The disclosure of Japanese Patent Application No. 2012-037855, filed on Feb. 23, 2012, is here incorporated by reference.
This invention relates to a chain transmission comprising a chain for transmitting power from one or more driving sprockets to one or more driven sprockets, and one or more guides on which the chain slides.
As shown in
Assembly of the roller chain is made difficult by the necessity of applying a high pressure in order to press-fit the end portions 515a of the bushing into the bushing holes 514a in the inner link plates.
As shown in
When the roller chain 510 is utilized in the timing system of an engine, fluctuation in chain tension can cause the chain to meander within the space between the sidewalls 521, generating sliding contact sounds. The efficiency of the chain transmission is also impaired by excessive friction due to contact between the inner link plates 514 and the chain guide.
Accordingly, there is a need for a chain transmission in which elongation of the chain caused by the defection of the connecting pins is suppressed over a long time; in which assembly of the chain is made easier; in which power can be transmitted more efficiently; and in which meandering of the chain, and jumping of the chain out of sliding engagement with the chain guide or guides, are suppressed without the need to increase the size of the space in which the chain transmission is installed.
The chain transmission in accordance with the invention comprises a chain guide and an elongated transmission chain in sliding engagement with the chain guide and arranged to travel along the chain guide in the direction of elongation of the chain. The transmission chain is composed of pairs of right and left outer plates and pairs of right and left inner plates. The plates of each pair of outer plates are in opposed, spaced, relation to each other in the chain width direction, which is perpendicular to the direction of elongation of the chain. The plates of each pair of inner plates are also in opposed, spaced relation to each other in the chain width direction. The pairs of inner plates and the pairs of outer plates are disposed in alternating, overlapping, relationship along the length of the chain. Each pair of inner plates extends in a first direction into a space between one adjacent pair of outer plates, and in a second direction, opposite to the first direction, into a space between another adjacent pair of outer plates. The plates of each pair of outer plates have mutually facing inner surfaces. Connecting pins connect the alternating pairs of plates in articulating relationship. Each of the connecting pins is press-fit into holes in a pair of inner plates and fits rotatably in holes in a pair of outer plates.
Because the connecting pins are press-fit into the inner plates, the portion of each connecting pin that is subjected to bending stress by engagement with a sprocket tooth is shorter than the corresponding portion in a conventional chain by an amount slightly greater than the sum of the thicknesses of the two inner plates. Therefore, it is possible reduce deflection of the connecting pins and to suppress elongation of the chain caused by the deflection of the connecting pins for a long time.
Press-fitting the connecting pins into holes in the inner plates eliminates the need for bushings, resulting in reduction of the number of parts in the chain and also in a reduction of the weight of the chain. Therefore, assembly of the chain is facilitated, and its power transmission efficiency is improved. Elimination of the bushings also makes it possible to reduce the height of the chain, and to reduce the space occupied by the chain in a chain transmission.
According to a second aspect of the invention, the height of the inner plates, measured in a height direction mutually perpendicular to the direction of chain elongation and the chain width direction, is less than the height of the outer plates, also measured in the height direction. The chain guide includes an inner plate-engaging surface facing in the chain height direction and in sliding engagement with edges of inner plates of the chain, and outer plate-engaging surfaces facing in the chain width direction and in facing relationship with inner surfaces of outer plates of the chain for restricting lateral travel of the chain.
With the interposition of the chain guide between the outer plates, the chain is restricted by engagement of the inward-facing surfaces of the outer plates with the outer plate-engaging surfaces of the guide, and meandering of the chain, and jumping of the chain out of engagement with the chain guide, can be more effectively suppressed.
Because the chain guide does not need to be wider than the chain, the size of the chain guide can be reduced, and the space occupied by the guide in a chain transmission can be reduced accordingly. Furthermore, because the range in which the transmission chain can meander is restricted to a distance corresponding to the widths of the small gaps between the inner side surfaces of the outer plates and the outwardly facing, outer plate-engaging surfaces of the guide, it is possible to reduce sliding contact sounds generated by meandering of the chain, and also to reduce frictional losses.
According to a third aspect of the invention, the chain guide can also include a pair of outer plate-engaging surfaces facing in the chain height direction, extending in parallel to the inner plate-engaging surface, and in sliding engagement with edges of outer plates of the chain. In this case it becomes possible to reduce the surface pressure applied by the chain to the chain guide, and thereby reduce wear of the chain guide.
According to a fourth aspect of the invention, the outer plates can be held on the connecting pins by caulked end portions of the connecting pins. Thus, the end portions of a pin can be engaged with opposed outer plates around the entire periphery of the pin. Consequently, the number of parts of the chain, and the overall weight of the chain, can be reduced.
According to a fifth aspect of the invention, the outer plates can be held on the connecting pins by stop rings press-fit onto end portions of the connecting pins. The stop rings can securely prevent the outer plates from becoming disconnected from the connecting pins.
The chain transmission 100 shown in
The chain transmission 100 comprises a chain 110, a movable guide 120 on which the chain slides in a longitudinal direction, a fixed chain guide F, a chain-driving sprocket S1 on the engine crankshaft (not shown), and two driven sprockets S2 on the engine camshafts (not shown).
The movable guide 120 described above is pivotably mounted on the block of an engine E by a shoulder bolt P, and is urged against the span of the chain that travels from the crankshaft sprocket S1 toward a camshaft sprocket S2 by the plunger of a tensioner T, which maintains proper tension in the transmission chain 110 in order to prevent failure caused by excessive tension or excessive slack in the chain.
The fixed guide F is in sliding engagement with an opposite span of the chain that travels from one of the camshaft sprockets S2 toward the crankshaft sprocket S1.
As shown in
The movable guide 120 is preferably composed of a polyamide resin shoe 121 on which the chain 110 slides, and a base 122 that supports the back of the shoe 121.
As shown in
As shown in
The chain does not require bushings, and elimination of bushings makes it possible to downsize the outer and inner plates 111 and 112, and to reduce the number of parts and the weight of the chain.
As shown in
The chain guide of the invention does not require restricting sidewalls arranged on outer sides of a transmission chain, and therefore can be narrower than a conventional chain guide. Furthermore, the range in which the transmission chain 110 can meander can be as small as the distance corresponding to the gaps between the inner side surfaces ills of the outer plates 111 and the surfaces 120b of the guide.
As shown in
Because the connecting pins are press-fit to the inner plates and are rotatable in the outer plates, bending stress is applied only to a relatively small portion of the length of each pin, and elongation of the chain caused by the deflection of connecting pins can be suppressed for a long time.
Because the heights of the inner plates are smaller than the heights of the outer plates, and the guide has both a surface 120a on which the inner plates slide and restricting surfaces 120b for guiding the inner side surface his of the outer plates 111, it is possible to limit meandering of the chain 110 more effectively, and to prevent its jumping from the guide 120. This chain structure also makes it possible to downsize the guide 120 and to reduce the space that it requires.
It is also possible to reduce the sounds generated by sliding contact between the transmission chain and the guide 120 by suppressing meandering of the chain, and to increase the efficiency of power transmission by reducing friction between the chain and the guide.
In a modification shown in
In a second embodiment, shown in
As shown in
In this embodiment, all the advantages of the first-described embodiment are realized. In addition, the greater contact area between the chain and the guide reduces wear of the guide by reducing the surface pressure applied to the guide by the transmission chain.
The second embodiment can be modified in the same ways in which the first embodiment can be modified. That is, the outer plates can be held by caulked end portions of the connecting pins or by stop rings press fit onto the ends of the connecting pins, and the connecting pins can be utilized with or without rollers. Various other modifications can also be made. For example, T-pins extending through end portions of the connecting pins, or stop covering end portions of the connecting pins, can be used in place of caulking or stop rings.
In each case, because the connecting pins are press-fit into pin holes in the inner plates, deflection of the connecting pins is reduced and elongation of the chain caused by the deflection of the connecting pins is suppressed for a long time. In addition, the press-fit relationship of the connecting pins and the inner plates makes assembly of the transmission easier, enables the chain to transmit power more efficiently, reduces the space required for the chain and the chain guides and more effectively prevents the chain from meandering and jumping out of the chain guides.
Although a chain structure in which the heights of the inner link plates are smaller than the heights of the outer link plates is preferable because it allows the chain guide to be downsized and enables the magnitude of sliding-contact sounds to be reduced, other advantages of the invention, e.g., reduced deflection of the connecting pins, can be realized in embodiments in which the heights of the inner plates are greater than the heights of the outer plates and in which the chain guides have inwardly facing sidewalls for guiding the chain. Advantages of the invention can be realized in embodiments in which the chain guide is in sliding contact only with the inner plates of the chain, or only with the outer plates of the chain.
The chain guide structure described herein can be utilized in the movable guide or guides of the chain transmission, in the stationary guide or guides, or in both types of guides in a chain transmission.
Number | Date | Country | Kind |
---|---|---|---|
2012-037855 | Feb 2012 | JP | national |