The present invention relates to a chain block for use in a load hoisting work.
In order to move a load in an up-down direction, a chain block is generally used. The chain block includes a hand wheel, a wheel cover, a main body portion, and the like. The main body portion is provided with a load sheave around which a load chain is wound. Then, when a hand chain wound around the hand wheel is wound up, the hand wheel rotates, and the rotation of the hand wheel is transmitted to the load sheave through a predetermined transmission mechanism including gears and the like. Thereby, the load hung on a lower hook is moved in an upward direction. Conversely, when the hand chain is wound down in a state where the load is positioned in the upper side, the load is moved in a downward direction. Such a chain block is disclosed in, for example, Patent Literature 1 and Patent Literature 2.
[PTL 1]: JP 59-195193 Y
[PTL 2]: JP 2011-201637 A
Meanwhile, to improve portability, easiness of attachment and detachment, and the like of the chain block, it is desirable to promote size reduction of the chain block. However, mere size reduction of the chain block brings about a problem of a decrease in strength of the chain block.
The present invention is achieved based on the above circumstances, and an object thereof is to provide a chain block enabling achievement of size reduction while inhibiting a decrease in strength.
To solve the above problems, according to a first aspect of the present invention, a chain block is provided including a load-sheave hollow shaft around which a load chain is wound, which includes a load sheave feeding the load chain along with rotation, and which includes a hollow hole passing therethrough along an axial direction, a drive shaft which is inserted in the hollow hole, which includes on a first end side a gear portion meshing with a reduction gear member, and which has on a base end side of the gear portion away from the first end side a flange portion projecting to an outer circumferential side, and the reduction gear member including a first reduction gear portion meshing with the gear portion. On a first end side of the hollow hole is provided a housing recess including a bottom portion on which the flange portion is situated and abuts. The flange portion is provided toward a center side in a radial direction with an inclined portion gradually inclined toward a side of the gear portion. On a side of the first reduction gear portion in proximity to the flange portion is provided a chamfered portion.
Also, according to another aspect of the present invention, in the aforementioned invention, the load-sheave hollow shaft is preferably provided with a load gear meshing with a second reduction gear portion out of the reduction gear member and rotated integrally with the load-sheave hollow shaft, and this load gear preferably abuts in a state in which movement thereof along a second end side in the axial direction is regulated by a fixing step of the load-sheave hollow shaft. On a center side in the radial direction at least on one end surface side of the load gear is preferably provided a recess further dented than on an outer circumferential side.
Further, according to another aspect of the present invention, in the aforementioned invention, the reduction gear member is preferably provided with the first reduction gear portion having a chamfered portion, the second reduction gear portion meshing with the load gear. The first reduction gear portion is preferably provided with expanding portions projecting from an opposite end surface thereof of the second reduction gear portion, and a pivotally supporting portion preferably projects from the expanding portions toward a direction away from the first reduction gear portion. The expanding portions preferably expand outward in the radial direction so as to have larger diameters than that of the pivotally supporting portion and preferably expand intermittently along a circumferential direction, and between the adjacent expanding portions are preferably provided a plurality of dented portions each having a smaller diameter than that of the expanding portion. On an outer circumferential side of the pivotally supporting portion is preferably provided a groove along the axial direction of the reduction gear member, and this groove preferably communicates with at least one of the dented portions.
Still further, according to another aspect of the present invention, in the aforementioned invention, a thickness of a tip of a tooth of the gear portion in the drive shaft is preferably set to be larger than a thickness of a tip of a tooth of the first reduction gear portion of the reduction gear member.
Still further, according to another aspect of the present invention, in the aforementioned invention, to the frame member is preferably rotatably supported a pair of guide rollers guiding feeding of the load chain together with the load sheave. The guide rollers as the pair are preferably arranged at symmetric positions with a rotation center of the drive shaft interposed therebetween. The guide rollers as the pair are preferably arranged so that, as a result of entire turning in load hoisting with use of the load chain, a line connecting the guide rollers as the pair may be further nearly horizontal than in an unloaded case in the load hoisting.
Still further, according to another aspect of the present invention, in the aforementioned invention, the load-sheave hollow shaft is preferably pivotally supported in an insertion hole of the frame member. To the frame member is preferably attached via fixing tools a plate member having a center hole provided coaxially with the insertion hole. The plate member is preferably provided with a flange portion abutting on the frame member and a draw portion situated further on a center side than the flange portion and raised from the flange portion so as to be spaced apart from the frame member. The plate member is preferably attached to the frame member at the flange portion via the fixing tools. A pair of fixing tools is preferably provided on each side with the rotation center of the drive shaft interposed therebetween. The fixing tools as each pair are preferably provided at positions at which, as a result of entire turning in load hoisting with use of the load chain, a line connecting the fixing tools as each pair further approaches to a direction perpendicular to an acting line of a force at the time of load hoisting than in an unloaded case.
According to the present invention, a chain block enables achievement of size reduction while inhibiting a decrease in strength.
Hereinbelow, a chain block according to an embodiment of the present invention will be described with reference to the drawings.
As illustrated in
Between the first and second frames 11 and 12, a part of the load-sheave hollow shaft 20, an upper hook 40, a guide roller 42, a metal fastener 43, a stripper 44, and the like are positioned. As illustrated in
Also, a gear fitting portion 22 is provided closer to the gear case 13 side than the bearing fitting portion 21a on the first frame 11 side of the load-sheave hollow shaft 20, and a load gear 31 forming the speed reducing mechanism 30 is held in a spline-coupled state by the gear fitting portion 22. Note that the gear case 13 side of the gear fitting portion 22 is provided with a groove portion 22a to which a snap ring E is mounted. By the snap ring E mounted to the groove portion 22a, the load gear 31 is restricted from moving toward the X2 side of the load gear 31 . On the other hand, a clearance groove 22b for a spline process is formed at a site on the bearing fitting portion 21a side of the gear fitting portion 22, and further a fixation stepped portion 22c having a larger diameter than that of the gear fitting portion 22 is provided at a site closer to the bearing fitting portion 21a side than the clearance groove 22b. The fixation stepped portion 22c restricts the load gear 31 from moving toward the X1 side.
Here, the load gear 31 is provided with a central hole 31a into which the above-described gear fitting portion 22 is inserted. In addition, as illustrated in
Furthermore, the load-sheave hollow shaft 20 has a pair of flange portions 23a forming the load sheave 23, and further has a chain pocket 23b (refer to
Furthermore, the load-sheave hollow shaft 20 is provided with a hollow hole 24. A drive shaft 70 is inserted into the hollow hole 24, and an end portion on the second frame 12 side of the hollow hole 24 is provided with a bearing stepped portion 26 for receiving a bearing B3 which shaft-supports the drive shaft 70. Here, an end portion on the gear fitting portion 22 side of the hollow hole 24 is provided with a receiving concave portion 27 for receiving a flange portion 71 of the drive shaft 70. By the flange portion 71 of the drive shaft 70 positioned in the receiving concave portion 27, the length along the axial direction (X direction) of the drive shaft 70 can be reduced, and the dimension along the X direction (the axial direction of the drive shaft 70) of the chain block 10 can be reduced. Furthermore, By the reduced length along the axial direction of the drive shaft 70, the strength of the drive shaft 70 can be improved.
As illustrated in
One end side and the other end side of the guide roller 42 illustrated in
The metal fastener 43 illustrated in
The stripper 44 illustrated in
Furthermore, as illustrated in
Here, the mounting positions of the above-described fixation member 55 and the guide roller 42 with respect to the first frame 11 are in a positional relation illustrated in
Furthermore, as illustrated in
As illustrated in
Furthermore, the small-diameter gear 62 engages with the load gear 31, and the driving force transferred to the reduction gear members 60 is transferred to the load gear 31 at a second reduction gear ratio. Note that the small-diameter gear 62 and the above-described large-diameter gear 61 are integrally formed by cold forging, for example. However, the small-diameter gear 62 and the large-diameter gear 61 may be integrally formed by a combination of other processing such as precise forging and cutting, and may be separately formed by a combination of the above-described processing and thereafter coupled to each other.
As illustrated in
As illustrated in
A portion protruding from the hollow hole 24 toward the gear case 13 side (X2 side) of the drive shaft 70 is provided with the pinion gear 72 (corresponding to a first gear) engaging with the above-described large-diameter gear 61. In
Note that, as described above, when the thickness Da2 of the tooth tip 722 is made larger than the thickness Db2 of the tooth tip 722H according to the related art, the thickness Da of each tooth 721 can be made as follows. That is, in the pinion gear 72 according to the present embodiment, a dimension Ba (not illustrated) of a tooth bottom 723 existing between the neighboring teeth 721 is provided to be smaller than a dimension Bb (not illustrated) of a tooth bottom 723H of the pinion gear 72H according to the related art. Thus, on the tooth bottom 723 side, the thickness Da of the tooth 721 (hereinafter, the thickness Da on the tooth bottom 723 side is referred to as a thickness Da1 as illustrated in
In addition, the thicknesses Da and Db at each site of the teeth 721 and 712H are considered as illustrated in
Note that the thickness Da of each tooth 721 may be set as follows. That is, the thickness Da1 on the tooth bottom 723 side may be set to be equal to the thickness Db1 on the tooth bottom 723H side of the tooth 721H according to the related art. In this case, however, it is necessary to prevent an undercut from occurring on the tooth bottom 723 side. Note that, when the thickness Da1 on the tooth bottom 723 side is provided as described above to be equal to the thickness Db1 on the tooth bottom 723H side of the tooth 721H according to the related art, the dimension of the thickened portion 724 may be set to become large from the tooth bottom 723 toward the tooth tip 722.
Furthermore, each tooth 611 of the large-diameter gear 61 engaging with the pinion gear 72 as described above is thinned by an amount corresponding to thickening of the thickened portion 724 of the tooth 721. That is, in the large-diameter gear 61, a tooth thickness Dc (refer to
Meanwhile, in the configuration illustrated in
Furthermore, each of the reduction gear member 60 and the drive shaft 70 is made of a metal and is preferably made of an iron-based metal from a viewpoint of abrasion resistance. Furthermore, the reduction gear member 60 and the drive shaft 70 are preferably made of similar materials. However, at least the pinion gear 72 of the drive shaft 70 may be made of a material having wear resistance more excellent than that of the large-diameter gear 61 of the reduction gear member 60.
A portion protruding from the hollow hole 24 toward the gear case 13 side (X2 side) of the drive shaft 70 is provided with the pinion gear 72 (corresponding to a gear portion) engaging with the above-described large-diameter gear 61. As illustrated in
Here, the thickness on the tip side of the tooth of the pinion gear 72 is provided to be larger than the thickness on the tip side of the large-diameter gear 61 engaging with the pinion gear 72. Thus, the lifetime of the pinion gear 72 can be prolonged. That is, since the number of teeth of the pinion gear 72 is smaller than the number of teeth of the large-diameter gear 61, each tooth of the pinion gear 72 slides more times than each tooth of the large-diameter gear 61. Thereby, each tooth of the pinion gear 72 wears earlier than each tooth of the large-diameter gear 61. However, by setting the tooth thickness on the tip end side of the tooth of the pinion gear 72 to be larger than the tooth thickness on the tip end side of the large-diameter gear 61 and setting the tooth width to be larger, lifetime of the pinion gear 72 can be prolonged.
Furthermore, the drive shaft 70 is provided with a shaft support portion 75 closer to the gear case 13 side (X2 side) than the pinion gear 72. The shaft support portion 75 is a portion to which the bearing B5 is mounted on the outer peripheral side thereof, and the bearing B5 is mounted to a bearing mounting portion 13b provided in the gear case 13. Thereby, an end portion on the X2 side of the drive shaft 70 is rotatably supported by the gear case 13 through the bearing B5. Further, a male screw portion 76 is provided on the hand wheel 80 side of the drive shaft 70. The male screw portion 76 is a portion to which a female screw portion 81 of the hand wheel 80 or a female screw portion 91a of a brake receiving portion 91, which will be described below, are screwed. Note that an end portion on the X2 side of the male screw portion 76 is provided with a stepped portion 77, and the brake receiver 91 to be described below is locked by the stepped portion 77. Furthermore, a stopper receiving portion 78 having a pin hole 78a is provided closer to the X1 side than the male screw portion 76, and a wheel stopper 84 to be described below is arranged in the stopper receiving portion 78 and retained by a stopper pin 79.
Note that the gear case 13 is a member that covers the speed reducing mechanism 30 such as the reduction gear member 60 and the load gear 31, and the gear case 13 is fixed to the first frame 11 via the stud bolt SB and the nut N.
As illustrated in
Furthermore, the brake mechanism 90 includes the brake receiver 91, a brake plate 92, a ratchet wheel 94, a pawl member 95, and like as main components. As illustrated in
The brake plate 92 (92a) is positioned between the flange portion 91b and the ratchet wheel 94 to be described below. When pressurized from the hand wheel 80 side, the brake plate applies a large frictional force between the flange portion 91b and the ratchet wheel 94 to be described below, and the brake receiver 91 integrally rotates with the ratchet wheel 94 by the large frictional force. Note that the brake plate 92 (92b) is also arranged between the ratchet wheel 94 and the hand wheel 80 and applies a large frictional force between the ratchet wheel 94 and the hand wheel 80 by being pressurized from the hand wheel 80, and the hand wheel 80 integrally rotates with the ratchet wheel 94 by the large frictional force.
As illustrated in
Furthermore, a pair of pawl member 95 are provided. In the configuration illustrated in
Meanwhile, the wheel cover 14 is a member covering an upper side of the hand wheel 80 and an upper side of the brake mechanism 90 and is fixed on the second frame 12 via the stud bolts SB and the nuts N.
In the chain block 10 of the above-described configuration, when the hand chain C2 is operated in the winding-up direction in a state where a load is hung on the lower hook 45, the hand wheel 80 rotates; however, at this time, due to the engagement of the female screw portion 81 with the male screw portion 76 of the drive shaft 70, the hand wheel 80 travels in the direction to pressurize the brake plate 92 (92b) (direction toward X2 in
Conversely, when the lifted load is lowered, the hand chain C2 is driven in the opposite direction to when the load is lifted. Then, the hand wheel 80 releases the pressurization on the brake plate 92b. The drive shaft 70 rotates in the opposite direction to the winding-up direction of the load by an amount of the releasing. Thereby, the load is gradually lowered.
Note that, in a stopped state of the ratchet wheel 94, the tip of the pawl member 95 engages with the tooth portion 94a of the ratchet wheel 94. Moreover, even when the hands are released from the hand chain C2 at the time of winding-up to rotate the drive shaft 70 in the opposite direction by the action of gravity from the load, the brake plate 92b is pressed against the ratchet wheel 94 by the hand wheel 80 in a state where the hand wheel 80 does not rotate, and further the brake plate 92a is pressed against the flange portion 91a of the brake receiver 91 by the ratchet wheel 94. Thereby, a brake force resisting the gravity of the load is applied to prevent the load from being lowered.
According to the chain block 10 configured as above, on one end side of the hollow hole 24 of the load-sheave hollow shaft 20 is provided the receiving concave portion 27 including the bottom portion 27a on which the flange portion 71 of the drive shaft 70 abuts. Accordingly, movement of the drive shaft 70 to the side of the hand wheel 80 is regulated, and the dimension of the drive shaft 70 in the axial direction (X direction) can be reduced. Since the dimension of the drive shaft 70 in the X direction is reduced, size reduction of the chain block 10 can be achieved as much, and weight reduction of the chain block 10 can be achieved. Also, since the dimension of the drive shaft 70 in the axial direction (X direction) is reduced, strength of the drive shaft 70 against torsion, shear, and the like can be improved as much as the reduced amount of the dimension.
Also, the flange portion 71 is provided with the inclined portion 73. Thus, existence of the inclined portion 73 can prevent stress concentration from being generated on the base end part of the pinion gear 72 on the side of the flange 71 and can prevent the teeth of the pinion gear 72 from cracking. Also, since the large-diameter gear 61 of the reduction gear member 60 is provided with the chamfered surface portion 61a, the large-diameter gear 61 can be prevented from interfering with the inclined portion 73 and the like of the drive shaft 70. Also, existence of the chamfered surface portion 61a enables the reduction gear member 60 to be arranged in proximity to the side of the flange portion 71. That is, existence of the chamfered surface portion 61a enables the dimension of the chain block 10 in the X direction to be reduced, and size reduction of the chain block 10 can be achieved.
Also, in the present embodiment, the load gear 31 is provided with the concave portions 31b (31b1 and 31b2) formed by denting both the end surfaces of the load gear 31 to a certain extent. Since the concave portion 31b1 is opposed to the bearing B1, the space between the load gear 31 and the bearing B1 can be enlarged. Thus, in a case in which the load gear 31 is rotated in a state in which machine oil (grease) exists between the load gear 31 and the bearing B1, a mechanical loss generated by viscosity of the machine oil (grease) can be reduced, and fluidity of the machine oil (grease) can be improved at the time of rotation of the load gear 31. Similarly, since the concave portion 31b2 is opposed to the large-diameter gear 61, the space between the load gear 31 and the large-diameter gear 61 can be enlarged. Thus, in a case in which the load gear 31 is rotated, a mechanical loss generated by viscosity of the machine oil (grease) can be reduced, and fluidity of the machine oil (grease) can be improved at the time of rotation of the load gear 31. In other words, existence of the concave portions 31 (31b1 and 31b2) enables resistance (mechanical loss) in driving (upward and downward winding) of the chain block 10 to be decreased and enables operability to be improved.
Further, in the present embodiment, the large-diameter gear 61 is provided with the swelling portions 65. Existence of the swelling portions 65 enables the large-diameter gear 61 to be away from the bearing B4. Also, at parts between the adjacent swelling portions 65 are provided the plurality of recessed portions 66, on the outer circumferential side of the shaft support portion 64 is provided the oil groove 64a, and this oil groove 64a communicates with any of the recessed portions 66. This enables the machine oil to be supplied to the bearing B4 such as a bush via the oil groove 64a. Also, existence of the oil groove 64a enables fluidity of the machine oil (grease) to be improved. Accordingly, a mechanical loss generated by viscosity of the machine oil (grease) can be reduced at the time of rotation of the large-diameter gear 61, and operability can be improved.
Also, in the present embodiment, the tooth thickness Da2 of the tooth tip 722 of the pinion gear 72 is set to be larger than the tooth thickness Dc1 of the tooth tip 612 of the large-diameter gear 61. This enables strength of the teeth 721 of the pinion gear 72 to be improved and enables durability of the pinion gear 72 to be improved. That is, since the number of the teeth 721 of the pinion gear 72 is smaller than the number of the teeth 611 of the large-diameter gear 61, the teeth 721 of the pinion gear 72 are abraded easily. Thus, in the conventional pinion gear 72H, the tooth tips 722 of the teeth 721H are cracked easily due to abrasion of the teeth 721H.
However, as described above, in the case in which the tooth thickness Da2 of the tooth tip 722 of the pinion gear 72 is set to be larger than the tooth thickness Db2 of the tooth tip 722H of the conventional pinion gear 72H, and in which the tooth thickness Da2 of the tooth tip 722 of the pinion gear 72 is set to be larger than the tooth thickness Dc1 of the tooth tip 612 of the large-diameter gear 61, durability of the teeth 721 against abrasion can be improved. Accordingly, lifetime of the chain block 10 can be extended, and reliability of the chain block 10 can be improved.
Also, in the present embodiment, the tooth thickness Da of the tooth 721 of the pinion gear 72 is set to be larger than the conventional tooth thickness Db, and the tooth thickness Dc of the tooth 611 of the large-diameter gear 61 is set to be smaller than the conventional tooth thickness Dd. Accordingly, the tooth tips 722 of the teeth 721 of the pinion gear 72 can be prevented from cracking effectively.
Further, in the present embodiment, the flange portion 71 is provided on the base end side (X1 side) of the pinion gear 72 and is provided to be continuous with the teeth 721. Thus, strength of each tooth 721 of the pinion gear 72 can be increased.
Further, in the present embodiment, the pair of reduction gear members 60 is provided, and both the reduction gear members 60 as a pair mesh with the pinion gear 72. The reduction gear members 60 as a pair are arranged at symmetric positions with the pinion gear 72 interposed therebetween. In this case, the teeth 721 of the pinion gear 72 are in a state of being abraded earlier. However, even in this case, by setting the tooth thickness Da of the tooth tip 722 to be large as described above, the tooth tips 722 of the teeth 721 of the pinion gear 72 can be prevented from cracking effectively.
Further, in the present embodiment, the guide rollers 42 as a pair are arranged at symmetric positions with a rotation center of the drive shaft 70 interposed therebetween and are arranged so that, as a result of entire turning in load hoisting with use of the load chain C1, the line connecting the guide rollers 42 as a pair may be further nearly horizontal than in an unloaded case in the load hoisting. Accordingly, the load chain C1 can be fed favorably by the guide rollers 42 even in a loaded state, and it is possible to prevent a problem in which the load chain C1 comes off of the load sheave 23 from occurring.
Also, in the present embodiment, as illustrated in
Hereinabove, the embodiment of the present invention has been described, but the present invention can be modified in various manners other than the above-described embodiment. Hereinafter, the modifications will be described.
In the above embodiment, the configuration of fixing the auxiliary plate 50 to the first frame 11 through the fixation hole 53 and the fixation member 55. However, for example, at least one combination of a boss hole and a boss may be used in place of the combination of the fixation hole 53 and the fixation member 55. In addition, an auxiliary plate 53 may be fixed to a first frame 11 by welding or the like.
10 . . . Chain block
11 . . . First frame
12 . . . Second frame
13 . . . Gear case
14 . . . Wheel cover
20 . . . Load-sheave hollow shaft
23 . . . Load sheave
24 . . . Hollow hole
25 . . . Bearing step
27 . . . Receiving concave portion
27
a . . . Bottom portion
30 . . . Speed reducing mechanism
31 . . . Load gear
31
b,
31
b
1, 31b2 . . . Concave portion
40 . . . Upper hook
42 . . . Guide roller
43 . . . Metal fastener
44 . . . Stripper
45 . . . Lower hook
50 . . . Auxiliary plate
51 . . . Flange portion
52 . . . Draw forming portion
53 . . . Fixation hole
55 . . . Fixation members
57 . . . Bearing hole
60 . . . Reduction gear member
61 . . . Large-diameter gear (corresponding to first reduction gear)
61
a . . . Chamfered surface portion
62 . . . Small-diameter gear (corresponding to second reduction gear)
64
a . . . Oil groove
65 . . . Swelling portions
66 . . . Recessed portion
70 . . . Drive shaft
71 . . . Flange portion
72 . . . Pinion gear (corresponding to gear portion)
73 . . . Inclined portion
74 . . . Curved surface portion
76 . . . Male screw portion
77 . . . Stepped portion
80 . . . Hand wheel
90 . . . Brake mechanism
91 . . . Brake receiver
92 . . . Brake plate
94 . . . Ratchet wheel
95 . . . Pawl member
B1 to B5 . . . Bearing
C1, C2 . . . Load chain
N . . . Nut
S . . . Space
SB . . . Stud bolt
Number | Date | Country | Kind |
---|---|---|---|
2012-168499 | Jul 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/070457 | 7/29/2013 | WO | 00 |