-(2-Fluoro-phenyl)-3,4-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give 5-(2-fluoro-phenyl)-1,2,3,4-tetrahydro-pyridine hydrochloride. MS (ESI) m/z=178.0 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (CDCl3, 300 MHz) δ 8.33 (s, 1H), 7.90 (s, 1H), 7.85 (s, 1H), 7.79 (s, 1H), 7.59 (t, J=1.50 Hz, 1H), 7.38 (m, 1H), 7.08 (m, 3H), 6.74 (d, J=1.80 Hz, 1H), 4.11 (m, 0.5H), 3.97 (m, 1.5H), 2.59 (t, J=6.30 Hz, 2H), 2.10 (m, 2H). MS (ESI) m/z=490.0 (MH+).
5-Trifluoromethanesulfonyloxy-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent Suzuki reaction with 2-fluorophenylboronic acid using conditions as in Example 455, Step 1. 1H NMR (CDCl3, 300 MHz) δ 7.25 (m, 2H), 7.16 (m, 3H), 3.61 (m, 2H), 2.44 (t, J=6.30 Hz, 2H), 1.96 (m, 2H), 1.48 (s, 9H); MS (ESI) m/z=222.1 (MH+-tBu)
5-(2-Fluoro-phenyl)-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give 5-(2-fluoro-phenyl)-1,2,3,6-tetrahydro-pyridine hydrochloride. MS (ESI) m/z=178.0 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) δ 8.80 (d, J=12.30 Hz, 1H), 8.53 (d, J=7.50 Hz, 1H), 8.18 (d, J=10.80 Hz, 1H), 7.82 (m, 1H), 7.39 (m, 1H), 7.28 (m, 3H), 7.18 (m, 1H), 6.14 (m, 1H), 4.62 (s, 1H), 4.47 (s, 1H), 3.82 (m, 2H). 2.39 (m, 2H). MS (ESI) m/z=490.1 (MH+).
3-Trifluoromethanesulfonyloxy-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester was converted 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester using similar procedure as in Example 423, Step 2. 1H NMR (CDCl3, 300 MHz) δ 6.42 (m, 1H), 4.20 (s, 2H), 4.15 (d, J=3.00 Hz, 2H), 1.46 (s, 9H), 1.27 (s, 12H); MS (ESI) m/z=240.1 (MH+-tBu)
5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester underwent Suzuki reaction with 2-bromo-3-fluoropyridine using conditions as in Example 455, Step 1. 1H NMR (CDCl3, 300 MHz) δ 8.40 (m, 1H), 7.42 (m, 1H), 7.22 (m, 1H), 6.68 (m, 1H), 6.62 (m, 2H), 4.43 (m, 2H), 1.50 (s, 9H); MS (ESI) m/z=210 (MH+-tBu)
3-(3-Fluoro-pyridin-2-yl)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester underwent HCl deprotection to give 2-(2,5-Dihydro-1H-pyrrol-3-yl)-3-fluoro-pyridine hydrochloride. 1H NMR (d6-DMSO, 300 MHz) δ 9.72 (s, 1H), 8.46 (m, 1H), 7.85 (m, 1H), 7.50 (m, 1H), 6.65 (m, 1H), 4.42 (m, 2H), 4.24 (m, 2H). MS (ESI) m/z=165.1 (MH+).
Prepared using standard HATU coupling of the above amine. 1H NMR (d6-DMSO, 300 MHz) δ 8.86 (s, 1H), 8.49 (m, 0.5H), 8.42 (m, 2.5H), 8.23 (s, 1H), 7.83 (t, J=11.70 Hz, 1H), 7.45 (m, 1H), 6.78 (s, 1H), 5.14 (m, 1H), 4.98 (m, 1H), 4.84 (m, 1H), 4.64 (m, 1H). MS (ESI) m/z=477.0 (MH+).
A mixture of 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (40 mg, 0.14 mmol), amine (0.14 mmol), HATU (54 mg, 0.14 mmol), and N,N-diisopropylethylamine (0.08 mL, 0.42 mmol in DMF (0.8 mL) was stirred at room temperature. After 1.5 hours, the mixture was diluted with EtOAc (20 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated. Column chromatography [n-hex/EtOAc (5:4 v/v)] of the crude material gave compound 593 (51 mg, 74%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 2.23 (m, 2H), 3.38 (m, 1H), 3.81 (m, 2H), 4.09 (m, 1H), 5.12 (m, 1H), 4.09 (m, 1H), 6.95 (m, 3H), 7.28 (m, 3H), 7.83 (m, 1H), 8.18 (dd, 1H, J=6.6 Hz), 8.55 (d, 1H, J=3.6 Hz), 8.81 (d, 1H, J=10.2 Hz), MS (ESI) m/z=477 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.53 (bs, 2H), 3.80 (m, 2H), 4.28 (bd, 2H), 6.19 (bd, 1H), 7.25 (m, 4H), 7.39 (m, 2H), 7.76 (s, 1H), 8.13 (s, 1H), 8.48 (s, 1H), 8.75 (s, 1H); MS (ESI) m/z=472 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.52 (bd, 2H), 3.82 (m, 2H), 4.28 (bd, 2H), 6.03 & 6.16 (bd, 1H), 7.08 (m, 2H), 7.24 (s, 1H), 7.44 (m, 2H) 7.57 (s, 1H), 8.12 (s, 1H), 8.48 (s, 1H), 8.74 (s, 1H); MS (ESI) m/z=491 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 3.04 (bd, 4H), 3.83 (bs, 4H), 7.00 (m, 1H), 7.10 (m, 1H), 7.20 (m, 1H) 7.31 (m, 1H), 7.83 (t, 1H, J=1.5 Hz), 8.19 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=512 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.50 (m, 4H), 3.77 (m, 4H), 6.66 (t, 1H, J=4.5 Hz), 7.32 (m, 1H), 7.83 (m, 1H), 8.20 (s, 1H), 8.37 (s, 1H), 8.39 (s, 1H), 8.55 (s, 1H), 8.82 (s, 1H); MS (ESI) m/z=478 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.55 (m, 2H), 1.98 (m, 2H), 2.94 (m, 1H), 3.24 (m, 2H), 4.15 (m, 1H), 4.61 (m, 1H), 6.95 (m, 2H), 7.32 (s, 2H), 7.82 (m, 1H), 8.18 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H), MS (ESI) m/z=479 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.86 (m, 1H), 2.16 (m, 1H), 3.42-4.50 (m, 5H), 5.84 (dd, 1H, J=6.3 & 9.0 Hz), 6.47 (m, 1H), 6.57 (m, 1H), 6.57 (d, 1H, J=7.5 Hz), 6.98 (dd, 1H, J=8.1, 7.2 Hz), 7.03 (dd, 1H, J=8.4 & 7.2 Hz), 7.26 (m, 1H), 7.77 (m, 1H), 8.13 (d, 1H, J=4.5 Hz), 8.49 (d, 1H, J=4.2 Hz), 8.75 (d, 1H, J=7.5 Hz); MS (ESI) m/z=476 (MH+).
To a solution of (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-(3-phenylamino-pyrrolidin-1-yl)-methanone (0.06 mmol) in THF (2 mL) was added Et3N (1.2 mmol). After 15 min, acetyl chloride (0.025 mL, 0.18 mmol) was added and the solution was stirred at 60° C. for 3 hours. The solvent was evaporated and the mixture was carefully poured into ice-water (2 mL) to give a white precipitate which was filtered and dried under high vacuum to give N-[1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-pyrrolidin-3-yl]-N-phenyl-acetamide (90%) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.76 (m, 1H), 2.13 (m, 1H), 3.14 (m, 1H), 3.34 (s, 3H), 3.54 (m, 1H), 3.80 (m, 1H), 3.83 (m, 0.5H), 3.99 (m, 0.5H), 5.09 (m, 1H), 7.30 (3, 3H), 7.43 (m, 3H), 7.82 (m, 1H), 8.16 (bd, 1H, J=8.4 Hz), 8.54 (bd, 1H, J=5.7 Hz), 8.79 (dd, 1H, J=6.6 Hz); MS (ESI) m/z=518 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.14 (m, 2H), 2.27 (m, 2H), 3.12 (m, 1H), 3.42 (m, 1H), 4.42 (d, 1H, J=3.8 Hz), 4.74 (d, 1H, J=12.9 Hz), 7.37 (m, 2H), 7.42 (m, 2H), 7.57 (m, 2H) 7.82 (t, 1H, J=1.2 Hz), 8.20 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=500 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 3.30 (bs, 1H), 6.53 (m, 1H), 6.95 (bd, 2H), 7.36 (m, 5H), 7.81 (bs, 1H), 8.21 (bs, 1H), 8.54 (bs, 1H), 8.79 (bs, 1H), 8.93 (m, 1H); MS (ESI) m/z=503 (MH+).
A mixture of (6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid (0.1 g, 0.3 mmol) and N-chlorosuccinimide (50 mg, 0.36 mmol) was stirred at 60° C. in DMF (1 mL) for 12 hours. The mixture was diluted with EtOAc (10 mL) and washed with water (10 mL), 1M sodium thiosulfate solution (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid (80%) as a brown solid. MS (ESI) m/z=358 (MH+).
Prepared using standard HATU coupling of (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid. MS (ESI) m/z=454 (MH+).
Prepared using Suzuki coupling of 2-(6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-N-thiophen-2-ylmethyl-acetamide.
1H NMR (d6-DMSO, 300 MHz) δ 3.69 (s, 2H), 4.44 (d, 1H, J=6.0 Hz), 6.94 (m, 1H), 7.00 (m, 1H), 7.30 (m, 1H), 7.39 (m, 1H), 7.84 (m, 1H), 8.09 (s, 1H), 8.52 (s, 1H), 8.67 (s, 1H), 8.76 (s, 1H); MS (ESI) m/z=441 (MH+).
Prepared using similar procedure as in Example 503
1H NMR (d6-DMSO, 300 MHz) δ 2.01 (m, 1H), 2.18 (m, 1H), 3.31-3.63 (m, 4H), 3.80 (m, 2.5H), 4.10 (m, 0.5H), 7.01 (m, 1H), 7.12 (m, 2H), 7.23 (s, 1H), 7.30 (m, 1H), 7.76 (s, 1H), 8.80 (s, 1H), 8.45 (s, 1H), 8.69 (s, 1H); MS (ESI) m/z=493 (MH+).
Prepared using standard HATU coupling. MS (ESI) m/z=515 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.66 (m, 2H), 1.85 (m, 2H), 2.84 (m, 1H), 3.16 (m, 2H), 4.14 (d, 1H, J=13.8 Hz), 4.63 (d, 1H, J=12.9 Hz), 5.46 (bs, 1H) 7.11 (m, 2H), 7.19 (m, 1H), 7.25 (m, 1H), 8.12 (s, 1H), 8.32 (bs, 2H), 8.74 (s, 1H); MS (ESI) m/z=492 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.69-1.95 (m, 2H), 2.95-3.26 (m, 4H), 4.25-4.71 (bm, 3H), 7.41 (m, 2H), 7.55 (d, 1H, J=7.8 Hz), 7.66 (m, 1H), 7.80 (d, 1H, J=7.8 Hz), 8.17 (s, 1H), 8.38 (bs, 2H), 8.81 (s, 1H); MS (ESI) m/z=499 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.52 (m, 2H), 3.73 & 3.84 (t, 2H, J=6.0 Hz), 4.26 (bd, 2H), 6.15 (m, 1H), 7.14 (m, 2H), 7.44 (m, 2H), 7.61 (m, 1H), 8.15 (s, 1H), 8.36 (s, 1H), 8.71 (s, 1H); MS (ESI) m/z=535 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.59 (m, 2H), 3.77 (m, 4H), 4.31 (m, 2H), 6.52 & 6.70 (bd, 1H), 7.61 (m, 1H), 8.19 (s, 1H), 8.41 (s, 2H), 8.76 (s, 1H), 9.09 (m, 1H); MS (ESI) m/z=524 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 3.74 (m, 4H), 3.89 (m, 4H), 7.10 (d, 1H, J=4.2 Hz), 7.44 (d, 1H, J=4.2 Hz), 8.23 (m, 1H), 8.43 (s, 2H), 8.78 (s, 1H), 9.09 (m, 1H); MS (ESI) m/z=524 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.68 (m, 2H), 1.99 (m, 2H), 2.16 (m, 0.5H) 3.02 (m, 1.5H), 3.22-3.41 (m, 2.5H), 4.54 (m, 0.5H), 7.62 (d, 1H, J=3.3 Hz), 7.73 (d, 1H, J=3.6 Hz), 8.17 (s, 1H), 8.37 (s, 2H), 8.73 (s, 1H); MS (ESI) m/z=524 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.72 (m, 2H), 4.33 (bm, 2H), 4.89 (m, 2H), 6.62 and 6.69 (bs, 1H), 7.65 (d, 1H, J=3.0 Hz), 7.80 (d, 1H, J=3.3 Hz), 8.09 (s, 1H), 8.22 (s, 2H), 8.38 (s, 1H), 9.41 (s, 1H); MS (ESI) m/z=446 (MH+).
A mixture of (3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H-pyridin-1-yl]-methanone (52 mg, 0.10 mmol), R—Br (0.25 mmol) and Pd(dppf)Cl2*CH2Cl2 (4 mg, 0.005 mmol) in 2M Na2CO3 (0.5 mL) and 1,4-dioxane (1.2 mL) was heated at 100° C. for 12 hours. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude product gave the final product (˜25% Yield) as a white powder.
1H NMR (d6-DMSO, 300 MHz) δ 2.54 (bs, 2H), 3.80 (m, 2H), 4.26 (m, 2H), 5.98 & 6.14 (bs, 1H), 6.97 (m, 1H), 7.07 (m, 1H), 7.27 (m, 1H), 7.36 (t, 1H, J=4.5), 7.78 (m, 1H), 8.16 (m, 1H), 8.50 (s, 1H), 8.77 (s, 1H), MS (ESI) m/z=479 (MH+).
Prepared using similar procedure as in Example 413 (compound 513). 1H NMR (d6-DMSO, 300 MHz) δ 2.56 (m 2H), 3.83 (m, 2H), 4.33 (m, 2H), 6.03 & 6.16 (bd, 1H), 7.27 (m, 1H), 7.40 (m, 2H) 7.70 (m, 1H), 7.77 (m, 1H), 8.15 (s, 1H), 8.50 (s, 1H), 8.78 (s, 1H); MS (ESI) m/z=516 (MH+).
Prepared using similar procedure as in Example 413 (compound 513). 1H NMR (d6-DMSO, 300 MHz) δ 2.54 (bs, 2H), 2.64 (s, 3H), 3.86 (m, 2H), 4.32 (m, 2H), 6.63 & 6.47 (bd, 1H), 7.31 (s, 1H), 7.38 (m, 1H), 7.82 (s, 1H), 8.19 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H), MS (ESI) m/z=479 (MH+).
A mixture of trifluoro-methanesulfonic acid 1-(3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl)-1,2,3,6-tetrahydro-pyridin-4-yl ester (compound 574, 50 mg, 0.0.10 mmol), 2,6-difluoro-3-methoxyphenylboronic acid (0.25 mmol) and Pd(dppf)Cl2.CH2Cl2 (4 mg, 0.005 mmol) in 2M Na2CO3 (0.5 mL) and ACN (1.2 mL) was heated at 100° C. for 12 hours. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude product gave the final product (45% yield) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 2.44 (m, 2H), 3.87 (m, 2H), 4.30 (m, 2H), 5.95 & 5.81 (bd, 1H), 7.06 (m, 2H), 7.31 (m, 1H), 7.82 (t, 1H, J=1.8 Hz), 8.18 (s, 1H), 8.54 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=539 (MH+).
Prepared using similar procedure as in Example 516 (compound 616). 1H NMR (d6-DMSO, 300 MHz) δ 2.54 (m, 2H), 3.85 (m, 2H), 4.32 (m, 2H), 6.08 & 6.20 (bd, 1H), 7.20 (m, 1H), 7.31 (s, 1H), 7.82 (t, 1H, J=1.8 Hz), 8.14 (m, 1H), 8.19 (s, 1H), 8.55 (s, 1H), 8.81 (s, 1H); MS (ESI) m/z=510 (MH+).
Prepared using similar procedure as in Example 516 (compound 616). 1H NMR (d6-DMSO, 300 MHz) δ 2.63 (m, 2H), 3.90 (m, 2H), 4.42 (m, 2H), 6.39 & 6.51 (bd, 1H), 7.31 (s, 1H), 7.82 (t, 1H, J=1.8 Hz), 8.19 (m, 1H), 8.55 (s, 1H), 8.81 (s, 1H), 8.91 (s, 1H), 9.06 (d, 1H, J=4.5 Hz); MS (ESI) m/z=475 (MH+).
To a stirred solution of [3-chloro-6-(furan-3-yl)-8-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl][4-(pyrimidin-5-yl)-3,6-dihydropyridin-1(2H)-yl]methanone (Example 518, compound 618) (80 mg, 0.17 mmol) in TFA (1 mL) was added Et3SiH (0.27 mL, 1.7 mmol). The mixture was heated at 70° C. for 16 hours. After evaporation of the solvent, the crude product was purified by reverse phase HPLC to afford the title compound (25%). 1H NMR (d6-DMSO, 300 MHz) δ 2.36 (m, 2H), 3.79 (m, 2H), 4.18 (m, 1H), 4.25 (m, 2H), 4.38 (m, 1H), 5.52 & 5.66 (bs, 1H), 6.39 (m, 1H), 7.32 (s, 1H), 7.83 (s, 1H), 8.18 (s, 1H), 8.20 (s, 1H), 8.55 (s, 1H), 8.82 (s, 1H), 10.40 (s, 1H); MS (ESI) m/z=477 (MH+).
Prepared using similar procedure as in Example 516 (compound 616). 1H NMR (d6-DMSO, 300 MHz) δ 2.26 (m, 2H), 2.43 (s, 3H), 3.80 (m, 2H), 4.26 (m, 2H), 5.66 & 5.81 (bd, 1H), 7.27 (s, 11H), 7.66 (m, 1H), 7.78 (s, 1H), 8.15 (s, 1H), 8.50 (s, 1H), 8.76 (s, 1H), MS (ESI) m/z=477 (MH+).
A mixture of boronate ester/boronic acid (0.10 mmol), 6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (0.25 mmol) and Pd(dppf)Cl2.CH2Cl2 (4 mg, 0.005 mmol) in 3M K3PO4 (0.5 mL) and 1,4-dioxane (1.2 mL) was heated at 100° C. for 12 hours. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated. Preparative HPLC purification (30-100% ACN gradient) of the crude product gave the final product (˜35% yield) as a white powder.
MS (ESI) m/z=491 (MH+).
(3-Chloro-6-pyrimidin-5-yl-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone was treated with triethylsilane similar to Example 519 (compound 619). MS (ESI) m/z=493 (MH+).
Prepared using general procedure described in Example 521 (compound 621). MS (ESI) m/z=534 (MH+).
Prepared using general procedure described in Example 521 (compound 621).
1H NMR (d6-DMSO, 300 MHz) δ 2.05 (m, 1H), 2.26 (m, 1H), 3.82 (s, 3H), 3.31-4.28 (m, 5H), 7.09 (m, 1H), 7.19 (m, 2H), 7.36 (m, 1H), 8.14 (d, 1H, J=8.1 Hz), 8.17 (d, 1H, J=3.3 Hz), 8.48 (d, 1H, J=4.2 Hz), 8.79 (d, 1H, J=4.2 Hz); MS (ESI) m/z=492 (MH+).
Prepared using general procedure described in Example 521 (compound 621).
1H NMR (d6-DMSO, 300 MHz) δ 2.07 (m, 1H), 2.30 (m, 1H), 3.31 (s, 3H), 3.31-4.28 (m, 5H), 7.05 (m, 1H), 7.21 (m, 2H), 7.37 (m, 1H), 7.91 (bs, 1H), 7.99 (m, 1H), 8.30 (bs, 1H), 8.49 (d, 1H, J=5.1 Hz); MS (ESI) m/z=492 (MHt).
Prepared using general procedure described in Example 521 (compound 621). MS (ESI) m/z=581 (MH+).
Prepared using general procedure described in Example 521 (compound 621). MS (ESI) m/z=589 (MH+).
Prepared using general procedure described in Example 521 (compound 621) to give (3-{3-chloro-2-[3-(3-fluoro-phenyl)-pyrrolidine-1-carbonyl]-8-trifluoromethyl-imidazo[1,2-a]pyridin-6-yl}-pyridin-2-yl)-carbamic acid tert-butyl ester which was treated with acid to give the title compound as a light brown solid (45%) after purification. MS (ESI) m/z=504 (MH+).
Prepared using general procedure described in Example 521 (compound 621).
1H NMR (d6-DMSO, 300 MHz) 2.08 (m, 1H), 2.34 (m, 1H), 2.76 (m, 2H), 3.46 (m, 1H), 3.69 (m, 2H), 3.78 (m, 2.5H), 4.06 (m, 3H), 4.22 (m, 0.5H), 6.52 (m, 1H), 7.01 (m, 1H), 7.17 (m, 2H), 7.38 (m, 1H), 8.06 (d, 1H, J=7.5 Hz), 8.45 (d, 1H, J=4.8 Hz), 8.80 (d, 1H); MS (ESI) m/z=494 (MH+).
To a solution of [3-chloro-6-(1,2,3,6-tetrahydropyridin-4-yl)-8-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl][3-(3-fluorophenyl)pyrrolidin-1-yl]-methanone (40 mg, 0.08 mmol) in THF (2 mL) at 0° C. was added N,N-diisopropylethylamine (0.04 mL, 0.24 mmol). After 15 min, acetyl chloride (0.02 mL, 0.24 mmol) was added and the solution was stirred for 10 hours at room temperature. The mixture was carefully poured into ice-water (2 mL) to give a white precipitate which was filtered and dried under high vacuum to give 1-{4-[3-chloro-2-{[3-(3-fluorophenyl)pyrrolidin-1-yl]carbonyl}-8-(trifluoromethyl)imidazo[1,2-a]pyridin-6-yl]-3,6-dihydropyridin-1(2H)-yl}ethanone (80%) as a light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ2.27 (m, 2H), 2.59 (m, 1H), 2.64 (m, 2H), 3.13 (s, 3H), 3.45 (m, 1H), 3.65 (m, 3H), 3.75 (m, 1H), 4.03 (m, 1H), 4.17 (m, 2H), 7.06 (m, 1H), 7.19 (m, 2H), 7.37 (m, 1H), 8.04 (m, 1H), 8.41 (d, 1H); MS (ESI) m/z=535 (MH+).
To a solution of [3-chloro-6-(1,2,3,6-tetrahydropyridin-4-yl)-8-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl][3-(3-fluorophenyl)pyrrolidin-1-yl]methanone (35 mg, 0.07 mmol) in THF (2 mL) at 0° C. was added N,N-diisopropylethylamine (0.04 mL, 0.21 mmol). After 15 min, mesyl chloride (0.02 mL, 0.24 mmol) was added and the solution was stirred for 10 hours at room temperature. The mixture was diluted with EtOAc (15 mL) and washed successively with 2N HCl (2×2 mL), saturated aqueous NaHCO3 (5 mL), and brine (50 mL). The organic layer was concentrated, and the crude material was purified by preparative preparative TLC (6% MeOH/DCM gradient) to give the title compound as a light brown solid (40%). MS (ESI) m/z=572 (MH+).
A mixture of (6-bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (0.07 mg, 0.14 mmol), N,N-diisopropylethylamine (0.06 mL, 0.35 mmol), Pd(dppf)Cl2CH2 Cl2 (5 mg, 0.007 mmol) in n-BuOH (3 mL) was degassed and stirred at 90° C. for 12 hours under CO atm (balloon). The mixture was concentrated and purified by preparative TLC (5% MeOH/DCM) to give the title compound as a white solid (41%). MS (ESI) m/z=513 (MH+).
A solution of 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.25 g, 0.7 mmol) in thionyl chloride (2 mL) was heated at 70° C. for 12 hours. The reaction mixture was concentrated in high vacuum and co-evaporated with toluene (2×10 mL) to give the crude product (0.20) which was used in the next step without further purification.
To a solution of 3-chloro-6-(5-chloro-furan-3-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carbonyl chloride (0.20 g, 0.6 mmol) in THF (1 mL) was added a solution of 3-(3-fluoro-phenyl)-pyrrolidine HCl salt (0.24 g, 1.2 mmol) and N,N-diisopropylethylamine (0.2 mL, 1.2 mmol) in THF (1 mL). The mixture was allowed to stir at room temperature for 12 hours. The mixture was diluted with EtOAc (20 mL) and washed with aqueous HCl (10%, 2 mL) and brine (2×10 mL). The extracts were dried (Na2SO4), filtered and concentrated and the crude material was purified by preparative HPLC (30-100% ACN gradient) to give the title compound (25%) as a white powder. 1H NMR (d6-DMSO, 300 MHz) δ 2.04 (m, 1H), 2.25 (m, 1H), 3.48-3.69 (m, 3H), 4.00 (m, 1.5H), 4.19 (m, 0.5H), 7.02 (m, 1H), 7.14 (m, 2H), 7.31 (m, 2H), 7.86 (dd, 1H, J=2.7, 2.1 Hz), 8.07 (d, 1H, J=7.1 Hz), 8.75 (d, 1H, J=5.7 Hz); MS (ESI) m/z=513 (MH+).
A solution of 3-oxo-8-aza-bicyclo[3.2.1]octane-8-carboxylic acid tert-butyl ester (0.7 g, 3.1 mmol) in THF (10 mL) was slowly added to a stirring solution of LDA (2M, 6.2 mmol) in THF (10 mL) at −78° C. After 10 min, a solution of N-phenyl bis(trifluoromethanesulfonimide) (2.14 g, 6.2 mmol) in THF (10 mL) was slowly added. After 30 min, the cooling bath was removed and reaction mixture was allowed to warm to room temperature over the course of 1.5 hours. The mixture was cooled to 0° C., quenched with saturated aqueous NaHCO3 (30 mL), and extracted with ether (200 mL). The organic layer was washed with 5% citric acid (40 mL), 1M NaOH (4×40 mL), H2O (2×40 mL), brine (40 mL), dried (MgSO4), concentrated on silica and flash column chromatography (15-50% EtOAc/n-hexane gradient) afforded 3-trifluoromethanesulfonyloxy-8-aza-bicyclo[3.2.1]oct-2-ene-8-carboxylic acid tert-butyl ester (90%) as brown oil. MS (ESI) m/z=378 (MNa+).
3-Trifluoromethanesulfonyloxy-8-aza-bicyclo[3.2.1]oct-2-ene-8-carboxylic acid tert-butyl ester (0.3 g, 0.8 mmol) was dissolved in 1,4-dioxane (5 mL) and added under N2 (g) to a degassed mixture of potassium acetate (0.23 g, 2.4 mmol), Pd(dppf)Cl2*CH2Cl2 (6 mg, 0.08 mmol), dppf (13 mg, 0.024 mmol), bis-pinacolato diborane (0.3 g, 2.32 mmol) and the reaction mixture heated at 80° C. overnight. The reaction mixture was concentrated and purified by flash column chromatography (15-50% EtOAc/n-hexane gradient) which afforded 3-(4,4,5,5-tetramethyl-[1,3,2]dioxa borolan-2-yl)-8-aza-bicyclo[3.2.1]oct-2-ene-8-carboxylic acid tert-butyl ester (90%) as white viscous material. MS (ESI) m/z=358 (MNa+).
Prepared using Suzuki coupling protocol as in Example 521.
1H NMR (d6-DMSO, 300 MHz) δ 1.40-2.30 (m, 5H), 3.15 (m, 1H), 4.51 (m, 2H), 6.94 (d, 1H, J=5.1 Hz), 7.03 (d, 1H, J=4.8 Hz), δ 8.74 (d, 1H, J=5.1); MS (ESI) m/z=237 (MH+-tBu).
3-Thiazol-4-yl-8-aza-bicyclo[3.2.1]oct-2-ene-8-carboxylic acid tert-butyl ester underwent HCl deprotection to give 3-thiazol-4-yl-8-aza-bicyclo[3.2.1]oct-2-ene; MS (ESI) m/z=193 (MH+).
A solution of 3-thiazol-4-yl-8-aza-bicyclo[3.2.1]oct-2-ene (60 mg, 0.3 mmol), EDC (0.11 g, 0.6 mmol), HOAT (0.4 mmol), N,N-diisopropylethylamine (0.08 mg, 0.6 mmol) and 3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.14 g, 0.45 mmol) in DMF (2 mL) was stirred at room temperature for 4 hours. The reaction mixture was concentrated and washed with saturated aqueous NaHCO3 (30 mL), brine (30 mL) and dried (MgSO4). The crude material was purified by preparative TLC (80% EtOAc/n-hexane) which afforded the title compound (25%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 1.70 (m, 1H), 1.96 (m, 2H), 2.17 (m, 1H), 2.40 (m, 1H), 3.08 (m, 1H), 4.90 (m, 1H), 5.20 (m, 1H), 6.91 (m, 1H), 7.26 (s, 1H), 7.50 (dd, 1H, J=1.8, 17.1 Hz), 7.78 (d, 1H, J=1.5 Hz), 8.15 (s, 1H), 8.49 (s, 1H), 8.74 (d, 1H, J=5.7), 9.01 (dd, 1H, J=1.8, 8.4 Hz); MS (ESI) m/z=506 (MH+).
Prepared using similar procedure as in Example 534, Step 3, 4 and 5.
1H NMR (d6-DMSO, 300 MHz) δ 2.50 (m, 2H), 3.89 (m, 2H), 4.36 (m, 2H), 6.05 & 6.18 (bd, 1H), 7.33 (m, 1H), 7.56 (m, 1H), 7.72 (m, 1H), 7.84 (s, 1H), 8.21 (s, 1H), 8.56 (s, 1H), 8.84 (s, 1H); MS (ESI) m/z=510 (MH+).
6-Bromo-8-methyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester was prepared by reacting 5-bromo-3-methyl-1,2-dihydro-pyridin-2-ylamine with methyl bromopyruvate in DMF at 50° C. 6-Bromo-8-methyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester was then converted to [3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-(6-furan-3-yl-8-methyl-imidazo[1,2-a]pyridin-2-yl)-methanone following similar procedure as in Example 151. MS (ESI) m/z=391 (MH+).
DMAP (8.90 g, 72.82 mmol) was slowly added to a stirring solution of di-tert-butyl dicarbonate (61.13 g, 280.08 mmol) and 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (13.5 g, 56.02 mmol) in acetone (300 mL) at room temperature. The mixture was heated to 65° C. and stirred for 4 days, cooled to room temperature, filtered, concentrated on silica and flash column chromatography [EtOAc/hexane 3:7 v/v)] to afford (5-bromo-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester (23.5 g, 95.1%) as a white crystalline solid. 1HNMR (CDCl3, 300 MHz) δ 8.77 (s, 1H), 8.15 (s, 1H), 1.38 (s, 18H). MS (ESI) m/z=287 (M+-boc, -tBu).
Trifluoroacetic anhydride (12.79 mL, 92.01 mmol) was slowly added to a stirring solution of (5-bromo-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester (20.3 g, 46.01 mmol) and urea hydrogen peroxide complex (8.66 g, 92.01 mmol) in DCM (300 mL) at 0° C. and the mixture was stirred for 2 hours at 0° C. The mixture was allowed to warm to room temperature over the course of 2 hours. The reaction mixture was quenched with 1M Na2S2O3 (60 mL), stirred for 20 min, then 5% HCl (50 mL) added, stirred for 20 min, and the organic layer was collected. The aqueous layer was extracted with DCM (100 mL), the combined organic layer was dried (MgSO4), filtered and concentrated on silica. Flash column chromatography (10-30% EtOAc/hexane gradient) of the crude afforded (5-bromo-1-hydroxy-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester (10.2 g, 48.5%) as a pale white solid. 1HNMR (d6-DMSO, 300 MHz) δ 9.17 (s, 1H), 8.15 (s, 1H), 1.32 (s, 18H). MS (ESI) m/z=303 (MH+-boc-tBu).
A stirred solution of TMSCN (8.21 mL, 65.61 mmol), TEA (9.14 mL, 65.61 mmol), and (5-bromo-1-hydroxy-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester (10 g, 21.87 mmol) in ACN (300 mL) was heated at 75° C. overnight. The reaction mixture was concentrated on silica and flash column chromatography (5-100% EtOAc/hexane gradient) afforded (5-bromo-6-cyano-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester (4.53 g, 44.4%) as a white solid. 1HNMR (d6-DMSO, 300 MHz) δ 9.07 (s, 1H), 1.35 (s, 18H). MS (ESI) m/z=312 (M+-boc, -tBu).
(5-Bromo-6-cyano-3-trifluoromethyl-pyridin-2-yl)-carbamate di-tert-butyl ester and 3-furanboronic acid reacted under standard Suzuki conditions to give (6-cyano-5-furan-3-yl-3-trifluoromethyl-pyridin-2-yl)-carbamic acid di-tert-butyl ester. MS (ESI) m/z=298 (M+-boc,-tBu).
A suspension of (6-cyano-5-furan-3-yl-3-trifluoromethyl-pyridin-2-yl)-carbamic acid di-tert-butyl ester (1.7 g, 3.7 mmol) and Raney®-nickel (wet 50 mg) in EtOH was stirred under H2 at 65 psi for 10 days. The catalyst was carefully filtered through Celite and the solvent concentrated under reduced pressure to give (6-aminomethyl-5-furan-3-yl-3-trifluoromethyl-pyridin-2-yl)-carbamic acid di-tert-butyl ester (99%) which was used for the next step without further purification. MS (ESI) m/z=458 (MH+).
To a solution of (6-aminomethyl-5-furan-3-yl-3-trifluoromethyl-pyridin−2-yl)-carbamic acid di-tert-butyl ester (0.5 g, 1 mmol) in THF (3 mL) was added Et3N (0.4 mL, 3 mmol). After 15 min, acetyl chloride (0.23 mL, 3 mmol) was added and the solution was stirred for 10 hours at room temperature. The reaction mixture was concentrated and the residue was acidified with 10% HCl and extrated with EtOAc (2×20 mL). The organic layer was washed with brine (50 mL), dried (MgSO4), filtered and concentrated. The crude was subjected to flash column chromatorgarphy [EtOAc/n-hexane (1:1 v/v)] to afford the compound [6-(acetylamino-methyl)-5-furan-3-yl-3-trifluoromethyl-pyridin-2-yl]-carbamic acid di-tert-butyl ester (60%) as brown solid. MS (ESI) m/z=500 (MH+).
4M HCl solution in 1,4-dioxane (10 eq) was added to a stirring solution of [6-(acetylamino-methyl)-5-furan-3-yl-3-trifluoromethyl-pyridin-2-yl]-carbamic acid di-tert-butyl ester (0.25 g, 0.5 mmol) in THF (5 mL) and was stirred at 60° C. for 12 hours. The reaction mixture was concentrated to give N-(6-amino-3-furan-3-yl-5-trifluoromethyl-pyridin-2-ylmethyl)-acetamide as HCl salt (˜90%). 1HNMR (d6-DMSO, 300 MHz) δ 8.12 (s, 1H), 7.85 (s, 1H), 7.74 (m, 2H), 6.77 (s, 1H), 4.93 (bs, 2H), 4.27 (d, 2H, J=4.5 Hz), 2.47 (s, 3H). MS (ESI) m/z=300 (MH+).
N-(6-Amino-3-furan-3-yl-5-trifluoromethyl-pyridin-2-ylmethyl)-acetamide reacted with methyl bromopyruvate to give 5-(acetylamino-methyl)-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester. (ESI) m/z=382 (MH+).
5-(Acetylamino-methyl)-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester was saponified using sodium hydroxide to give 5-(acetylamino-methyl)-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid. MS (ESI) m/z=368 (MH+).
Prepared using standard HATU coupling of the above acid. 1H NMR (d6-DMSO, 300 MHz) δ 1.95 (s, 3H) 2.07 (m, 1H), 2.44 (m, 1H), 3.57-4.15 (m, 5H), 4.88 (s, 2H), 6.82 (s, 1H), 7.05 (m, 1H), 7.22 (m, 2H), 7.40 (m, 2H), 7.73 (s, 1H), 7.94 (s, 1H), 8.10 (m, 1H), 8.88 (m, 1H); MS (ESI) m/z=515 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.07 (m, 1H), 2.40 (m, 1H), 3.38-4.05 (m, 4H), 4.33 (m, 0.5H), 4.53 (m, 0.5H), 7.02 (m, 2H), 7.19 (m, 2H), 7.35 (m, 1H), 7.82 (m, 1H), 8.08 (d, 1H, J=4.8 Hz), 8.42 (m, 2H), 9.13 (d, 1H, J=5.1 Hz); MS (ESI) m/z=445. (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.04 (m, 1H), 2.29 (m, 1H), 3.47 (m, 2H), 3.74 (m, 1H), 4.01 (m, 1H), 4.29 (m, 0.5H), 4.52 (m, 0.5H), 7.02 (m, 1H), 7.15 (m, 2H), 7.37 (m, 2H), 7.46 (m, 2H), 7.72 (m, 2H), 8.01 (d, 1H, J=7.2 Hz), 8.45 (d, 1H, J=2.7 Hz), 9.12 (d, 1H, J=4.5 Hz); MS (ESI) m/z=454 (MH+).
A mixture of 6-phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (0.15 g, 0.4 mmol) and N-bromosuccinimide (90 mg, 0.51 mmol) was stirred at room temperature in DMF (3 mL) for 12 hours. The mixture was diluted with EtOAc (10 mL) and washed with water (10 mL), 1M sodium thiosulfate solution (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give 3-bromo-6-phenyl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (30%) as a brown solid. MS (ESI) m/z=386 (MH+).
Prepared using standard HATU coupling of the above acid. 1H NMR (d6-DMSO, 300 MHz) δ 2.12 (m, 1H), 2.31 (m, 1H), 3.49 (m, 1.5H), 3.66 (m, 1H), 3.78 (m, 1H), 4.07 (m, 1H), 4.22 (m, 0.5H), 7.07 (m, 1H), 7.21 (m, 2H), 7.34 (m, 1H), 7.51 (m, 3H), 7.84 (m, 2H), 8.17 (d, 1H, J=7.2 Hz), 8.71 (d, 1H, J=5.4 Hz); MS (ESI) m/z=524 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 2.02 (m, 1H), 2.24 (m, 1H), 3.41 (m, 2H), 3.69 (m, 1.5H), 4.00 (m, 1H), 4.21 (m, 0.5H), 7.02 (m, 3H), 7.29 (m, 1H), 7.41 (m, 3H), 7.76 (m, 2H), 8.08 (d, 1H, J=7.2 Hz), 8.69 (s, 1H); MS (ESI) m/z=524 (MH+).
To a solution (6-Bromo-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (0.3 g, 0.6 mmol) in DMF (3 mL) were added (1-ethoxyviny I)trimethyltin (0.1 g, 1.2 mmol), Et3N (0.17 mL, 1.2 mmol), p-O-tolylphosphine (0.18 g, 0.6 mmol) and Pd(OAc)2 (13.5 mg, 0.06 mmol). The resulting orange suspension was degassed and was stirred at 90° C. for 16 hours. The black suspension was concentrated and diluted with DCM (10 mL) and washed with a 5% KF solution, water, and brine. The organic layer was dried (MgSO4) and concentrated to a yellow oil. Preparative TLC (60% EtOAc/n-hexane) of the crude product yielded [3-chloro-6-(1-ethoxy-vinyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (55%) as a light brown solid. MS (ESI) m/z=482 (MH+).
Aqueous HCl (3M, 0.5 mmol) solution was added to [3-chloro-6-(1-ethoxy-vinyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (120 mg, 0.2 mmol) in THF (1 mL) and was stirred at room temperature for 4 hours. The reaction mixture was concentrated and the crude material was subjected to preparative TLC (6% MeOH/DCM) to give the title compound (65%) as a light brown solid. 1H NMR (d6-DMSO, 300 MHz) δ 2.07 (m, 1H), 2.30 (m, 1H), 2.75 (s, 3H), 3.33-4.24 (m, 5H), 7.13 (m, 1H), 7.22 (m, 2H), 7.37 (m, 1H), 8.14 (d, 1H, J=7.8 Hz), 9.20 (d, 1H, J=5.1 z); MS (ESI) m/z=454 (MH+).
A mixture of [3-chloro-6-(1-ethoxy-vinyl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (0.1 g, 0.2 mmol) and N-bromosuccinimide (73 mg, 0.4 mmol) was stirred at room temperature in DMF (3 mL) for 12 hours. The mixture was diluted with EtOAc (10 mL) and washed with water (10 mL), 1M sodium thiosulfate solution (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give 2-bromo-1-{(3-chloro-8-(1,1-difluoro-ethyl)-2-[3-(3-fluoro-phenyl)-pyrrolidine-1-carbonyl]-imidazo[1,2-a]pyridin-6-yl}-ethanone (45%) as a brown solid. MS (ESI) m/z=534 (MH+).
To a solution of 2-bromo-1-{3-chloro-8-(1,1-difluoro-ethyl)-2-[3-(3-fluoro-phenyl)-pyrrolidine-1-carbonyl]-imidazo[1,2-a]pyridin-6-yl}-ethanone (100 mg, 0.18 mmol) in EtOH (3 mL) was added thiourea (27 mg, 0.36 mmol) and mixture was stirred at room temperature for 12 hours. The reaction mixture was concentrated and subjected to preprative TLC (5% MeOH/DCM) to provide [6-(2-amino-thiazol-4-yl)-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (50%) as light yellow solid. 1H NMR (d6-DMSO, 300 MHz) δ 2.06 (m, 1H), 3.26 (m, H), 3.44 (s, 1.5H), 3.55 (m, 0.5H), 3.75 (m, 1H), 3.87 (m, 0.5H), 4.04 (m, 1H), 4.27 (m, 0.5H), 7.04 (m, 1H), 7.16 (m, 2H), 7.36 (m, 3H), 7.50 (d, 1H, J=4.5 Hz), 8.33 (m, 1H), 8.80 (m, 1H); MS (ESI) m/z=510 (MH+).
To a solution of 2 [6-(2-amino-thiazol-4-yl)-3-chloro-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-methanone (15 mg, 0.03 mmol) in DMF (2 mL) was added N,N-diisopropylethylamine (0.2 mL, 0.06 mmol) and acetyl chloride (0.007 mL, 0.06 mmol). The solution was stirred for 12 hours at 60° C. The mixture was carefully poured into ice-water (1 mL) and extracted with ethyl acetate (2×5 ml). The organic layer was dried (Na2SO4), filtered and concentrated to provide the title compound (75%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) δ 2.06 (m, 1H), 2.16 (s, 3H), 2.30 (m, 1H), 3.47-4.29 (m, 5H), 7.07 (m, 1H), 7.19 (m, 2H), 7.36 (m, 1H), 8.08 (d, 1H, J=4.5 Hz), 8.41 (d, 1H, J=8.4 Hz), 8.93 (d, 1H, J=5.1 Hz), 12.44 (s, 1H); MS (ESI) m/z=552 (MH+).
5-Phenyl-pyridin-2-ylamine was prepared from Suzuki reaction of 5-bromo-pyridin-2-ylamine and phenylboronic acid. MS (ESI) m/z=171 (MH+).
A mixture of 5-phenyl-pyridin-2-ylamine (8 g, 47 mmol) and N-bromosuccinimide (12.46 g, 70 mmol) was stirred at room temperature in DMF (100 mL) for 4 hours. The mixture was concentrated, water (50 mL) was added, and the brown precipitate formed was filtered to yield the first crop of the product. To the rest of the aquous filtrate was added EtOAc (200 mL) and the organic layer was separated, washed with 1M sodium thiosulfate solution (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give the rest of the title compound (60%) as a brown solid. MS (ESI) m/z=250 (MH+).
A solution of 3-bromo-5-phenyl-pyridin-2-ylamine 1 (4.5 g, 18 mmol) and methyl-3-bromopyruvate (6.5 g, 36 mmol) in DMF (100 mL) was heated at 70° C. for 3 hours. The mixture was concentrated, ice H2O was added with rapid stirring, and the resulting precipitate filtered, washed with H2O (4×300 mL), dried under vacuum overnight to give 8-bromo-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (71%) as a brown solid. MS (ESI) m/z=332 (MH+).
A mixture of vinyl boronic acid (1 g, 12 mmol), 8-bromo-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (2 g, 6 mmol) and Pd(PPh3)4 (0.7 g, 0.6 mmol) in 3M K3PO4 (36 mmol) and 1,4-dioxane (1.2 mL) was heated at 90° C. for 4 hours. The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO3 (10 mL), and brine (10 mL). The extracts were dried (Na2SO4), filtered and concentrated to give crude 8-isopropenyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (55%) which was used for the next step without further purification. MS (ESI) m/z=293 (MH+).
A suspension of 8-isopropenyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid ethyl ester (1.46 g, 5 mmol) and 10% Pd/C (100 mg) was stirred under H2 at atm pressure in EtOH. After 72 hours, the catalyst was filtered through Celite and the solvent was concentrated under reduced pressure to give 8-isopropyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (35%) which was used for the next step without further purification. MS (ESI) m/z=295 (MH+).
A mixture of 8-isopropyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid methyl ester (0.3 g, 1 mmol) and NaOH (2M, 0.6 mmol) was stirred at room temperature in THF/H2O (3:1 v/v, 100 mL) for 12 hours. The reaction mixture was concentrated and the residue was acidified with 10% HCl and extracted with ethyl acetate (2×20 mL). The organic layer was washed with brine (50 mL), dried (MgSO4), filtered and concentrated to afford 8-isopropyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (42%) as a light brown solid which was used without further purification. MS (ESI) m/z=281 (MH+).
A mixture 8-isopropyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (75 mg, 0.2 mmol) and N-bromosuccinimide (43 mg, 0.24 mmol) was stirred at room temperature in DMF (3 mL) for 12 hours. The mixture was diluted with EtOAc (10 mL) and washed with water (10 mL), 1M sodium thiosulfate solution (10 mL), and brine (10 mL). The filtrate was dried (Na2SO4), filtered and concentrated to give 3-bromo-8-isopropyl-6-phenyl-imidazo[1,2-a]pyridine-2-carboxylic acid (60%) as a brown solid. MS (ESI) m/z=361 (MH+).
Prepared using standard HATU coupling of the above acid. 1H NMR (d6-DMSO, 300 MHz) 1.39 (d, 6H, J=6.9 Hz), 3.66 (m, 1H), 4.63 (d, 2H, J=6.6 Hz), 6.95 (m, 1H), 7.03 (m, 1H), 7.37-7.59 (m, 5H), 7.79 (m, 2H), 8.34 (m, 1H), 8.95 (t, 1H, J=6.3 Hz); MS (ESI) m/z=455 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.39 (d, 3H, J=7.2 Hz), 1.43 (d, 3H, J=7.2 Hz), 2.07 (m, 1H), 2.40 (m, 1H), 3.56 (m, 3H), 3.78 (m, 0.5H), 3.96 (m, 0.5H), 4.07 (m, 1H), 4.43 (m, 0.5H), 4.46 (m, 0.5H), 7.09 (m, 1H), 7.21 (m, 2H), 7.39 (m, 3H), 7.49 (m, 2H), 7.70 (m, 2H), 8.36 (d, 1H, J=1.8 Hz), 8.78 (m, 1H); MS (ESI) m/z=428 (MH+).
Prepared using standard HATU coupling. 1H NMR (d6-DMSO, 300 MHz) δ 1.39 (d, 3H, J=7.2 Hz), 1.43 (d, 3H, J=7.2 Hz), 2.10 (m, 1H), 2.31 (m, 1H), 3.34-3.60 (m, 3H), 3.79 (m, 1H), 3.90 (m, 0.5H), 4.07 (m, 1H), 4.26 (m, 0.5H), 7.06 (m, 1H), 7.24 (m, 2H), 7.38 (m, 2H), 7.49 (m, 3H), 7.77 (m, 2H), 8.37 (m, 1H); MS (ESI) m/z=508 (MH+).
Prepared using similar procedure as in Example 521 (compound 621). 1H NMR (d6-DMSO, 300 MHz) 4.65 (d, 2H, J=6.3 Hz), 6.95 (dd, 1H, J=3.6, 5.4 Hz), 7.02 (m, 1H), 7.36 (d, 1H, J=5.1 Hz), 8.36 (s, 1H), 8.95 (t, 1H, J=6.6 Hz), 9.12 (s, 1H), 9.26 (s, 1H), 9.31 (s, 2H); MS 455 (MH+).
Prepared using similar procedure as in Example 521 (Compound 621).
1H NMR (d6-DMSO, 300 MHz) 0.82 (d, 6H, J=6.6 Hz), 2.09 (m, 1H), 3.88 (d, 2H, J=6.9 Hz), 4.57 (d, 2H, J=6.0 Hz), 6.90 (d, 1H, J=3.3 Hz), 6.98 (m, 1H), 7.33 (d, 1H, J=4.8 Hz), 8.12 (s, 2H), 8.15 (s, 2H), 8.48 (s, 2H), 8.78 (s, 2H), 8.79 (t, 1H, J=6.6 Hz); MS 483 (MH+).
(6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid ethyl ester was prepared by reacting 5-bromo-3-trifluoromethyl-pyridin-2-ylamine with 4-chloro-3-oxo-butyric acid ethyl. MS (ESI) m/z=352 (MH+).
(6-Bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid ethyl ester was saponified using lithium hydroxide to give (6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid. MS (ESI) m/z=324 (MH+).
Prepared using standard Suzuki reaction of the above acid. MS (ESI) m/z=311 (MH+).
Using standard HATU coupling of the above acid. 1H NMR (d6-DMSO, 300 MHz) δ 3.62 (s, 2H), 4.39 (d, 1H, J=6.0 Hz), 6.87 (m, 1H), 6.93 (m, 1H), 6.97 (m, 1H), 7.32 (m, 1H), 7.75 (m, 1H), 7.87 (s, 1H), 7.91 (s, 1H), 8.33 (s, 1H), 8.64 (m, 1H), 9.07 (s, 1H); MS (ESI) m/z=406 (MH+).
Prepared using standard HATU coupling of (6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-acetic acid. MS (ESI) m/z=471 (MH+).
Prepared using Suzuki coupling of 2-(6-bromo-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl)-1-[3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-ethanone (compound 651) and 3-furanboronic acid. 1H NMR (d6-DMSO, 300 MHz) δ 2.00 (m, 1H), 2.24 (m, 1H), 3.22 (m, 2H), 3.55 (m, 2H), 3.81 (m, 2.5H), 4.10 (m, 0.5H), 6.98 (m, 2H), 7.08 (m, 2H), 7.33 (m, 1H), 7.76 (m, 1H), 7.88 (m, 2H), 8.33 (s, 1H), 9.05 (s, 1H); MS (ESI) m/z=459 (MH+).
A mixture of 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (150 mg, 0.622 mmol), and 2-bromo-1-(3-phenylisoxazol-5-yl)ethan-1-one (248 mg, 0.934 mmol) was heated in DMF (1.25 mL) at 50° C. for 1 day. The mixture was then heated at 70° C. for 15 hours. Upon cooling, the mixture was poured into ice-water (20 mL) to give an orange solid which was crystallized from DCM/EtOAc to give the product (72 mg) as orange needles. The residue was purified by silica gel chromatography [n-hex/EtOAc. (4:1 v/v)] to give 6-bromo-2-(3-phenyl-isoxazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine as white solid (56 mg). 1H NMR (d6-DMSO, 300 MHz) 7.50-7.56 (m, 3H), 7.62 (s, 1H), 7.98-8.04 (m, 3H), 8.63 (s, 1H), 9.25 (dd, 1H, J=0.6, 1.8 Hz); MS (ESI) m/z=409.9 (MH+).
A mixture of 6-bromo-2-(3-phenyl-isoxazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine (40 mg, 0.098 mmol), 2-furanbornoic acid (32.9 mg, 0.294 mmol), Pd(PPh3)4 (5.7 mg, 0.005 mmol) was heated in aq. K3PO4 (1M, 0.5 mL) and 1,4-dioxane (1.5 mL) at 130° C. under standard microwave conditions for 10 min. Upon cooling, the mixture was diluted with EtOAc (30 mL) and washed with saturated aqueous NaHCO3 (10 mL), then brine (10 mL), dried (Na2SO4), filtered and concentrated. The product was crystallized from DCM/EtOAc to give 6-furan-2-yl-2-(3-phenyl-isoxazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine (19.7 mg) as white needles. 1H NMR (d6-DMSO, 300 MHz) 86.68 (dd, 1H, J=1.8, 3.5 Hz), 7.27 (d, 1H, J=2.9 Hz), 7.51-7.55 (m, 3H), 7.59 (s, 1H), 7.87 (dd, 1H, J=0.6, 1.8 Hz), 8.00-8.04 (m, 2H), 8.18 (brs, 1H), 8.73 (s, 1H), 9.23 (s, 1H); MS (ESI) m/z=396.1 (MH+).
6-Furan-3-yl-2-(3-phenyl-isoxazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine was prepared using similar method as in Example 553 (compound 653) with the use of 3-furanboronic acid. 1H NMR (d6-DMSO, 300 MHz) 7.06 (dd, 1H, J=0.8, 2 Hz), 7.50-7.55 (m, 3H), 7.56 (s, 1H), 7.84 (t, 1H, J=1.8 Hz), 7.99-8.03 (m, 2H), 8.13 (brs, 1H), 8.45 (s, 1H), 8.61 (s, 1H), 9.18 (s, 1H); MS (ESI) m/z=396.1 (MH+).
A mixture of 3-chloro-6-furan-3-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (100 mg, 0.302 mmol), N′-hydroxybenzenecarboximidamide (49.4 mg, 0.363 mmol), HATU (138 mg, 0.363 mmol), N,N-diisopropylethylamine (158 μL, 0.907 mmol) was stirred in DMF (1.5 mL). After 30 min, the mixture was diluted with EtOAc (25 mL) and washed with HCl (1N, 10 mL), saturated aqueous NaHCO3 (10 mL), then brine (10 mL). The organic layer was dried (Na2SO4), filtered and concentrated to give a film which was dissolved in DMF (6 mL) and heated at 150° C. for 10 min under microwave conditions. Upon cooling, the mixture was diluted with EtOAc (60 mL) and washed with water (30 mL), then brine (20 mL), dried (Na2SO4), filtered and concentrated. The crude product was purified by silica gel chromatography [DCM/n-hex/EtOAc (3:3:0.2 v/v)] to give 3-chloro-6-furan-2-yl-2-(3-phenyl-[1,2,4]oxadiazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine (22.6 mg) as a white powder. 1H NMR (d6-DMSO, 300 MHz) 6.72 (dd, 1H, J=1.8, 3.2 Hz), 7.45 (d, 1H, J=3.5 Hz), 7.58-7.68 (m, 3H), 7.91 (d, 1H, J=1.8 Hz), 8.11-8.16 (m, 2H), 8.35 (s, 1H), 8.80 (s, 1H); MS (ESI) m/z=431 (MH+).
2-(3-Benzyl-[1,2,4]oxadiazol-5-yl)-3-chloro-6-furan-2-yl-8-trifluoromethyl-imidazo[1,2-a]pyridine was prepared using similar method as in Example 555 (compound 655) by replacing N′-hydroxybenzenecarboximidamide with N′-hydroxy-2-phenylethanimidamide. 1H NMR (d6-DMSO, 300 MHz) 4.24 (s, 2H), 6.71 (dd, 1H, J=1.8, 3.5 Hz), 7.26-7.36 (m, 5H), 7.43 (d, 1H, J=3.2 Hz), 7.89 (d, 1H, J=1.2 Hz), 8.32 (brs, 1H), 8.75 (s, 1H); MS (ESI) m/z=445 (MH+).
3-Chloro-6-furan-2-yl-2-(3-phenoxymethyl-[1,2,4]oxadiazol-5-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine was prepared using similar method as in Example 555 (compound 655) by replacing N′-hydroxybenzenecarboximidamide with N′-hydroxy-2-phenoxyethanimidamide. 1H NMR (d6-DMSO, 300 MHz) 5.41 (s, 2H), 6.97-7.03 (m, 1H), 7.06-7.11 (m, 2H), 7.30-7.36 (m, 3H), 7.84 (t, 1H, J=1.8 Hz), 8.30 (s, 1H), 8.59 (s, 1H), 8.90 (s, 1H); MS (ESI) m/z=461 (MH+).
Prepared by the same method as that used in Example 391 using the appropriate carbamoyl chloride or isocyanate. White solid (10 mgs, 23%). MS (ESI) m/z=456.0 (MH+).
HOAT (1.19 g, 8.77 mmol) and EDC (1.68 g, 8.77 mmol) were added together to a stirring solution of N,N′-diisopropylethylamine (4 mL), 3-iodo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridine-2-carboxylic acid (compound 484, 2.31 g, 5.48 mmol), and 3-(3-fluoro-phenyl)-pyrrolidine (1.10 g, 5.48 mmol) in DMF (27 mL). The reaction stirred at room temperature over night and then water was added. The resulting precipitate was filtered and washed successively with H2O and diethyl ether. The sample was then chromatographed on silica gel, eluting with methanol in dichloromethane, and 3-(3-fluoro-phenyl)-pyrrolidin-1-yl]-[3-iodo-6-(1H-pyrazol-4-yl)-8-trifluoromethyl-imidazo[1,2-a]pyridin-2-yl]-methanone was obtained (1.43 g, 46%) as a white solid. 1H NMR (d6-DMSO, 300 MHz) 2.07 (t, 1H, J=10.5 Hz), 2.27-2.36 (m, 1H), 3.43-4.07 (m, 4H), 4.15 (dd, 1H, J=7.3, 11.1 Hz), 7.03-7.25 (m, 4H), 7.32-7.43 (m, 2H), 8.15 (d, 1H, J=7.6 Hz), 8.69 (d, 1H, J=5.3 Hz), 13.17 (s, 1H); MS (ESI) m/z=570.0 (MH+).
Compounds can exhibit anti-hepatitis C activity by inhibiting HCV polymerase, by inhibiting other enzymes needed in the replication cycle, or by other pathways. A number of assays have been published to assess these activities. A general method that assesses the gross increase of HCV virus in culture was disclosed in U.S. Pat. No. 5,738,985 to Miles et al. In vitro assays have been reported in Ferrari et al. Jnl. of Vir., 73:1649-1654, 1999; Ishii et al., Hepatology, 29:1227-1235, 1999; Lohmann et al., Jnl of Bio. Chem., 274:10807-10815, 1999; and Yamashita et al., Jnl. of Bio. Chem., 273:15479-15486, 1998.
A cell line, ET (Huh-lucubineo-ET) is used for screening of compounds for inhibiting HCV RNA dependent RNA polymerase. The ET cell line is stably transfected with RNA transcripts harboring a I389 luc-ubi-neo/NS3-3′/ET; replicon with firefly luciferase-ubiquitin-neomycin phosphotransferase fusion protein and EMCV-IRES driven NS3-5B polyprotein containing the cell culture adaptive mutations (E1202G; T1280I; K1846T) (Krieger at al, 2001 and unpublished). The ET cells are grown in DMEM (Dulbeco's Modified Eagle's Medium), supplemented with 10% fetal calf serum, 2 mM Glutamine, Penicillin (100 IU/mL)/Streptomycin (100 μg/mL), 1× nonessential amino acids, and 250 μg/mL G418 (“Geneticin”). They are all available through Life Technologies (Bethesda, Md.). The cells are plated at 0.5−1.0×104 cells/well in the 96 well plates and incubated for 24 hrs before adding test compound. The compounds are added to the cells to achieve a final concentration of 0.1 nM to 50 μm and a final DMSO (dimethylsulfoxide) concentration of 0.5%. Luciferase activity is measured 48-72 hours later by adding a lysis buffer and the substrate (Catalog number Glo-lysis buffer E2661 and Bright-Glo luciferase system E2620 Promega, Madison, Wis.). Cells should not be too confluent during the assay. Percent inhibition of replication data is plotted relative to no compound control. Under the same condition, cytotoxicity of the compounds are determined using cell proliferation reagent, WST-1 (Roche, Germany). The compounds showing antiviral activities, but no significant cytotoxicities are chosen to determine EC50 and TC50. For these determinations, a 10 point, 2-fold serial dilution for each compound was used, which spans a concentration range of 1000 fold. EC50 and similarly TC50 values were calculated by fitting % inhibition at each concentration to the following equation:
% inhibition=100%/[(EC50/[I])b+1]
where b is Hill's coefficient.
% inhibition values at a specific concentration, 10 M for example, can also be derived from the equation above.
In some aspects, when tested, the compounds of Formula (I) will exhibit a % inhibition of at least 80% at 10 μM. In other aspects the % inhibition is at least 50% at 10 μM. In other aspects the % inhibition is at least 10% at 10 μM.
When tested, certain compounds of Table 1, 2, and 3 were found to have the % inhibition values listed in Table 4.
The following are representative pharmaceutical formulations containing a compound of Formula (I).
The following ingredients are mixed intimately and pressed into single scored tablets.
The following ingredients are mixed intimately and loaded into a hard-shell gelatin capsule.
The following ingredients are mixed to form a suspension for oral administration.
The following ingredients are mixed to form an injectable formulation.
A suppository of total weight 2.5 g is prepared by mixing the compound with Witepsol® H-15 (triglycerides of saturated vegetable fatty acid; Riches-Nelson, Inc., New York), and has the following composition:
While some embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention: For example, for claim construction purposes, it is not intended that the claims set forth hereinafter be construed in any way narrower than the literal language thereof, and it is thus not intended that exemplarary embodiments from the specification be read into the claims. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitations on the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
60964223 | Aug 2007 | US | national |
This application claims the benefit of U.S. provisional patent application No. 61/041,084, filed 31 Mar. 2008 and of U.S. provisional patent application No. 60/964,223, filed 10 Aug. 2007, each of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/09606 | 8/8/2008 | WO | 00 | 3/31/2010 |
Number | Date | Country | |
---|---|---|---|
61041084 | Mar 2008 | US |