The invention in general relates to the field of seals for chain-driven systems, and more particularly to seals for limiting wear in pins and sidebars of chain link apparatuses.
Sprocket-driven chains are used in a variety of different applications. Some applications require the chains to operate in highly abrasive environments. One example is the use of chains in trenching operations, where various cutting or abrading attachments are included on the chain. In operation the chain is revolved about an extended arm or boom, and lowered into contact with the ground. When removing the soil, rock or other ground material, abrasive material comes into direct contact with the links of the chain. Similarly, chains used in conveyor or elevator operations may also be exposed to abrasive or corrosive materials. In both examples, if the abrasive material gets into the joint formed between the pins and sidebars of the links an early failure may occur, sometimes after mere hours of operation.
Several approaches have been suggested in the past for dealing with this general problem. One such can be seen in U.S. Pat. No. 4,094,515. This patent discloses, in one embodiment, the use of an annular rubber seal having an x-shaped cross-section, disposed between inner and outer sidebars of roller chain. The seal serves to both prevent the leakage of lubricant, used between the pin and bushing, and the ingress of dust. However, where a rubber seal of this type is exposed to more abrasive or corrosive materials than dust, it may itself become a point of early failure.
Another approach is disclosed in U.S. Pat. No. 5,269,729. This patent narrowly teaches the use of a two-element seal, with a first outer element having an annular groove and an inner resilient-ring element of uniform (circular or x-shaped) cross-section fitting within the annular groove. The structure of the outer metallic element is required to keep the second resilient element in relative position. Thus, such a two part structure is more costly and less convenient to make and maintain than older single-resilient seal approaches, such as taught in U.S. Pat. No. 4,094,515 (which, while more convenient, were much less resistant to early abrasion-induced failure).
Just such a solution to the problems noted above and more, are made possible by my invention disclosed here.
This invention, while defined by the claims, may be better understood by reference to the embodiments described below, of which the following is a brief summary. In a preferred embodiment, a method and apparatus are disclosed for providing a seal between at least the outer link sidebar and pin bushing of a chain link assembly. The apparatus includes a seal having an outer collar and an inner resilient ring, the outer collar preferably having a mating ridge and the resilient ring being molded onto the collar. This seal also includes outer ribs for providing a sealed contact against the outer sidebar, and may include inner ribs. The seal is part of a chain link assembly positioned between the outer and inner sidebars and surrounding a pin bushing end. A fluid (e.g., grease) may be advantageously placed between the ribs, lubricating the rib—sidebar interface and thereby reducing wear of the ribs.
My invention may be more readily appreciated from the following detailed description, when read in conjunction with the accompanying drawings, in which:
These limitations of the prior approaches are overcome by the present invention. In a preferred embodiment, an improved seal is provided in which the outer collar is firmly joined to the inner resilient material, the outer collar preferably having a mating feature (ridge or depression) along its inner side and the resilient material being molded onto the collar's inner side. In this manner the collar is kept in the same relative position to the resilient material, and the multi-part seal is more easily made and placed/replaced on chain link assemblies. Also, the seal preferably includes side ribs for providing a sealed contact against the outer link sidebar and, alternatively, the inner sidebar. A lubricant may also be used between the ribs, advantageously reducing the wear on the ribs and improving the overall seal.
An exemplary chain link assembly in which this improved seal may be beneficially used can be seen in
The outer collar 11 preferably includes at least one indent (or alternatively, ridge(s) or other uneven structure) 13 on its inner circumferential side. This indent 13 helps to hold the inner ring 12 in a fixed position relative to the outer collar 11. Also, a superior fit can typically be achieved by molding the inner ring 12 to the outer collar 11, although the two parts 11, 12 may be separately formed and then joined.
The inner ring also includes a protrusion 14 which extends outwardly from the outer side of collar 11 (i.e., the side which is positioned against the outer sidebar 2). In a preferred embodiment, the protrusion 14 together with one or more ribs 14 form spaced-apart lips 14, 16 that define at least one pocket/indentation 15 between the lips 14, 16. When used in the chain link assembly, the pocket 15 is preferably packed with a lubricant (e.g., grease), and the lips 14, 16 are positioned in compressive contact with the outer sidebar 2. Thus, as the sidebars 2 and 3 rotate with pin 6 and relative to seal 10, the grease lubricates the interface between the lips 14, 16 and outer sidebar 2 and 3, reducing the coefficient of friction at this interface.
Another alternative of seal 10 is illustrated in
Of course, one skilled in the art will appreciate how a variety of alternatives are possible for the individual elements, and their arrangement, described above, while still falling within the spirit of my invention. Thus, for example, other hard materials can be used in lieu of metal for collar 11, and other resilient materials besides rubbers and soft plastics may be used for the ring 12. Further, while the collars illustrated above were shown as having a substantially square cross-section, its radial dimension may be less or more, so, for example, the collar could form no more than a narrow band outside of the resilient ring 12 while still accomplishing its functionality of providing a more wear resistant surface around the resilient ring 12.
While the above describes several embodiments of the invention used primarily in connection with a method and apparatus for a chain link seal, those skilled in the art will appreciate that there are a number of alternatives, based on system and production design choices, that still fall within the spirit of my invention. Thus, it is to be understood that the invention is not limited to the embodiments described above, and that in light of the present disclosure, various other embodiments should be apparent to persons skilled in the art. Accordingly, it is intended that the invention not be limited to the specific illustrative embodiments but be interpreted within the full spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2411214 | Keech | Nov 1946 | A |
3206258 | Heinrich | Sep 1965 | A |
3235315 | Schnacke | Feb 1966 | A |
3365246 | Otis et al. | Jan 1968 | A |
3379480 | Storm | Apr 1968 | A |
3391964 | Miyake | Jul 1968 | A |
3437385 | Deli | Apr 1969 | A |
3451727 | Deli et al. | Jun 1969 | A |
4094515 | Araya et al. | Jun 1978 | A |
4464151 | Kahl | Aug 1984 | A |
4729754 | Thuerman | Mar 1988 | A |
4941315 | Thuerman | Jul 1990 | A |
5092118 | VanDeMark | Mar 1992 | A |
5269729 | Thuerman et al. | Dec 1993 | A |
5425679 | Utz | Jun 1995 | A |
5806658 | Hannum | Sep 1998 | A |
6074318 | Tanaka et al. | Jun 2000 | A |
6141892 | Moore et al. | Nov 2000 | A |
Number | Date | Country | |
---|---|---|---|
20060122019 A1 | Jun 2006 | US |