The embodiments of the present invention are now described with reference to the accompanying drawings.
A chain guide 6 is in contact with the slack side of the chain 5. The chain guide 6 is pivotable about a pin 7, and is pressed against the chain 5 by a chain tensioner 10 embodying the present invention.
The plunger 13 has a bore 14 having a rear open end. A spring 15 is mounted between the closed end of the bore 14 and the closed end of the cylinder chamber 12 to bias the plunger 13 outwardly of the cylinder chamber 12.
The housing 11 is formed with an oil supply passage 17 communicating with a pressure chamber 16 defined in the cylinder chamber 12 behind the plunger 13. A check valve 18 is mounted at the oil outlet of the oil supply passage 17. When the pressure of the hydraulic oil in the pressure chamber 16 rises above the supply pressure of the hydraulic oil supplied through the oil supply passage 17, the check valve 18 closes the oil supply passage 17, preventing the flow of hydraulic oil in the pressure chamber 16 into the oil supply passage 17.
Between the housing 11 and the plunger 13, a retraction restrictor mechanism 20 for preventing the plunger 13 from retracting toward the closed end of the cylinder chamber 12 over a predetermined distance is provided.
As shown in
As shown in
When the plunger 13 advances, the ring portion 22a of the register ring 22 slides rearwardly on the tapered surface 23a and engages into the next circumferential groove 23, thus allowing forward movement of the plunger 13. When the plunger 13 retracts, the ring portion 22a of the register ring 22 is trapped between the rear wall 21a of the ring mounting groove 21 and the engaging surface 23b of the circumferential groove 23, thus restricting the retraction of the plunger 13.
As shown in
The anti-separation mechanism 30 comprises an axially elongated guide recess 31 formed in the outer periphery of the plunger 13 and having front and rear end walls 31b, a radial pin hole 32 formed in the housing 11 near the open end of the cylinder chamber 12, and a stopper pin 33 in the form of a spring pin pressed into the pin hole 32 and having its radially inner end protruding into the guide recess 31. By abutting the rear end wall 31b of the recess 31, the stopper pin 33 prevents the plunger 13 from being pushed out of the cylinder chamber 12.
In this embodiment, the guide recess 31 consists of a flat surface 31a extending axially of the plunger 13 and the pair of end walls 31b. But the guide recess may be a groove instead.
The spring pin as the stopper pin 33 elastically and diametrically shrinks when pressed into the pin hole 32. Therefore, even if the housing 11 is made of aluminum alloy, it is possible to prevent deformation of the inner peripheral surface of the cylinder chamber 12, so that the gap between the inner peripheral surface of the cylinder chamber and the outer peripheral surface of the plunger 13 remains constant. This ensures smooth sliding of the plunger 13.
The chain tensioner 10 of the first embodiment has its housing 11 mounted to an engine block such that the chain guide 6 shown in
With the chain tensioner 10 mounted in such a manner, when the chain 5 vibrates and slackens due to changes in the angular velocity of the crankshaft 1 when the crankshaft 1 rotates once or due to changes in torque applied to the camshafts 3, the plunger 13 moves outwardly under the force of the spring 15, thus re-tensioning the chain 5.
When the plunger 13 advances, the ring portion 22a of the register ring 22 expands, pushed by the tapered surface 23a of the circumferential groove 23, thus allowing the plunger 13 to advance. When the amount of movement of the plunger 13 exceeds the pitch of the circumferential grooves 23, the ring portion 22a of the register ring 22 engages in the next rearward circumferential groove 23.
When the tension in the chain 5 increases, pushing force is applied from the chain to the plunger 13 through the chain guide 6. Hydraulic oil in the pressure chamber 16 dampens such pushing force.
If the engine is stopped with the slack side of the chain 5 tensioned according to the positions of the cams on the camshafts 3 when the engine is stopped, the plunger 13 is pushed by the chain 5. But in this state, because the ring portion 22a of the register ring 22 is trapped between the rear wall 21a of the ring mounting groove 21 and the engaging surface 23b of one of the circumferential grooves 23, the plunger 13 is prevented from retracting any further. This in turn prevents flapping of the chain 5 when the engine is restarted.
When the chain 5 and/or the chain tensioner 10 is dismounted for maintenance of the valve train of the engine, the plunger 13 advances under the force of the spring 15. But the stopper pin 33 prevents separation of the plunger 13 by abutting the rear end wall 31b of the guide recess 31.
To re-set the chain tensioner after maintenance, the plunger 13 is pushed in while expanding the ring portion 22a of the register ring 22 by pinching the pair of the control tabs 22b of the register ring 22.
Because the second embodiment is otherwise the same as the first embodiment, like elements are denoted by like numerals and their description is omitted.
By providing the housing 11 with the pin hole 34 so as to extend across the outer periphery of the cylinder chamber 12 and pressing the stopper pin 35 into the pin hole 34, it is possible to effectively prevent deformation of the inner peripheral surface of the cylinder chamber 12.
Number | Date | Country | Kind |
---|---|---|---|
2003-420844 | Dec 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/19026 | 12/20/2004 | WO | 00 | 6/6/2006 |