Efficient degradation of materials is important to a variety of industries including the asphalt, mining, construction, drilling, and excavation industries. In asphalt recycling and trenching, a drum or chain supporting an array of picks may rotate such that the picks engage a paved surface causing it to break up. Examples of degradation assemblies from the prior art are disclosed in U.S. Pat. No. 6,824,225 to Stiffler, US Pub. No. 20050173966 to Mouthaan, U.S. Pat. No. 6,692,083 to Latham, U.S. Pat. No. 6,786,557 to Montgomery, Jr., U.S. Pat. No. 3,830,321 to McKenry et al., US. Pub. No. 20030230926, U.S. Pat. No. 4,932,723 to Mills, US Pub. No. 20020175555 to Merceir, U.S. Pat. No. 6,854,810 to Montgomery, Jr., U.S. Pat. No. 6,851,758 to Beach, which are all herein incorporated by reference for all they contain.
In one aspect of the invention, a chain assembly comprises a boom comprising a sliding surface and a chain link adapted to slide along the sliding surface. At least one polycrystalline ceramic enhanced insert at an interface between the chain links and at least a portion of the sliding surface.
The ceramic may comprise a polycrystalline diamond, a cemented metal carbide, or cubic boron nitride. The at least one insert may be attached to a chain link. The at least one insert may be attached to the sliding surface. A track may be formed in the sliding surface. The track may comprise at least one groove. The groove may be lined with a wear resistant material. The track may comprise at least one protrusion. The at least one insert may be attached to a wear plate in part making up the sliding surface. The chain assembly may comprise at least two links arranged across the width of the chain link and an insert may be bonded to a single side of each link. A chain link may comprise at least one insert on a front end and a rearward end of the link. The link may comprise a pin adapted to connect the link to an adjacent link, the pin may also comprise a ceramic enhancement. The boom may comprise a pivot end attached to a vehicle. The boom may incorporate into a trenching machine. The boom may incorporate into an excavator. The boom may incorporate into a saw.
In another aspect of the invention, a chain assembly comprises a boom comprising a sliding surface and a chain link adapted to slide along the sliding surface. At least one polycrystalline ceramic enhanced insert is attached to a chain link. The insert is adapted to slide against the sliding surface.
In yet another aspect of the invention an assembly comprises a boom comprising a sliding surface and a chain link adapted to slide along the sliding surface. At least one polycrystalline ceramic enhanced insert is bonded to the sliding surface. The insert is adapted to slide against the chain link.
a is a cross-sectional view of an embodiment of a chain link and plate.
b is a cross-sectional view of another embodiment of a chain link and plate.
c is a cross-sectional view of another embodiment of a chain link and plate.
a is a cross-sectional view of an embodiment of a chain assembly.
b is a cross-sectional view of another embodiment of a chain assembly.
a is a perspective diagram of an embodiment of a chain link.
b is a perspective diagram of an embodiment of a chain link.
c is a perspective diagram of an embodiment of a chain link.
a is a perspective diagram of an embodiment of an insert.
b is a perspective diagram of another embodiment of an insert.
c is a perspective diagram of another embodiment of an insert.
a is a perspective diagram of an embodiment of a link pin.
b is a perspective diagram of another embodiment of a link pin.
c is a perspective diagram of another embodiment of a link pin.
In reference to
In reference now to
In embodiments, wherein the ceramic is diamond, the diamond may comprise a binder concentration of 1 to 40 weight percent. The diamond may be a refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, non-metal catalyzed diamond, or combinations thereof. In some embodiments, the diamond may further comprise binders selected from the group consisting of chromium, titanium, aluminum, tungsten, carbonates, calcium, phosphorous, or combinations thereof.
In the preferred embodiment, the ceramic enhanced insert comprises a sintered polycrystalline diamond with a substantially cylindrical shape. The inserts may be as wide as two inches in diameter. In some embodiments, the inserts are approximately or less than a half inch in diameter. The diamond is supported by a carbide substrate where they are bonded to each other at a non-planar interface. In some embodiments, the edges of the inserts are rounded, chamfered, and/or beveled to reduce the likelihood that the inserts will snag each other as they slide across each other.
The degradation plate 501 may comprise a roller assembly 221. The roller assembly 221 may comprise pointed inserts 570 adapted to contact a formation 104. The inserts may be press fit into the pockets formed in the boom and/or the wear plate. The inserts 570 may be positioned on the topside or underside of the boom. In some embodiments, the inserts are welded or brazed to the wear plate 758 and/or boom 100. The inserts may also be press fit, brazed or welded to the links 500.
One benefit of diamond is its high thermal conductivity. Any heat generated by friction between inserts sliding against each other may be conducted by the diamond away from the heat origination spots and spread thus reducing extreme hot spots in the chain assembly. Cubic boron nitride and various forms of carbide may also help spread the heat, but are not believed to spread the heat as efficiently as diamond.
c discloses inserts 150 disposed on the far sides of the links. It is believed that a majority of the load experienced by the chain assembly may be concentrated on the outer portion of the chain links 500. In embodiments where two links are bonded to the degradation plates, the load may be picked up at the far sides of the links and eliminate the contact of the inner sides from contact with the sliding surface, thus reducing heat and friction.
a discloses a cross-sectional diagram of an embodiment of a chain link 500 and degradation plate 501. The chain link 500 may comprise inserts 150 adapted to reduce friction. The degradation plate 501 may comprise a roller assembly 221 and/or picks (not shown) adapted to engage a formation. The roller assembly 221 may comprise a plurality of pointed inserts 570. The degradation plate 501 may be secured to the chain link 500 through mechanical fasteners 502. Both the link and the sliding surface of the boom are lined with inserts.
b discloses a cross-sectional diagram of an embodiment of a chain link 500 and degradation plate 501. In this embodiment, the link comprises fewer inserts. This reduces the contact between inserts and thereby reduces friction and costs. Diamond enhanced inserts on the link may be well suited to the increased load since there are fewer inserts to spread the load between.
a-c disclose a portion of a chain link 500 comprising plurality of inserts. The inserts 150 may be circular, rectangular, square or a combination thereof. In some embodiments, the inserts 150 substantially line the length of the chain link 500. In other embodiments, the chain link 500 may only comprise one or two inserts 150 as can be seen in
a-c disclose embodiments of inserts 150 that may be compatible with the present invention. The inserts may comprise a domed portion 1001 bonded to a substrate 1002. In some embodiments, the inserts may comprise an anglecut 1003 adapted to lift and/or vibrate the links in a controlled manner. In some embodiments, vibrations may be used to induce a destructive frequency into the formation enabling higher rates of degradation. The inserts may also comprise a flatted upper portion 1004. In some embodiments the inserts are a unitary mass, such as in some of the embodiments comprising carbide inserts. In other embodiments, the inserts may have two dissimilar materials bonded to one another.
a-c disclose perspective diagrams of chain pins 1050 which are receivable in the pin sleeves 650 (see
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.