Not Applicable
1. Field of the Invention
The present invention relates to a golf club head. More specifically, the present invention relates to a conformal weight for a golf club head.
2. Description of the Related Art
Relatively little has been done with the placement of adjustable weights directly in the crowns of drivers. Positioning weights in a crown, especially near its highest point, is very effective in moving the vertical position of the center of gravity, and also is useful for controlling golf ball backspin, allowing the vertical component of golf ball trajectory to be optimized for different head speeds, swing styles and player preference. Unfortunately, achieving sufficient center of gravity range is difficult, such installations are visually distracting at address, the fixed structure of a weight port is inefficient and penalizes overall performance, and a concentrated mass located in the center of the crown can have an adverse effect on impact sound. Furthermore, impact sound may be noticeably different for different weighting configurations.
There are ways to deal with the appearance of a weight in the center of the crown. For instance, it is possible to cover the weight port with a medallion or cover piece. Unfortunately, this adds to the fixed portion of the adjustable weighting system mass and further detracts from its efficiency. The cover can also become a source of buzzing or can become detached and possibly lost. Mitigating such impact sound effects typically requires stiffeners, an increase in crown thickness, or both. Both of these approaches add to the fixed structural weight of the crown and tend to increase the center of gravity height.
Weight ports in the crown that are visible at address are not desirable. They are potentially distracting and can impact cosmetic appearance. In addition, the weight port structure adds to total crown mass. This additional fixed crown mass raises center of gravity of the head and provides little contribution to other important characteristics such as moment of inertia. In a typical weight port configuration the weight is contained within the outer mold line of the head. For a crown weight this means that its position is lower than ideal, thus reducing the achievable vertical center of gravity range.
The objective of this invention is to provide an adjustable crown weight with minimal or no effect on appearance at address while maximizing the ability of the weight to adjust center of gravity height. Additional goals include minimizing the fixed component of the structure dedicated to the weighting system and also minimizing any potential effect on impact sound.
Yet another object of the present invention is an adjustable weighting feature for vertical center of gravity control which is placed to maximize effectiveness and may be entirely concealed from view at address.
Yet another object of the present invention is an adjustable weighting feature for vertical center of gravity control which is placed to maximize effectiveness and is only visible at address on the aft portion of the crown.
Yet another object of the present invention is an adjustable weighting feature for vertical center of gravity control which is placed to maximize effectiveness and may also serve as an alignment aid.
Another aspect of the present invention is a golf club head comprising a face component comprising a face component contact surface, a crown comprising a crown front edge, a crown aft edge, an edge support structure, and an aft opening in communication with the edge support structure, and a flexible weight comprising a weight front edge, a width, a depth, a length, and a weight rear edge, wherein the aft opening is sized to receive the flexible weight, wherein the flexible weight is removably retained within the edge support structure, and wherein the length of the flexible weight is greater than the width of the flexible weight.
In some embodiments, the weight front edge may abut one of the crown front edge and the face component contact surface when the weight is fully engaged within the edge support structure. In some embodiments, the golf club head may further comprise a sole having at least one weight port. In other embodiments, the crown may be composed of composite, and may comprise a doubly curved shallow shell structure. In other embodiments, the flexible weight may be aligned with a golf club head X-axis when the flexible weight is engaged with the edge support structure. In still other embodiments, the edge support structure may be integrally formed with the crown. In another embodiment, the flexible weight may comprise a polymer having a specific gravity value of 1.8 to 4.2.
In still other embodiments, the edge support structure may be selected from the group consisting of internal rails, an internal enclosed support structure, and external rails. In a further embodiment, the edge support structure may be internal rails, and the crown may comprise an opening disposed over the internal rails to form an external channel. In another embodiment, the weight front edge may have a shape selected from the group consisting of rectangular, tapered, and rounded. In another embodiment, the flexible weight may comprise a plurality of cutouts, which may be disposed at an edge of the flexible weight. In still other embodiments, the flexible weight may be preloaded when it is fully engaged with the edge support structure. In a further embodiment, the golf club head may comprise a fastener, which may place the flexible weight in compression within the edge support structure. This fastener may be a weight screw or a retainer clip or snap, or a combination thereof. In yet another embodiment, the flexible weight may have an initial un-deformed shape comprising a curvature that matches a curvature of the crown. In another embodiment, the golf club head may further comprise a damping layer disposed between the flexible weight and an interior surface the crown.
Another aspect of the present invention is a driver-type golf club head comprising a face component comprising a face component contact surface, a molded composite crown comprising a crown aft edge, an internal surface, and an edge support structure disposed on the internal surface, a weight composed of a high density polymeric material, and a fastener, wherein the edge support structure is integrally formed with the crown, wherein the weight comprises a rectangular shape and a tapered front edge, wherein the weight is retained within the edge support structure, wherein the weight is aligned with a golf club head X-axis when the weight is engaged with the edge support structure, and wherein the weight is compressed between the fastener and the face component contact surface. In some embodiments, the weight may be hidden from view when it is fully engaged with the edge support structure. In another embodiment, the weight may comprise a plurality of weight protrusions. In yet another embodiment, the weight may comprise a thick-edged cross-sectional shape.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
As shown in
In the primary configuration, shown in
To hold the conformal weight 40, the internal surface 25 of the crown 20 is modified by the addition of edge support structures 50, oriented fore and aft and aligned essentially parallel to the head Y-axis. These support structures 50 may be integrally molded from the crown 20 parent material or be secondarily bonded to the crown 20. In the preferred embodiment, shown in
The conformal weights 40 of the present invention preferably are inserted into or removed from the crown 20 via an opening 70 at the aft edge 22 of the crown 20 or, in an alternative embodiment, via an aft section of the ribbon portion of the body (not shown). In the embodiment shown in
The conformal weights 40 of the present invention preferably are thin flexible elements sized to fit within the edge support structure 50 and to follow the curvature of the crown 20. In the preferred embodiment, shown in
A range of weight values for the conformal weights 40 of the present invention can be achieved using loaded polymers or a polymer substrate with attached weights. High density polymers with sufficient bending flexibility exist with specific gravity values ranging from 1.8 to 4.2. Another approach is to use segmented conformal weights 40 with flexible connectors. It is also possible to attach conformal weights 40 to a flexible substrate or laminate highly loaded polymer layers to a flexible substrate. Mass distribution within the flexible weight does not have to be evenly distributed. In fact, it is beneficial to concentrate weight near the forward half of the conformal weight 40 to maximize its effect on center of gravity height. The conformal weight 40 also need not be flat, as shown in
The conformal weights 40 of the present invention preferably are inserted via the aft opening 70 and move along the edge support structures 50 until the conformal weights 40 engage with a contact surface 80 disposed proximate at the forward edge of the crown 20, as shown in FIGS. 1 and 4A-4C. This allows the high loads caused by impact to be taken in bearing and transferred directly to the crown 20 structure of the face cup, if one is used. In one embodiment, the shape of the conformal weight 40 is a simple rectangle, as shown in
A fastener 90 at the aft edge 22 of the crown 20 or on the aft ribbon section as shown in
The approaches detailed herein are well suited to a composite crown due to its extremely low structural weight. The composite may be a discontinuous short or long fiber molded composite or a laminated composite. It is also possible to utilize aluminum, magnesium or titanium alloy.
Varying the amount of weight in the crown may have an effect on driver sound at impact. A relatively flexible conformal weight 40 will mass load the crown 20, thus affecting vibration modes with significant crown 20 participation. This effect can be mitigated by the use of stiff edge support structures 50 and matching the stiffness of the conformal weight system 100 to the local crown 20 structure.
In alternative embodiments, the conformal weighting configurations, including the edge support structures and weights, disclosed herein are used in connection with a composite sole 34 of the golf club head 10 instead of the crown 20, and/or a ribbon 36.
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 14/050,194, filed on Oct. 9, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/797,404, filed on Mar. 12, 2013, which claims priority to 61/657,247, filed on Jun. 8, 2012.
Number | Name | Date | Kind |
---|---|---|---|
6890269 | Burrows | May 2005 | B2 |
8690706 | Stites et al. | Apr 2014 | B2 |
8696491 | Myers | Apr 2014 | B1 |
20130040755 | Stites et al. | Feb 2013 | A1 |
20140080628 | Sargent et al. | Mar 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
61657247 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14050194 | Oct 2013 | US |
Child | 14151148 | US | |
Parent | 13797404 | Mar 2013 | US |
Child | 14050194 | US |