Not Applicable
The present invention relates to a golf club head. More specifically, the present invention relates to a conformal weight for a golf club head.
Relatively little has been done with the placement of adjustable weights directly in the crowns of drivers. Positioning weights in a crown, especially near its highest point, is very effective in moving the vertical position of the center of gravity, and also is useful for controlling golf ball backspin, allowing the vertical component of golf ball trajectory to be optimized for different head speeds, swing styles and player preference. Unfortunately, achieving sufficient center of gravity range is difficult, such installations are visually distracting at address, the fixed structure of a weight port is inefficient and penalizes overall performance, and a concentrated mass located in the center of the crown can have an adverse effect on impact sound. Furthermore, impact sound may be noticeably different for different weighting configurations.
There are ways to deal with the appearance of a weight in the center of the crown. For instance, it is possible to cover the weight port with a medallion or cover piece. Unfortunately, this adds to the fixed portion of the adjustable weighting system mass and further detracts from its efficiency. The cover can also become a source of buzzing or can become detached and possibly lost. Mitigating such impact sound effects typically requires stiffeners, an increase in crown thickness, or both. Both of these approaches add to the fixed structural weight of the crown and tend to increase the center of gravity height.
Weight ports in the crown that are visible at address are not desirable. They are potentially distracting and can impact cosmetic appearance. In addition, the weight port structure adds to total crown mass. This additional fixed crown mass raises center of gravity of the head and provides little contribution to other important characteristics such as moment of inertia. In a typical weight port configuration the weight is contained within the outer mold line of the head. For a crown weight this means that its position is lower than ideal, thus reducing the achievable vertical center of gravity range.
The objective of this invention is to provide a thin, adjustable weight with minimal or no effect on appearance at address while maximizing the ability of the weight to adjust center of gravity height. Additional goals include minimizing the fixed component of the structure dedicated to the weighting system and also minimizing any potential effect on impact sound.
One aspect of the present invention is a golf club head comprising a face component comprising a striking surface, a crown, a sole, a conformal weight, and a damping layer, wherein at least one of the crown and the sole comprises a shallow recess sized to releasably receive the conformal weight, and wherein the damping layer is disposed between the shallow recess and the conformal weight. In some embodiments, the conformal weight may comprise a polygonal shape, or may be faceted. In other embodiments, the conformal weight may comprise a polymer having a specific gravity value of 1.8 to 4.2. In some embodiments, the shallow recess may be disposed at a rear portion of the sole. In other embodiments, the conformal weight may be affixed within the shallow recess with a fastener selected from the group consisting of a mechanical fastener, a semi-permanent adhesive, and an edge support structure. In yet another embodiment, the golf club head may further comprise a secondary weight, which may be disposed beneath the conformal weight when the conformal weight is engaged with the recess.
Another aspect of the present invention is a golf club head comprising a base structure comprising a striking face and a skeletal support structure extending away from the striking face, a crown composed of a lightweight material, and a sole composed of a lightweight material, wherein at least one of the crown and the sole is removably affixed to the skeletal support structure, and wherein the skeletal support structure comprises at least one shallow weight port. In some embodiments, the skeletal support structure may comprise a first shallow weight port disposed proximate the crown, and second shallow weight port disposed proximate the sole. In a further embodiment, at least one of the crown and the sole may comprise a protrusion extending from an internal surface, and the protrusion may at least partially fill one of the first and second shallow weight ports when the crown or sole is affixed to the base structure. In a further embodiment, the golf club head may comprise a conformal weight that may be secured within at least one of the first and second shallow weight ports by the protrusion.
In another embodiment, the golf club head may further comprise at least one conformal weight sized to fit within the at least one shallow weight port, and the at least one conformal weight may be removably received by the at least one shallow weight port. In another embodiment, the lightweight material may be a composite material, and the base structure may be composed of a metal alloy. In yet another embodiment, at least one of the crown and the sole may be removably affixed to the skeletal support structure with a screw fastener. In another embodiment, the at least one shallow weight port may be integrally formed with the skeletal support structure.
Yet another aspect of the present invention is a golf club head comprising a body comprising a crown, a face, and a sole, a sole cap comprising a central region having an opening and a first arm, a second arm, and a third arm extending from the central region, and at least one weight slug, wherein the sole comprises a central region with a protrusion sized to fit within the opening and at least one weight port sized to receive the at least one weight slug, wherein the sole cap is removably affixed to the sole with a fastener, and wherein the at least one weight port is covered by one of the first arm, second arm, and third arm when the sole cap is affixed to the sole. In some embodiments, the at least one weight slug may comprise two weight slugs, and the at least one weight port may comprise at least four weight ports. In a further embodiment, each of the weight ports may be disposed proximate the protrusion. In some embodiments, the sole cap may be composed of a carbon material, and the at least one weight slug may be composed of a high-density metal alloy such as a tungsten alloy. In yet another embodiment, the golf club head may be a wood-type golf club head, such as a fairway wood or a driver.
Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
As shown in
In the primary configuration, shown in
To hold the conformal weight 40, the internal surface 25 of the crown 20 is modified by the addition of edge support structures 50, oriented fore and aft and aligned essentially parallel to the head Y-axis. These support structures 50 may be integrally molded from the crown 20 parent material or be secondarily bonded to the crown 20. In the embodiment shown in
The conformal weights 40 of the present invention preferably are inserted into or removed from the crown 20 via an opening 70 at the aft edge 22 of the crown 20 or, in an alternative embodiment, via an aft section of the ribbon portion of the body (not shown). In the embodiment shown in
The conformal weights 40 of the present invention preferably are thin flexible elements sized to fit within the edge support structure 50 and to follow the curvature of the crown 20, though in other embodiments may be rigid and inflexible. In the embodiment shown in
A range of weight values for the conformal weights 40 of the present invention can be achieved using loaded polymers or a polymer substrate with attached weights. High density polymers with sufficient bending flexibility exist with specific gravity values ranging from 1.8 to 4.2. Another approach is to use segmented conformal weights 40 with flexible connectors. It is also possible to attach conformal weights 40 to a flexible substrate or laminate highly loaded polymer layers to a flexible substrate. Mass distribution within the flexible weight does not have to be evenly distributed. In fact, it is beneficial to concentrate weight near the forward half of the conformal weight 40 to maximize its effect on center of gravity height. The conformal weight 40 also need not be flat, as shown in
The conformal weights 40 of the present invention preferably are inserted via the aft opening 70 and move along the edge support structures 50 until the conformal weights 40 engage with a contact surface 80 disposed proximate at the forward edge of the crown 20, as shown in
A fastener 90 at the aft edge 22 of the crown 20 or on the aft ribbon section as shown in
The approaches detailed herein are well suited to a composite crown 20 due to its extremely low structural weight. The composite may be a discontinuous short or long fiber molded composite or a laminated composite. It is also possible to utilize aluminum, magnesium or titanium alloy to make the crown 20. Varying the amount of weight in the crown 20 may have an effect on driver sound at impact. A relatively flexible conformal weight 40 will mass load the crown 20, thus affecting vibration modes with significant crown 20 participation. This effect can be mitigated by the use of stiff edge restraint structures 50 and matching the stiffness of the conformal weight system 100 to the local crown 20 structure.
The conformal weights 40 discussed in connection with the embodiments shown in
In another, preferred, embodiment, shown in
In yet another embodiment, shown in
For example, as shown in
In another embodiment, the crown and sole shells 200, 210 may be combined with any of the conformal weights 40 disclosed herein. The skeletal nature of the base 220 removes material from the club head 10 and thus frees up mass to be used with weighting, including the conformal weights 40 and small weights 410, 420 disclosed herein.
For each of the embodiments disclosed herein, the conformal weights 40 may be disposed anywhere on or in the club head 10, including in or on external or internal surfaces of the crown 20, sole, 34, and face 32, and can be removably or permanently fixed in place with mechanical fasteners 41, permanent or semi-permanent adhesives, edge support structures 50, channels 60, or any other means known to a person skilled in the art. The conformal weights 40 disclosed herein may have their centers of gravity centered on the conformal weight 40, or disposed at one end or another to more dramatically affect center of gravity adjustability and bias, and all preferably are form fit with the golf club head's 10 outer mold line (OML) so as not to interfere with the golf club head's 10 aesthetics. In any of the embodiments disclosed herein, the conformal weights 40 can be separated from the other parts of the golf club head 10 with a damping layer 110.
From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.
The present application claims priority to and is a continuation of U.S. patent application Ser. No. 15/262,300, filed on Sep. 12, 2016, and issued on May 29, 2018, as U.S. Pat. No. 9,981,165, which is a a division of U.S. patent application Ser. No. 14/755,853, filed on Jun. 30, 2015, and issued on Oct. 11, 2016, as U.S. Pat. No. 9,463,361, which is a division of U.S. patent application Ser. No. 14/162,633, filed on Jan. 23, 2014, and issued on Aug. 11, 2014, as U.S. Pat. No. 9,101,811, which claims priority to U.S. Provisional Patent Application No. 61/892,380, filed on Oct. 17, 2013, and is a continuation in part of U.S. patent application Ser. No. 14/151,148, filed on Jan. 9, 2014, and issued on May 15, 2015, as U.S. Pat. No. 9,022,881, which is a continuation in part of U.S. patent application Ser. No. 14/050,194, filed on Oct. 9, 2013, and issued on Apr. 8, 2014, as U.S. Pat. No. 8,690,708, which is a continuation in part of U.S. patent application Ser. No. 13/797,404, filed on Mar. 12, 2013, now abandoned, which claims priority to U.S. Provisional Patent Application No. 61/657,247, filed on Jun. 8, 2012, the disclosure of each of which is hereby incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
61892380 | Oct 2013 | US | |
61657247 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14755853 | Jun 2015 | US |
Child | 15262300 | US | |
Parent | 14162633 | Jan 2014 | US |
Child | 14755853 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15262300 | Sep 2016 | US |
Child | 15990265 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14151148 | Jan 2014 | US |
Child | 14162633 | US | |
Parent | 14050194 | Oct 2013 | US |
Child | 14151148 | US | |
Parent | 13797404 | Mar 2013 | US |
Child | 14050194 | US |