The invention relates to a chain lock for round steel chains.
In the state of the art, DE 197 43 025 C1 discloses a block connecting link for round steel chains having two identical link halves. Each link half has a substantially rectangular cross-section with a straight rear surface, plane side surfaces, convexly curved end surfaces, and receptacles for steel chain links located next to the transverse middle plane and facing the center parting plane. Provided on one end of each link half is a projection having a bracket protruding towards the neighboring end surface, and provided on the other end is a projection having a recess that conforms to the bracket. A pin protrudes at the projection having the recess for engagement into a pocket next to the projection. The principal axes of the bracket, recesses, pins and pockets extend at an angle in relation to the transverse middle plane. A supporting cam is provided between the receptacles of each link half. In the case of this block connecting link, all pin-type connections contribute to receiving the longitudinal forces, to achieve a high breaking force and a high number of stress reversals. It was determined, however, that the locking pins respectively arranged at the ends and driven into the pin via cross bores are also subjected to high shear stress. On the other hand, interlocking at the ends shall not be forgone so that the link halves may not easily spread apart under load stress.
DE 20 2004 009 459 U1 describes a chain lock for steel links chains having two identical chain lock parts that can be mounted to each other in the longitudinal direction and that are arranged in a rotationally symmetric manner. Each lock part includes a center bar extension to form a center bar when the lock parts are mounted to each other. The arc sections at the ends of each lock part respectively form one of two complementary coupling members. Locking pins that are introduced into corresponding bores effectuate the interlocking of the lock halves in the area of the center bar. Undercut interlocking bars are respectively formed in the end sections, wherein the interlocking bars engage into a correspondingly configured pocket of the other lock part. As a result of the undercut at the interlocking bars and the pocket provided for receiving the interlocking bar, the lock parts are interlocked. The interlocking bar and the interlocking pocket, respectively, transfers the tensile forces exerted on the chain lock to the respective other lock half so that the interlocking bars assume a dual function because they simultaneously prevent the lock halves from separating from each other transversely to the longitudinal extension.
The invention is based on the object to provide a chain lock for round steel chains that can be exposed to a higher degree of load stress and, in particular, prevents a shearing of the lock halves under load stress.
The object is solved in accordance with the invention by a chain lock for round steel chains having two lock halves, each of which having a rear section extending in the longitudinal direction of the chain lock and terminating in coupling sections. Each of the coupling sections has a locking pin which protrudes transversely to a parting plane of the chain lock. The locking pin has on its other side facing the other coupling section, on its free end a web-like projection that extends from side surface to side surface of the lock half and borders a pocket. The pocket receives a fork leg of the other lock half, with the fork leg matching the contour of the pocket.
It is an essential feature of the chain lock according to the invention that the pocket has substantially linear outer flanks that face the side surfaces, wherein the angle enclosed by the flanks is in the range from 120° to 150°.
Experiments have shown that the configuration of the projection and/or the flanks substantially affects the load-bearing capacity of the chain lock because the projection can shear off at high load stress under the influence of the transverse forces. Very small projections as well as greatly protruding projections have proven to be disadvantageous. Experiments have shown in particular that it is not necessary to arrange the flanks substantially parallel and/or at an acute angle to each other. Rather, it is advantageous if the angle enclosed by the flanks is in the range from 120° to 150°. Even with this geometry, it is possible to absorb high transverse forces, whereby the production of such-shaped pockets is only slightly more complex than in the case of locking pins without pockets.
Furthermore, due to its capability to absorb high transverse forces, the configuration of the locking pin according to the invention allows a shift of the interlock by means of a locking pin to a center support between the rear sections of the lock halves. As a result, the cross bores on the end sides of the coupling sections, required heretofore, are not necessary, and, thus, there are no local inhomogeneities in the stress distribution that are caused by the cross bores because the inhomogeneities ultimately lead to stress peaks and premature failure of the lock halves. The shear stress generated by the struck round steel chain is lower in the area of the center bar so that, if appropriately dimensioned, a single bore with a locking pin can be sufficient.
It is considered particularly suitable if one center support has a groove that extends in the longitudinal direction of the chain lock and the other center support has a tongue that fits into the groove, with the groove and the tongue being traversed by at least one cross bore to receive the locking pin. Theoretically, the groove and the tongue could also have a single leg configuration in the area of the center support so that merely two centrally protruding lugs are traversed by a locking pin. However, in such a configuration, higher shear forces are generated in the locking pin than in a classic tongue and groove arrangement. In any case, the lock halves are still symmetrical parts during the forging process, with the asymmetry experienced only later due to the machining process. The asymmetry is exclusively caused by the configuration of the center support. Except for the configuration of the center support, the lock halves are configured in identical manner.
To absorb maximal transverse forces and/or to cause minimal bending moments in the web-like projection of the locking pin, the fork leg engaging the pockets has engagement areas facing the flanks. The engagement areas enclose the same angle as the flanks of the pockets. As a result of this matching contour of the pocket and the fork leg, there is maximum overlap in the transversal direction, thereby improving the load-bearing capacity of the chain lock.
It is also of advantage that the flanks of the pocket and the engagement areas of the fork leg do not touch each other, when the lock halves are coupled to each other. Instead, the flanks of the pocket and the engagement areas of the fork leg are arranged such that they have play. In other words, in the normal case, no longitudinal forces generated by the chain are transferred via the locking pin and the pocket. The single purpose of the locking pin is to absorb transverse forces that are induced by, e.g., the introduced longitudinal forces.
To absorb longitudinal forces, randomly configured coupling areas may be provided at the chain lock. Preferably, the coupling section that supports the locking pin has a receptacle to form-fittingly integrate a cam of the other lock half which cam is suited to the receptacle. Longitudinal forces that are exerted on the chain lock can be introduced into the respective other lock half via the cams and the receptacles. Therefore, the receptacles and the cams are arranged in the area of the main direction of tension, i.e., in the area of the parting plane of the chain lock. It is advantageous if the principal axes of the receptacles and the cams are arranged at an angle relative to the transverse middle plane of the chain lock. The angle between the principal axes of the transverse middle plane is hereby so small that the desired small axial relative movement of the lock halves during assembly and disassembly of a block lock is only slightly increased. Sliding off of the areas of the cams and the receptacles in contact with each other is prevented in view of the inclination of the cams and the receptacles relative to the transverse middle plane of the lock halves.
An exemplary embodiment of the invention will now be described in more detail with reference to the drawings, in which:
The rear sections 4, 5 of the lock halves 2, 3 have center supports 10, 11, via which the rear sections 4, 5 are supported with respect to each other so that a central necking of the chain lock 1 under tensile loading is avoided.
Besides the configuration of the center support 10, 11, the configuration of the coupling sections 6, 7, 8, 9 is essential for the chain lock in accordance with the invention.
The locking pin 16 has on its free end 18 a web-like projection 22 which extends from side surface 20 to side surface 21 (cf.
The coupling section 6 further has a receptacle 24 for form-fitting incorporation of a cam 25 of the other lock half which cam is conformed to the receptacle 24. The receptacle 24 and the cam 25 transfer forces acting in the longitudinal direction, i.e., in the direction of the parting plane TE of the chain lock 1. To avoid sliding of the cam 25 out of the receptacle 24, the principal axis HA of the receptacle 24 and the principal axis HN of the cam, respectively, define with the transverse middle plane an angle W in the range from 3° to 7° (
The projection 22 has a constant width B along its entire extension. Therefore, the projection 22 has a larger radius than the transition area between the flanks 27, 28. As a result, the flanks of the projection are also arranged relative to each other at the angle W1 which corresponds to the angle W1 between the flanks of the pocket 23 (
The width of the projection 22 is dimensioned such that a cam 25 can be passed by the front side of the projection 22 in an inclined manner while maintaining the angle W (
While the lock half 3 of
Finally,
The hatched areas in
Number | Date | Country | Kind |
---|---|---|---|
20 2006 006 731 U | Apr 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2007/000631 | 4/11/2007 | WO | 00 | 10/23/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/124713 | 11/8/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2052066 | Younie | Aug 1936 | A |
6021634 | Brodziak | Feb 2000 | A |
6220011 | Dalferth et al. | Apr 2001 | B1 |
6223517 | Bogdan et al. | May 2001 | B1 |
7024849 | Benecke et al. | Apr 2006 | B2 |
7263821 | Nuding et al. | Sep 2007 | B2 |
Number | Date | Country |
---|---|---|
22 00 381 | May 1973 | DE |
197 43 025 | May 1999 | DE |
20 2004 009459 | Oct 2004 | DE |
WO 8302653 | Aug 1983 | WO |
WO 2004097252 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090095035 A1 | Apr 2009 | US |