1. Field of the Invention
The present invention generally relates to a chain guard arrangement for spinning bikes. More particularly, the present invention relates to a chain guard arrangement disposed at an entrance to one or more sprockets of a spinning bike.
2. Description of the Related Art
Exercise bicycles generally comprise a flywheel that is driven by pedals. In some arrangements, the pedals are connected to the flywheel with a chain drive arrangement. In such arrangements, the pedals drive a master sprocket, which turns a slave sprocket through a chain. The slave sprocket is coupled to the flywheel.
The chain drive is generally enclosed within a housing, which can include a primary cover. The housing and the primary cover protect operators of the exercise bicycles from the moving components contained within the housing. The primary cover, however, often is removed by the owner of the exercise bicycle for access to the chain drive. Such access may be desired to perform routine maintenance operations. For instance, the chain drive may require an increase in chain tension over time as the chain stretches. Moreover, the chain drive often benefits from periodic lubrication.
While operators of the exercise equipment are protected by the primary cover during exercise, the moving parts may be exposed during maintenance. While warnings are issued and proper maintenance techniques are advised, the chain drive can become damaged (e.g., foreign objects can jam between the sprocket and the chain) during maintenance operations. Thus, a structure is desired that can limit the size of foreign objects that may be drawn between the chain and the sprocket when the primary cover is removed for maintenance.
One aspect of the present invention involves an exercise bicycle comprising a frame. A seat is adjustably attached to the frame. A handlebar is attached to the frame. The frame comprises a front fork assembly. A flywheel extends through the front fork assembly. A slave sprocket is connected to the flywheel. The slave sprocket rotates about a slave sprocket axis. A pedal is attached to a crank arm. A crank arm is attached to a master sprocket. The master sprocket is supported by the frame and rotates about a master sprocket axis. A flexible transmitter connects the master sprocket and the slave sprocket. An inner guard is positioned between the master sprocket. An outer guard is connected to the inner guard and a chamber is defined between the inner guard and the outer guard. A master sprocket guard and a slave sprocket guard are spaced from each other while being positioned within the chamber. They also are positioned between the master sprocket axis and the slave sprocket axis.
Another aspect of the present invention involves an exercise bicycle comprising a frame. The frame comprises a first crossing member that is adapted to be positioned in a fixed location on a support surface. A seat is adjustably attached to the frame and a handlebar is attached to the frame. A flywheel is rotatably supported on the frame. A resistance assembly is mounted to the frame. The resistance assembly comprises an adjustment knob. The adjustment knob is adapted to allow adjustment of a level of resistance to rotation of the flywheel. A slave sprocket is drivingly coupled to the flywheel. A pedal is connected to a master sprocket. The master sprocket is supported by the frame. A flexible transmitter connects the master sprocket and the slave sprocket. An inner guard is connected to the frame. The inner guard comprises a body that is interposed between a portion of the master sprocket and the frame. The body comprises an opening that is positioned in the body at a location proximate the flywheel. An outer guard is supported by the frame and comprises a first opening and a second opening. The first opening is positioned proximate the master sprocket and the second opening has at least a portion that is generally aligned with the opening through the body of the inner guard. A master sprocket guard is positioned between the inner guard and the outer guard. A slave sprocket guard is positioned between the inner guard and the outer guard. At least a portion of the second opening of the outer guard is positioned between the master sprocket guard and the slave sprocket guard.
A further aspect of the present invention involves an exercise bicycle comprising a frame. A seat is supported by the frame. A handlebar is supported by the frame. A master sprocket is supported by the frame. A slave sprocket is supported by the frame. A flexible transmitter connects the master sprocket and the slave sprocket. An outer guard overlays the master sprocket and the slave sprocket. A master sprocket guard extends only partway around the master sprocket. The master sprocket guard is positioned between the master sprocket and the slave sprocket. The master sprocket guard defines a first passageway and a second passageway. The flexible transmitter extends through the first passageway and the second passageway.
An aspect of the present invention also involves an exercise bicycle comprising a frame. A seat is adjustably attached to the frame. A handlebar is attached to the frame. The frame comprises a front fork assembly. A flywheel extends through the front fork assembly. A slave sprocket is connected to the flywheel. The slave sprocket rotates about a slave sprocket axis. A first imaginary transverse generally vertical plane extends through the slave sprocket axis. A pedal is connected to a master sprocket. The master sprocket is supported by the frame and rotates about a master sprocket axis. A second imaginary transverse generally vertical plane extends through the master sprocket axis. A flexible transmitter connects the master sprocket and the slave sprocket. A master sprocket guard and a slave sprocket guard are spaced from each other and do not extend beyond a space bounded by the first imaginary traverse generally vertical plane and the second imaginary traverse generally vertical plane.
An additional aspect of the present invention involves an exercise bicycle that comprises a frame, a seat supported by the frame, and a handlebar supported by the frame. A master sprocket is supported by the frame and a slave sprocket is supported by the frame. A flexible transmitter connects the master sprocket and the slave sprocket. An outer guard overlays the master sprocket and the slave sprocket. A master sprocket guard extends only partway around the master sprocket. The master sprocket guard is positioned between the master sprocket and the slave sprocket. The master sprocket guard defines a passageway. The flexible transmitter extends through the passageway and does not contact the passageway.
These and other features, aspects and advantages of the present invention will now be described with reference to the drawings of a preferred embodiment, which embodiment is intended to illustrate and not to limit the invention, and in which figures:
An exercise bicycle 20 that is arranged and configured in accordance with certain features, aspects and advantages of the present invention is shown in
The illustrated bicycle 20 generally comprises a frame 22. The illustrated frame comprises a primary down tube 24, which extends at an angle relative to a support surface S on which the bicycle 20 rests. A rear tube 26 extends upward at an angle from a middle portion of the down tube 24. A forward tube 30 extends downward from a forward portion of the down tube 24. A fork assembly 32 is connected to a lower portion of the forward tube 30. In some arrangements, the fork assembly 32 can extend from the down tube 24.
A first crossing member 34 is connected to a lower rearward portion of the frame 22 and a second crossing member 36 is connected to a lower forward portion of the frame 22. The crossing members 34, 36 can be connected to the balance of the frame 22 in any suitable manner and are welded thereto in the illustrated arrangement. The crossing members 34, 36 provide lateral support to the frame 22 but any other suitable support construction also can be used. In the illustrated arrangement, a longitudinal connecting member 40 also is shown. The connecting member 40 extends between the two crossing members 34, 36 and is connected thereto in any suitable manner.
A seat 42 and a set of handlebars 44 are adjustably connected to the frame 22. Any suitable mechanisms allowing for adjustment of the seat 42 and/or the handlebars 44 can be used. In the illustrated arrangement, levers 46 are provided that can be used to tighten the seat 42 and/or the handlebars 44 in position. Moreover, the illustrated seat 42 can be adjusted fore and aft and up and down. Similarly, the illustrated handlebars 44 can be adjusted fore and aft and up and down.
With continued reference to
A resistance assembly 52 is provided to adjust the level of resistance to rotation of the flywheel 50. The resistance assembly 52 acts to slow or stop rotation of the mass of the flywheel 50 such that the sense of inertia can be adjusted. Any suitable resistance assembly 52 can be used. In the illustrated arrangement, an adjusting knob 54 is operably connected to a friction member 56 such that rotation of the knob 54 can increase or decrease the level of friction applied by the friction member 56 to the flywheel 50.
A gear train 60 is provided to drive the flywheel 50. The gear train 60 is attached to the frame 22 in any suitable manner. With reference to
A pair of crank arms 70 is provided and a pedal 72 is mounted to each of the pair of crank arms 70. As shown in
With reference again to
The slot 84 in the bracket 80 allows the slave sprocket 64 to move generally toward and away from the master sprocket 62. A tensioning fastener 86 has an axial direction that generally corresponding with the direction in which the slot 84 extends. The tensioning fastener 86 is mounted such that rotation of the fastener 86 causes radial movement of the slave sprocket 64. In the illustrated arrangement, the tensioning fastener 86 extends through a threaded sleeve or nut, not shown, that is secured in position on the bracket 80. An end of the tensioning fastener 86 abuts a shaft attached to the slave sprocket or abuts a portion of the fastener 82. Once the appropriate tension has been applied to the flexible transmitter 66, a locking nut 90 can be used to secure the relative rotational position of the tensioning fastener, and hence the relative spacing between the master sprocket 62 and the slave sprocket 64.
The gear train 60 is positioned within a chamber defined by an enclosure 100. The enclosure comprises an outer guard 102 and an inner guard 104. The inner and outer guards 102, 104 generally define a cavity within which the flexible transmitter operates. The inner and outer guard 102, 104 can be secured together in any suitable manner. Preferably, the inner guard 102 and the outer guard 104 are secured together in a manner that decreases the likelihood that the one of the guards can be removed without the purposeful use of a hand tool or the like. Such an arrangement decreases the likelihood of unauthorized removal of the guards 102, 104. In one configuration, at least one threaded fastener is used. In other configurations, more than one threaded fastener is used. In the illustrated embodiment, four threaded fasteners 106 are used to secure the outer guard 104 to the inner guard 102. More preferably, these fasteners 106 secure the outer guard 104 over the inner guard 102 to the frame 22. Even more preferably, one or more fasteners can separately secure the inner guard 102 to the frame 22.
With reference to
With reference again to
The inner guard 102 also comprises a small crank arm opening 116. In the illustrated arrangement, the crank arm opening 116 is generally aligned with an axis about which the crank arm 70 rotates. Because the illustrated inner guard 102 will generally abut against a portion of the frame 22 in the illustrated arrangement, the crank arm opening 116 preferably has a diameter small enough to be concealed by the down tube 24 when mounted to the down tube 24.
In the illustrated arrangement, the inner guard 102 comprises outer guard mounting apertures 120. One of the outer guard mounting apertures 120 is positioned on a flange 122 while the other mounting aperture 120 is positioned within the body of the guard 102. Moreover, a pair of mounting flanges 122 extends outward from an end of the illustrated guard 102. The flanges 122 each contain a first hole 124 and a second hole 126. One of the holes 124, 126 is used to secure the inner guard 102 to the frame 22 or another suitable component and the other of the holes 124, 126 is in a manner that will be described.
Advantageously, the inner guard 102 provides locations to which a master sprocket guard 130 and a slave sprocket guard 132 can be mounted. In the illustrated arrangement, at least one mounting boss 134 extends away from the body of the inner guard 102. In particular, three mounting bosses 134 extend. Two of the mounting bosses 134 can be sized and shaped to receive threaded inserts while the third of the mounting bosses 134 can provide a through opening such that a threaded fastener can extend through the inner guard 102 and into the frame 22. As illustrated in
With reference now to
The flange 144 preferably is spaced from one of the posts a sufficient distance to reduce the likelihood that an under-tensioned chain will impinge upon either the flange 144 or the post 142. In the illustrated arrangement, the flanges 144 are positioned between the regions through which the flexible transmitter passes. In some arrangements, a single flange can be used. In other arrangements, the posts can be positioned to limit the size of opening through which the chain passes. The opening preferably is greater than about ¼ inch but less than 2 inches. In a preferred arrangement, the opening is greater than about ¼ inch but less than about 1 and ½ inches. In a more preferred arrangement, the opening is less than about 1 inch.
With reference to
With continued reference to
With reference to
The slave sprocket guard 132 preferably comprises two posts 160, a main body 162 and a flange 164 that is positioned generally between the posts 160. As discussed above, the posts 160 preferably are generally aligned with the openings 124 in the flanges 122 of the inner guard 102. The posts 160 accommodate fasteners 166 and the fasteners secure the guard 132 in position relative to the frame 22.
The flange 164 extends in the same direction of the main body 162 as the posts 160 in the illustrated arrangement. The flange extends over a majority of the cogs that are not engaged with the chain at any given moment. Thus, the guard 132 defines a pair of passages between the posts 160 and the edges of the flange 164. The passages preferably are more than two thicknesses of the flexible transmitter across such that the flexible transmitter can pass through the passages without substantial interference. The passages, however, preferably are less than four, and more preferably less than three, thicknesses of the flexible transmitter across.
In the illustrated arrangement, once the outer guard 104 is removed, such as during maintenance, for example, the bicycle 20 still provides a master sprocket guard 130 and a slave sprocket guard 132 that are positioned generally between the master sprocket 62 and the slave sprocket 64. In one arrangement, the openings 110, 112 are at least partially positioned between the guards 130, 132. In some arrangements, the guards 130, 132 are positioned between a rotational axis of the master sprocket 62 and a rotational axis of the slave sprocket 64. Even more particularly, one preferred arrangement features guards 130, 132 that do not extend out of a region bounded by a pair of transverse generally vertical planes that extend through the rotational axes of the master and slave sprockets. Such placement can reduce the likelihood of items coming between the flexible transmitter and sprocket, which otherwise might cause the chain to jam or being disengaged from the sprocket. The flexible transmitter 66 passes through both guards 130, 132 and, more preferably, passes twice through each of the guards 130, 132. The guards 130, 132 preferably define passages through which the flexible transmitter 66 passes before wrapping onto the sprockets 60, 62. Even more preferably, the flexible transmitter 66 does not contact either of the guards 130, 132 although it passes through the passages. The illustrated construction also provides guards 130, 132 that do not completely encircle the sprockets 60, 62 and can be easily removed during maintenance by removing three of less fasteners each, if necessary or desired.
Although the present invention has been described in terms of a certain embodiment, other embodiments apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes and modifications may be made without departing from the spirit and scope of the invention. For instance, various components may be repositioned as desired. In some arrangements, the master and/or slave sprocket guards can be integrally formed with the inner guard and the passageways defined, in part, by insertable posts, pegs, cylinders or the like. In other arrangements, the master and/or slave sprocket guards can be broken into separate components such that an upper and a lower master and/or slave sprocket guard is provided. For instance, the master sprocket guard could be formed in two pieces with one defining an upper passageway and another defining a lower passageway. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.